Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cerebellum ; 23(2): 833-837, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37460907

RESUMEN

Potassium channels (KCN) are transmembrane complexes that regulate the resting membrane potential and the duration of action potentials in cells. The opening of KCN brings about an efflux of K+ ions that induces cell repolarization after depolarization, returns the transmembrane potential to its resting state, and enables for continuous spiking ability. The aim of this work was to assess the role of KCN dysfunction in the pathogenesis of hereditary ataxias and the mechanisms of action of KCN opening agents (KCO). In consequence, a review of the ad hoc medical literature was performed. Among hereditary KCN diseases causing ataxia, mutated Kv3.3, Kv4.3, and Kv1.1 channels provoke spinocerebellar ataxia (SCA) type 13, SCA19/22, and episodic ataxia type 1 (EA1), respectively. The K+ efflux was found to be reduced in experimental models of these diseases, resulting in abnormally prolonged depolarization and incomplete repolarization, thereby interfering with repetitive discharges in the cells. Hence, substances able to promote normal spiking activity in the cerebellum could provide symptomatic benefit. Although drugs used in clinical practice do not activate Kv3.3 or Kv4.3 directly, available KCO probably could ameliorate ataxic symptoms in SCA13 and SCA19/22, as verified with acetazolamide in EA1, and retigabine in a mouse model of hypokalemic periodic paralysis. To summarize, ataxia could possibly be improved by non-specific KCO in SCA13 and SCA19/22. The identification of new specific KCO agents will undoubtedly constitute a promising therapeutic strategy for these diseases.


Asunto(s)
Ataxia Cerebelosa , Canalopatías , Miocimia , Ataxias Espinocerebelosas/congénito , Degeneraciones Espinocerebelosas , Ratones , Animales , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Ataxia/tratamiento farmacológico , Ataxia/genética , Mutación
2.
Int J Biol Macromol ; 253(Pt 2): 126652, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37673169

RESUMEN

Channelopathies arise from ion channel dysfunction. Successful treatment entails delivery of functional ion channels to replace dysfunctional ones. Glycine receptor (GlyR)-rich cell membrane fragments (CMF) were previously delivered to target cell membranes using fusogenic liposomes. Here, cystic fibrosis transmembrane conductance regulator (CFTR)-bearing CMF were similarly delivered to target cells. We studied the effect of lipid composition on liposomes' ability to incorporate CMF and fuse with target cell membranes to deliver functional CFTR. Four formulations were prepared using thin-film hydration out of different lecithin sources, egg and soy lecithin (EL and SL), in the presence and absence of cholesterol (CHOL): EL + CHOL, EL-CHOL, SL + CHOL, and SL-CHOL. EL liposomes incorporated more CMF than SL liposomes, with CHOL only increasing CMF incorporation in SL liposomes. SL + CHOL fused better with target cell membranes than EL + CHOL. SL + CHOL and EL + CHOL equally delivered CFTR to target cell membranes, owing to the former's superior fusogenic capacity and the latter's superior CMF-incorporation capacity. SL-CHOL and EL-CHOL delivered CFTR to a lesser extent, indicating the importance of CHOL for fusion. Patch-clamp electrophysiology and confocal laser scanning microscopy (CLSM) confirmed CFTR delivery to target cell membranes by SL + CHOL. Therefore, CMF-bearing fusogenic liposomes offer a promising universal platform for the treatment of channelopathies.


Asunto(s)
Canalopatías , Fibrosis Quística , Humanos , Liposomas , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Fibrosis Quística/tratamiento farmacológico , Lecitinas , Canalopatías/tratamiento farmacológico
3.
Toxins (Basel) ; 15(4)2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-37104176

RESUMEN

The Buthidae family of scorpions consists of arthropods with significant medical relevance, as their venom contains a diverse range of biomolecules, including neurotoxins that selectively target ion channels in cell membranes. These ion channels play a crucial role in regulating physiological processes, and any disturbance in their activity can result in channelopathies, which can lead to various diseases such as autoimmune, cardiovascular, immunological, neurological, and neoplastic conditions. Given the importance of ion channels, scorpion peptides represent a valuable resource for developing drugs with targeted specificity for these channels. This review provides a comprehensive overview of the structure and classification of ion channels, the action of scorpion toxins on these channels, and potential avenues for future research. Overall, this review highlights the significance of scorpion venom as a promising source for discovering novel drugs with therapeutic potential for treating channelopathies.


Asunto(s)
Canalopatías , Venenos de Escorpión , Animales , Humanos , Escorpiones/química , Canalopatías/tratamiento farmacológico , Péptidos/farmacología , Péptidos/uso terapéutico , Péptidos/química , Canales Iónicos/metabolismo , Desarrollo de Medicamentos , Venenos de Escorpión/química
4.
Handb Exp Pharmacol ; 279: 227-248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592223

RESUMEN

In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.


Asunto(s)
Ataxia Cerebelosa , Canalopatías , Trastornos Migrañosos , Humanos , Ataxia/diagnóstico , Ataxia/tratamiento farmacológico , Ataxia/genética , Canales de Calcio/genética , Ataxia Cerebelosa/terapia , Ataxia Cerebelosa/tratamiento farmacológico , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Canalopatías/terapia , Trastornos Migrañosos/tratamiento farmacológico , Mutación
5.
Curr Opin Pharmacol ; 68: 102329, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36512979

RESUMEN

Skeletal muscle ion channelopathies are rare genetic diseases mainly characterized by myotonia (muscle stiffness) or periodic paralysis (muscle weakness). Here, we reviewed the available therapeutic options in non-dystrophic myotonias (NDM) and periodic paralyses (PP), which consists essentially in drug repositioning to address stiffness or weakness attacks. Empirical use followed by successful randomized clinical trials eventually led to the orphan drug designation and marketing authorization granting of mexiletine for NDM and dichlorphenamide for PP. Yet, these treatments neither consider the genetic cause of the diseases nor address the individual variability in drug response. Thus, ongoing research aims at the identification of repurposed drugs alternative to mexiletine and dichlorphenamide to allow personalization of treatment. This review highlights how drug repurposing may represent an efficient strategy in rare diseases, allowing reduction of drug development time and costs in a context in which the return on investment may be particularly challenging.


Asunto(s)
Canalopatías , Trastornos Miotónicos , Parálisis Periódicas Familiares , Humanos , Reposicionamiento de Medicamentos , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Mexiletine/uso terapéutico , Diclorfenamida/uso terapéutico , Músculo Esquelético , Parálisis Periódicas Familiares/tratamiento farmacológico , Parálisis Periódicas Familiares/genética , Trastornos Miotónicos/genética , Trastornos Miotónicos/terapia , Mutación
6.
Biomolecules ; 12(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36291551

RESUMEN

Pulmonary arterial hypertension (PAH) is a devastating disease with high morbidity and mortality. Deleterious remodeling in the pulmonary arterial system leads to irreversible arterial constriction and elevated pulmonary arterial pressures, right heart failure, and eventually death. The difficulty in treating PAH stems in part from the complex nature of disease pathogenesis, with several signaling compounds known to be involved (e.g., endothelin-1, prostacyclins) which are indeed targets of PAH therapy. Over the last decade, potassium channelopathies were established as novel causes of PAH. More specifically, loss-of-function mutations in the KCNK3 gene that encodes the two-pore-domain potassium channel KCNK3 (or TASK-1) and loss-of-function mutations in the ABCC8 gene that encodes a key subunit, SUR1, of the ATP-sensitive potassium channel (KATP) were established as the first two potassium channelopathies in human cohorts with pulmonary arterial hypertension. Moreover, voltage-gated potassium channels (Kv) represent a third family of potassium channels with genetic changes observed in association with PAH. While other ion channel genes have since been reported in association with PAH, this review focuses on KCNK3, KATP, and Kv potassium channels as promising therapeutic targets in PAH, with recent experimental pharmacologic discoveries significantly advancing the field.


Asunto(s)
Canalopatías , Hipertensión Pulmonar , Canales de Potasio de Dominio Poro en Tándem , Canales de Potasio con Entrada de Voltaje , Hipertensión Arterial Pulmonar , Humanos , Canales de Potasio de Dominio Poro en Tándem/genética , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Endotelina-1 , Proteínas del Tejido Nervioso/metabolismo , Hipertensión Pulmonar Primaria Familiar/genética , Prostaglandinas I , Potasio , Canales KATP/genética
7.
J Neuromuscul Dis ; 8(3): 357-381, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33325393

RESUMEN

BACKGROUND: Skeletal muscle ion channelopathies include non-dystrophic myotonias (NDM), periodic paralyses (PP), congenital myasthenic syndrome, and recently identified congenital myopathies. The treatment of these diseases is mainly symptomatic, aimed at reducing muscle excitability in NDM or modifying triggers of attacks in PP. OBJECTIVE: This systematic review collected the evidences regarding effects of pharmacological treatment on muscle ion channelopathies, focusing on the possible link between treatments and genetic background. METHODS: We searched databases for randomized clinical trials (RCT) and other human studies reporting pharmacological treatments. Preclinical studies were considered to gain further information regarding mutation-dependent drug effects. All steps were performed by two independent investigators, while two others critically reviewed the entire process. RESULTS: For NMD, RCT showed therapeutic benefits of mexiletine and lamotrigine, while other human studies suggest some efficacy of various sodium channel blockers and of the carbonic anhydrase inhibitor (CAI) acetazolamide. Preclinical studies suggest that mutations may alter sensitivity of the channel to sodium channel blockers in vitro, which has been translated to humans in some cases. For hyperkalemic and hypokalemic PP, RCT showed efficacy of the CAI dichlorphenamide in preventing paralysis. However, hypokalemic PP patients carrying sodium channel mutations may have fewer benefits from CAI compared to those carrying calcium channel mutations. Few data are available for treatment of congenital myopathies. CONCLUSIONS: These studies provided limited information about the response to treatments of individual mutations or groups of mutations. A major effort is needed to perform human studies for designing a mutation-driven precision medicine in muscle ion channelopathies.


Asunto(s)
Canalopatías/tratamiento farmacológico , Músculo Esquelético/efectos de los fármacos , Medicina de Precisión/métodos , Humanos , Parálisis Periódica Hipopotasémica/tratamiento farmacológico , Lamotrigina/uso terapéutico , Mexiletine/uso terapéutico , Mutación , Síndromes Miasténicos Congénitos/tratamiento farmacológico , Trastornos Miotónicos/tratamiento farmacológico , Ensayos Clínicos Controlados Aleatorios como Asunto , Bloqueadores de los Canales de Sodio/uso terapéutico
8.
Adv Genet ; 105: 137-174, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32560786

RESUMEN

Potassium channels are a heterogeneous group of membrane-bound proteins, whose functions support a diverse range of biological processes. Genetic disorders arising from mutations in potassium channels are classically recognized by symptoms arising from acute channel dysfunction, such as periodic paralysis, ataxia, seizures, or cardiac conduction abnormalities, often in a patient with otherwise normal examination findings. In this chapter, we review a distinct subgroup of rare potassium channelopathies whose presentations are instead suggestive of a developmental disorder, with features including intellectual disability, craniofacial dysmorphism or other physical anomalies. Known conditions within this subgroup are: Andersen-Tawil syndrome, Birk-Barel syndrome, Cantú syndrome, Keppen-Lubinsky syndrome, Temple-Baraitser syndrome, Zimmerman-Laband syndrome and a very similar disorder called Bauer-Tartaglia or FHEIG syndrome. Ion channelopathies are unlikely to be routinely considered in the differential diagnosis of children presenting with developmental concerns, and so detailed description and photographs of the clinical phenotype are provided to aid recognition. For several of these disorders, functional characterization of the genetic mutations responsible has led to identification of candidate therapies, including drugs already commonly used for other indications, which adds further impetus to their prompt recognition. Together, these cases illustrate the potential for mechanistic insights gained from genetic diagnosis to drive translational work toward targeted, disease-modifying therapies for rare disorders.


Asunto(s)
Anomalías Múltiples/genética , Síndrome de Andersen/genética , Cardiomegalia/genética , Canalopatías/genética , Anomalías Craneofaciales/genética , Fibromatosis Gingival/genética , Hallux/anomalías , Deformidades Congénitas de la Mano/genética , Hipertricosis/genética , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Uñas Malformadas/genética , Osteocondrodisplasias/genética , Canales de Potasio/genética , Pulgar/anomalías , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/patología , Anomalías Múltiples/fisiopatología , Síndrome de Andersen/tratamiento farmacológico , Síndrome de Andersen/patología , Síndrome de Andersen/fisiopatología , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Canalopatías/tratamiento farmacológico , Canalopatías/metabolismo , Canalopatías/fisiopatología , Niño , Anomalías Craneofaciales/tratamiento farmacológico , Anomalías Craneofaciales/patología , Anomalías Craneofaciales/fisiopatología , Fibromatosis Gingival/tratamiento farmacológico , Fibromatosis Gingival/patología , Fibromatosis Gingival/fisiopatología , Hallux/patología , Hallux/fisiopatología , Deformidades Congénitas de la Mano/tratamiento farmacológico , Deformidades Congénitas de la Mano/patología , Deformidades Congénitas de la Mano/fisiopatología , Humanos , Hipertricosis/tratamiento farmacológico , Hipertricosis/patología , Hipertricosis/fisiopatología , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Hipotonía Muscular/tratamiento farmacológico , Hipotonía Muscular/patología , Hipotonía Muscular/fisiopatología , Uñas Malformadas/tratamiento farmacológico , Uñas Malformadas/patología , Uñas Malformadas/fisiopatología , Osteocondrodisplasias/tratamiento farmacológico , Osteocondrodisplasias/patología , Osteocondrodisplasias/fisiopatología , Canales de Potasio/metabolismo , Pulgar/patología , Pulgar/fisiopatología
10.
Biomolecules ; 10(5)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392767

RESUMEN

An extensive catalog of plasma membrane (PM) protein mutations related to phenotypic diseases is associated with incorrect protein folding and/or localization. These impairments, in addition to dysfunction, frequently promote protein aggregation, which can be detrimental to cells. Here, we review PM protein processing, from protein synthesis in the endoplasmic reticulum to delivery to the PM, stressing the main repercussions of processing failures and their physiological consequences in pathologies, and we summarize the recent proposed therapeutic strategies to rescue misassembled proteins through different types of chaperones and/or small molecule drugs that safeguard protein quality control and regulate proteostasis.


Asunto(s)
Canalopatías/metabolismo , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Animales , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Humanos , Proteínas de la Membrana/química , Transporte de Proteínas , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/genética
11.
Mar Drugs ; 18(3)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32245015

RESUMEN

Toxins from marine animals provide molecular tools for the study of many ion channels, including mammalian voltage-gated potassium channels of the Kv1 family. Selectivity profiling and molecular investigation of these toxins have contributed to the development of novel drug leads with therapeutic potential for the treatment of ion channel-related diseases or channelopathies. Here, we review specific peptide and small-molecule marine toxins modulating Kv1 channels and thus cover recent findings of bioactives found in the venoms of marine Gastropod (cone snails), Cnidarian (sea anemones), and small compounds from cyanobacteria. Furthermore, we discuss pivotal advancements at exploiting the interaction of κM-conotoxin RIIIJ and heteromeric Kv1.1/1.2 channels as prevalent neuronal Kv complex. RIIIJ's exquisite Kv1 subtype selectivity underpins a novel and facile functional classification of large-diameter dorsal root ganglion neurons. The vast potential of marine toxins warrants further collaborative efforts and high-throughput approaches aimed at the discovery and profiling of Kv1-targeted bioactives, which will greatly accelerate the development of a thorough molecular toolbox and much-needed therapeutics.


Asunto(s)
Canalopatías/tratamiento farmacológico , Toxinas Marinas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Animales , Caracol Conus/química , Cianobacterias/química , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Humanos , Toxinas Marinas/uso terapéutico , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Bloqueadores de los Canales de Potasio/uso terapéutico , Anémonas de Mar/química , Canales de Potasio de la Superfamilia Shaker/metabolismo
12.
Cardiovasc Res ; 116(9): 1557-1570, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32251506

RESUMEN

The cardiac sodium channel NaV1.5, encoded by the SCN5A gene, is responsible for the fast upstroke of the action potential. Mutations in SCN5A may cause sodium channel dysfunction by decreasing peak sodium current, which slows conduction and facilitates reentry-based arrhythmias, and by enhancing late sodium current, which prolongs the action potential and sets the stage for early afterdepolarization and arrhythmias. Yet, some NaV1.5-related disorders, in particular structural abnormalities, cannot be directly or solely explained on the basis of defective NaV1.5 expression or biophysics. An emerging concept that may explain the large disease spectrum associated with SCN5A mutations centres around the multifunctionality of the NaV1.5 complex. In this alternative view, alterations in NaV1.5 affect processes that are independent of its canonical ion-conducting role. We here propose a novel classification of NaV1.5 (dys)function, categorized into (i) direct ionic effects of sodium influx through NaV1.5 on membrane potential and consequent action potential generation, (ii) indirect ionic effects of sodium influx on intracellular homeostasis and signalling, and (iii) non-ionic effects of NaV1.5, independent of sodium influx, through interactions with macromolecular complexes within the different microdomains of the cardiomyocyte. These indirect ionic and non-ionic processes may, acting alone or in concert, contribute significantly to arrhythmogenesis. Hence, further exploration of these multifunctional effects of NaV1.5 is essential for the development of novel preventive and therapeutic strategies.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/metabolismo , Canalopatías/metabolismo , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Canalopatías/fisiopatología , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Herencia , Humanos , Mutación , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fenotipo , Factores de Riesgo , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
13.
Eur J Paediatr Neurol ; 24: 123-128, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31889633

RESUMEN

Voltage-gated sodium channels (VGSCs) play a crucial role in generation of action potentials. Pathogenic variants in the five human brain expressed VGSC genes, SCN1A, SCN2A, SCN3A, SCN8A and SCN1B have been associated with a spectrum of epilepsy phenotypes and neurodevelopmental disorders. In the last decade, next generation sequencing techniques have revolutionized the way we diagnose these channelopathies, which is paving the way towards precision medicine. Knowing the functional effect (Loss-of-function versus Gain-of-function) of a variant is not only important for understanding the underlying pathophysiology, but it is particularly crucial to orient therapeutic decisions. Here we provide a review of the literature dealing with treatment options in epilepsy-related sodium channelopathies, including the current and emerging medications.


Asunto(s)
Canalopatías/tratamiento farmacológico , Canalopatías/genética , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Canales de Sodio Activados por Voltaje/genética , Humanos
14.
Annu Rev Pharmacol Toxicol ; 60: 133-154, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31537174

RESUMEN

Voltage-gated sodium and calcium channels are evolutionarily related transmembrane signaling proteins that initiate action potentials, neurotransmission, excitation-contraction coupling, and other physiological processes. Genetic or acquired dysfunction of these proteins causes numerous diseases, termed channelopathies, and sodium and calcium channels are the molecular targets for several major classes of drugs. Recent advances in the structural biology of these proteins using X-ray crystallography and cryo-electron microscopy have given new insights into the molecular basis for their function and pharmacology. Here we review this recent literature and integrate findings on sodium and calcium channels to reveal the structural basis for their voltage-dependent activation, fast and slow inactivation, ion conductance and selectivity, and complex pharmacology at the atomic level. We conclude with the theme that new understanding of the diseases and therapeutics of these channels will be derived from application of the emerging structural principles from these recent structural analyses.


Asunto(s)
Canales de Calcio/efectos de los fármacos , Canalopatías/tratamiento farmacológico , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Calcio/química , Canales de Calcio/metabolismo , Canalopatías/fisiopatología , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Terapia Molecular Dirigida , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
15.
J Med Genet ; 57(2): 132-137, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31586945

RESUMEN

BACKGROUND: Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. METHODS: A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. RESULTS: WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. CONCLUSION: This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice.


Asunto(s)
Ataxia/genética , Discinesias/genética , Epilepsia/genética , Canal de Potasio Kv.1.1/genética , Miocimia/genética , Ataxia/diagnóstico , Ataxia/tratamiento farmacológico , Ataxia/patología , Canalopatías/diagnóstico , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Canalopatías/patología , Niño , Preescolar , Discinesias/diagnóstico , Discinesias/tratamiento farmacológico , Discinesias/patología , Epilepsia/diagnóstico , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Homocigoto , Humanos , Lactante , Recién Nacido , Canal de Potasio Kv.1.1/ultraestructura , Masculino , Mutación/genética , Miocimia/diagnóstico , Miocimia/tratamiento farmacológico , Miocimia/patología , Oxcarbazepina/administración & dosificación , Oxcarbazepina/efectos adversos , Linaje , Secuenciación del Exoma
16.
Int J Biol Macromol ; 153: 1080-1089, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-31756462

RESUMEN

Defects in transmembrane ion channels underlie many disorders, commonly known as channelopathies. Current therapies are mostly symptomatic and do not treat the underlying cause. Here, we demonstrate the delivery of functional ion channels in protein form into the membrane of target cells using fusogenic proteoliposomes. The glycine receptor (GlyR) was adopted as a model channel. HEK293 cells were transfected with GlyR and GlyR-rich cell membrane fragments (CMF) were incorporated into fusogenic liposomes. Proteoliposomes were generated using 1,2-dioleoylphosphoethanolamine (DOPE) as the fusogenic lipid, lecithin, 1,2-distearoylphosphoethanolamine (DSPE), and cholesterol (Chol). Three formulations were prepared Non-fuse (2.5:0.5 Lecithin: Chol), Fuse1 (1.25:0.25:0.25:0.25) and Fuse2 (1.25:0.5:0.5:0.25 Lecithin: DOPE: DSPE: Chol). Proteoliposomes were assessed for their ability to (1) incorporate GlyR rich CMF (2) fuse with L929 fibroblast cell membrane and (3) deliver functional GlyR to these cells. All formulations were capable of integrating CMF, with Fuse2 showing highest CMF incorporation (1.2 and 1.4 folds relative to Non-fuse and Fuse1 respectively). All liposomes showed ability to fuse with the fibroblast cell membrane, with Fuse2 showing highest fusion. Patch-clamp analysis demonstrated successful delivery of functional GlyR into the fibroblast cell membrane. Thus, proof of principle was established for the use of liposomes to deliver functional ion channels to living cells.


Asunto(s)
Membrana Celular/metabolismo , Canalopatías/tratamiento farmacológico , Receptores de Glicina/administración & dosificación , Receptores de Glicina/metabolismo , Canalopatías/metabolismo , Células HEK293 , Humanos , Liposomas , Receptores de Glicina/uso terapéutico
17.
Curr Med Sci ; 39(6): 863-873, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31845216

RESUMEN

Voltage-gated sodium (Nav) channels are critical players in the generation and propagation of action potentials by triggering membrane depolarization. Mutations in Nav channels are associated with a variety of channelopathies, which makes them relevant targets for pharmaceutical intervention. So far, the cryoelectron microscopic structure of the human Nav1.2, Nav1.4, and Nav1.7 has been reported, which sheds light on the molecular basis of functional mechanism of Nav channels and provides a path toward structure-based drug discovery. In this review, we focus on the recent advances in the structure, molecular mechanism and modulation of Nav channels, and state updated sodium channel blockers for the treatment of pathophysiology disorders and briefly discuss where the blockers may be developed in the future.


Asunto(s)
Canalopatías/genética , Mutación , Bloqueadores de los Canales de Sodio/química , Canales de Sodio Activados por Voltaje/metabolismo , Potenciales de Acción , Canalopatías/tratamiento farmacológico , Microscopía por Crioelectrón , Diseño de Fármacos , Humanos , Modelos Moleculares , Conformación Proteica , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Relación Estructura-Actividad , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/genética
18.
Handb Exp Pharmacol ; 260: 187-205, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31820177

RESUMEN

Ion channels are macromolecular proteins that form water-filled pores in cell membranes and they are critical for a variety of physiological and pharmacological functions. Dysfunctional ion channels can cause diseases known as channelopathies. Ion channels are encoded by approximately 400 genes, representing the second largest class of proven drug targets for therapeutic areas including neuropsychiatric disorders, cardiovascular and metabolic diseases, immunological diseases, nephrological diseases, gastrointestinal diseases, pulmonary/respiratory diseases, and many cancers. With more ion channel structures are being solved and functional robust assays are being developed, there are tremendous opportunities for identifying specific modulators targeting ion channels for new therapy.


Asunto(s)
Canalopatías/tratamiento farmacológico , Canales Iónicos/agonistas , Canales Iónicos/antagonistas & inhibidores , Terapia Molecular Dirigida , Humanos
19.
IUBMB Life ; 71(7): 812-820, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31020791

RESUMEN

Curcumin, an orange-yellow lipophilic polyphenolic molecule, is the active component of Curcuma longa, which is extensively used as a spice in most of the Asian countries. This natural compound is able to interact with a large number of molecular structures like proteins, enzymes, lipids, DNA, RNA, transporter molecules, and ion channels. It has been reported to possess several biological effects such as antioxidant, anti-inflammatory, wound healing, antimicrobial, anticancer, antiangiogenic, antimutagenic, and antiplatelet aggregation properties. These beneficial effects of curcumin are because of its extraordinary chemical interactions such as extensive hydrogen and covalent bonding, metal chelation, and so on. Therefore, the aim of this review was to outline the evidence in which curcumin could affect different types of ion channels and ion channel-related diseases, and also to elucidate basic molecular mechanisms behind it. © 2019 IUBMB Life, 2019.


Asunto(s)
Canalopatías/tratamiento farmacológico , Curcumina/farmacología , Inhibidores Enzimáticos/farmacología , Canales Iónicos/efectos de los fármacos , Bombas Iónicas/efectos de los fármacos , Animales , Canalopatías/metabolismo , Humanos
20.
Cell Calcium ; 80: 112-116, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31009822

RESUMEN

Ca2+ release-activated Ca2+ (CRAC) channels are intimately linked with health and disease. The gene encoding the CRAC channel, ORAI1, was discovered in part by genetic analysis of patients with abolished CRAC channel function. And patients with autosomal recessive loss-of-function (LOF) mutations in ORAI1 and its activator stromal interaction molecule 1 (STIM1) that abolish CRAC channel function and store-operated Ca2+ entry (SOCE) define essential functions of CRAC channels in health and disease. Conversely, gain-of-function (GOF) mutations in ORAI1 and STIM1 are associated with tubular aggregate myopathy (TAM) and Stormorken syndrome due to constitutive CRAC channel activation. In addition, genetically engineered animal models of ORAI and STIM function have provided important insights into the physiological and pathophysiological roles of CRAC channels in cell types and organs beyond those affected in human patients. The picture emerging from this body of work shows CRAC channels as important regulators of cell function in many tissues, and as potential drug targets for the treatment of autoimmune and inflammatory disorders.


Asunto(s)
Trastornos de las Plaquetas Sanguíneas/metabolismo , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Canalopatías/metabolismo , Dislexia/metabolismo , Ictiosis/metabolismo , Trastornos Migrañosos/metabolismo , Miosis/metabolismo , Mutación/genética , Miopatías Estructurales Congénitas/metabolismo , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Bazo/anomalías , Molécula de Interacción Estromal 1/genética , Animales , Trastornos de las Plaquetas Sanguíneas/tratamiento farmacológico , Trastornos de las Plaquetas Sanguíneas/genética , Calcio/metabolismo , Señalización del Calcio , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Dislexia/tratamiento farmacológico , Dislexia/genética , Eritrocitos Anormales/metabolismo , Humanos , Ictiosis/tratamiento farmacológico , Ictiosis/genética , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/genética , Miosis/tratamiento farmacológico , Miosis/genética , Fatiga Muscular/genética , Miopatías Estructurales Congénitas/tratamiento farmacológico , Miopatías Estructurales Congénitas/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Bazo/metabolismo , Molécula de Interacción Estromal 1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...