Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biosci Rep ; 40(1)2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-31904821

RESUMEN

Early stages of transcription from eukaryotic promoters include two principal events: the capping of newly synthesized mRNA and the transition of RNA polymerase II from the preinitiation complex to the productive elongation state. The capping checkpoint model implies that these events are tightly coupled, which is necessary for ensuring the proper capping of newly synthesized mRNA. Recent findings also show that the capping machinery has a wider effect on transcription and the entire gene expression process. The molecular basis of these phenomena is discussed.


Asunto(s)
Modelos Genéticos , Caperuzas de ARN/biosíntesis , ARN Polimerasa II/metabolismo , ARN Mensajero/biosíntesis , Transcripción Genética , Animales , Regulación de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Caperuzas de ARN/genética , ARN Mensajero/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Chembiochem ; 21(1-2): 265-271, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31626389

RESUMEN

Eukaryotic mRNAs possess 5' caps that are determinants for their function. A structural characteristic of 5' caps is methylation, with this feature already present in early eukaryotes such as Trypanosoma. While the common cap-0 (m7 GpppN) shows a rather simple methylation pattern, the Trypanosoma cap-4 displays seven distinguished additional methylations within the first four nucleotides. The study of essential biological functions mediated by these unique structural features of the cap-4 and thereby of the metabolism of an important class of human pathogenic parasites is hindered by the lack of reliable preparation methods. Herein we describe the synthesis of custom-made nucleoside phosphoramidite building blocks for m62 Am and m3 Um, their incorporation into short RNAs, the efficient construction of the 5'-to-5' triphosphate bridge to guanosine by using a solid-phase approach, the selective enzymatic methylation at position N7 of the inverted guanosine, and enzymatic ligation to generate trypanosomatid mRNAs of up to 40 nucleotides in length. This study introduces a reliable synthetic strategy to the much-needed cap-4 RNA probes for integrated structural biology studies, using a combination of chemical and enzymatic steps.


Asunto(s)
Metiltransferasas/metabolismo , Caperuzas de ARN/biosíntesis , Trypanosoma/metabolismo , Metilación , Estructura Molecular , Caperuzas de ARN/química , Trypanosoma/química
3.
RNA ; 22(9): 1454-66, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27368341

RESUMEN

The eukaryotic mRNA 5' cap structure is indispensible for pre-mRNA processing, mRNA export, translation initiation, and mRNA stability. Despite this importance, structural and biophysical studies that involve capped RNA are challenging and rare due to the lack of a general method to prepare mRNA in sufficient quantities. Here, we show that the vaccinia capping enzyme can be used to produce capped RNA in the amounts that are required for large-scale structural studies. We have therefore designed an efficient expression and purification protocol for the vaccinia capping enzyme. Using this approach, the reaction scale can be increased in a cost-efficient manner, where the yields of the capped RNA solely depend on the amount of available uncapped RNA target. Using a large number of RNA substrates, we show that the efficiency of the capping reaction is largely independent of the sequence, length, and secondary structure of the RNA, which makes our approach generally applicable. We demonstrate that the capped RNA can be directly used for quantitative biophysical studies, including fluorescence anisotropy and high-resolution NMR spectroscopy. In combination with (13)C-methyl-labeled S-adenosyl methionine, the methyl groups in the RNA can be labeled for methyl TROSY NMR spectroscopy. Finally, we show that our approach can produce both cap-0 and cap-1 RNA in high amounts. In summary, we here introduce a general and straightforward method that opens new means for structural and functional studies of proteins and enzymes in complex with capped RNA.


Asunto(s)
Caperuzas de ARN/biosíntesis , Procesamiento Postranscripcional del ARN , Factor 4E Eucariótico de Iniciación/metabolismo , Humanos , Metiltransferasas/metabolismo , Complejos Multienzimáticos/metabolismo , Nucleotidiltransferasas/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Caperuzas de ARN/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Virales/metabolismo
4.
Proc Jpn Acad Ser B Phys Biol Sci ; 91(8): 394-409, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26460318

RESUMEN

Terminal structure analysis of an insect cytoplasmic polyhedrosis virus (CPV) genome RNA in the early 1970s at the National Institute of Genetics in Japan yielded a 2'-O-methylated nucleotide in the 5' end of double-stranded RNA genome. This finding prompted me to add S-adenosyl-L-methionine, a natural methylation donor, to the in vitro transcription reaction of viruses that contain RNA polymerase. This effort resulted in unprecedented mRNA synthesis that generates a unique blocked and methylated 5' terminal structure (referred later to as "cap" or "m(7)G-cap") in the transcription of silkworm CPV and human reovirus and vaccinia viruses that contain RNA polymerase in virus particles. Initial studies with viruses paved the way to discover the 5'-cap m(7)GpppNm structure present generally in cellular mRNAs of eukaryotes. I participated in those studies and was able to explain the pathway of cap synthesis and the significance of the 5' cap (and capping) in gene expression processes, including transcription and protein synthesis. In this review article I concentrate on the description of these initial studies that eventually led us to a new paradigm of mRNA capping.


Asunto(s)
Eucariontes/genética , Caperuzas de ARN , Animales , Humanos , Caperuzas de ARN/biosíntesis , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo
5.
Viruses ; 7(8): 4640-56, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26287232

RESUMEN

Genome replication in flavivirus requires (-) strand RNA synthesis, (+) strand RNA synthesis, and 51-RNA capping and methylation. To carry out viral genome replication, flavivirus assembles a replication complex, consisting of both viral and host proteins, on the cytoplasmic side of the endoplasmic reticulum (ER) membrane. Two major components of the replication complex are the viral non-structural (NS) proteins NS3 and NS5. Together they possess all the enzymatic activities required for genome replication, yet how these activities are coordinated during genome replication is not clear. We provide an overview of the flaviviral genome replication process, the membrane-bound replication complex, and recent crystal structures of full-length NS5. We propose a model of how NS3 and NS5 coordinate their activities in the individual steps of (-) RNA synthesis, (+) RNA synthesis, and 51-RNA capping and methylation.


Asunto(s)
Flavivirus/fisiología , Caperuzas de ARN/biosíntesis , ARN Viral/biosíntesis , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Flavivirus/genética , Regulación Viral de la Expresión Génica , Humanos , ARN Helicasas/metabolismo , Serina Endopeptidasas/metabolismo
6.
Genetics ; 196(1): 161-76, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24172134

RESUMEN

Yeast mRNA 5'-triphosphatase, Cet1p, recognizes phosphorylated-RNA polymerase II as a component of capping machinery via Ceg1p for cotranscriptional formation of mRNA cap structure that recruits cap-binding complex (CBC) and protects mRNA from exonucleases. Here, we show that the accumulation of RNA polymerase II at the promoter proximal site of ADH1 is significantly enhanced in the absence of Cet1p. Similar results are also found at other genes. Cet1p is recruited to the 5' end of the coding sequence, and its absence impairs mRNA capping, and hence CBC recruitment. However, such an impaired recruitment of CBC does not enhance promoter proximal accumulation of RNA polymerase II. Thus, Cet1p specifically lowers the accumulation of RNA polymerase II at the promoter proximal site independently of mRNA cap structure or CBC. Further, we show that Cet1p's N-terminal domain, which is not involved in mRNA capping, decreases promoter proximal accumulation of RNA polymerase II. An accumulation of RNA polymerase II at the promoter proximal site in the absence of Cet1p's N-terminal domain is correlated with reduced transcription. Collectively, our results demonstrate a novel role of Cet1p in regulation of promoter proximal accumulation of RNA polymerase II independently of mRNA capping activity, and hence transcription in vivo.


Asunto(s)
Ácido Anhídrido Hidrolasas/genética , Alcohol Deshidrogenasa/genética , Caperuzas de ARN/biosíntesis , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sitios de Unión/genética , Quinasa 1 de Adhesión Focal/genética , Fosforilación , Regiones Promotoras Genéticas , Estructura Terciaria de Proteína/genética , Proteínas de Unión a Caperuzas de ARN , ARN Polimerasa II/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Elongación de la Transcripción Genética , Iniciación de la Transcripción Genética , Transcripción Genética
7.
PLoS One ; 6(11): e27702, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22110731

RESUMEN

BACKGROUND: Bluetongue virus (BTV) protein, VP1, is known to possess an intrinsic polymerase function, unlike rotavirus VP1, which requires the capsid protein VP2 for its catalytic activity. However, compared with the polymerases of other members of the Reoviridae family, BTV VP1 has not been characterized in detail. METHODS AND FINDINGS: Using an in vitro polymerase assay system, we demonstrated that BTV VP1 could synthesize the ten dsRNAs simultaneously from BTV core-derived ssRNA templates in a single in vitro reaction as well as genomic dsRNA segments from rotavirus core-derived ssRNA templates that possess no sequence similarity with BTV. In contrast, dsRNAs were not synthesized from non-viral ssRNA templates by VP1, unless they were fused with specific BTV sequences. Further, we showed that synthesis of dsRNAs from capped ssRNA templates was significantly higher than that from uncapped ssRNA templates and the addition of dinucleotides enhanced activity as long as the last base of the dinucleotide complemented the 3' -terminal nucleotide of the ssRNA template. CONCLUSIONS: We showed that the polymerase activity was stimulated by two different factors: cap structure, likely due to allosteric effect, and dinucleotides due to priming. Our results also suggested the possible presence of cis-acting elements shared by ssRNAs in the members of family Reoviridae.


Asunto(s)
Virus de la Lengua Azul/enzimología , Caperuzas de ARN/biosíntesis , Caperuzas de ARN/metabolismo , ARN Viral/biosíntesis , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Regulación Alostérica , Animales , Secuencia de Bases , Biocatálisis , Línea Celular , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN Bicatenario/biosíntesis , ARN Bicatenario/química , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/química
8.
J Biol Chem ; 285(37): 28411-7, 2010 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-20538599

RESUMEN

The heterotrimeric RNA-dependent RNA polymerase of influenza viruses catalyzes RNA replication and transcription activities in infected cell nuclei. The nucleotide polymerization activity is common to both replication and transcription processes, with an additional cap-snatching function being employed during transcription to steal short 5'-capped RNA primers from host mRNAs. Cap-binding, endonuclease, and polymerase activities have long been studied biochemically, but structural studies on the polymerase and its subunits have been hindered by difficulties in producing sufficient quantities of material. Recently, because of heightened effort and advances in expression and crystallization technologies, a series of high resolution structures of individual domains have been determined. These shed light on intrinsic activities of the polymerase, including cap snatching, subunit association, and nucleocytoplasmic transport, and open up the possibility of structure-guided development of new polymerase inhibitors. Furthermore, the activity of influenza polymerase is highly host- and cell type-specific, being dependent on the identity of a few key amino acid positions in the different subunits, especially in the C-terminal region of PB2. New structures demonstrate the surface exposure of these residues, consistent with ideas that they might modulate interactions with host-specific factors that enhance or restrict activity. Recent proteomic and genome-wide interactome and RNA interference screens have suggested the identities of some of these potential regulators of polymerase function.


Asunto(s)
Virus de la Influenza A/enzimología , ADN Polimerasa Dirigida por ARN/química , Transporte Activo de Núcleo Celular , Animales , Dominio Catalítico , Núcleo Celular/enzimología , Núcleo Celular/virología , Cristalografía por Rayos X , Humanos , Estructura Cuaternaria de Proteína , Caperuzas de ARN/biosíntesis , ARN Viral/biosíntesis , ADN Polimerasa Dirigida por ARN/metabolismo , Relación Estructura-Actividad , Transcripción Genética , Replicación Viral/fisiología
9.
Methods Mol Biol ; 629: 405-52, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20387165

RESUMEN

Since decades, the main goal of tumor immunologists has been to increase the capacity of the immune system to mediate tumor regression. Considerable progress has been made in enhancing the efficacy of therapeutic anticancer vaccines. First, dendritic cells (DCs) have been identified as the key players in orchestrating primary immune responses. A better understanding of their biology and the development of procedures to generate vast amounts of DCs in vitro have accelerated the development of potent immunotherapeutic strategies for cancer. Second, tumor-associated antigens have been identified which are either selectively or preferentially expressed by tumor cells and can be recognized by the immune system. Finally, several studies have been performed on the genetic modification of DCs with tumor antigens. In this regard, loading the DCs with mRNA, which enables them to produce/process and present the tumor antigens themselves, has emerged as a promising strategy. Here, we will first overview the different aspects that must be taken into account when generating an mRNA-based DC vaccine and the published clinical studies exploiting mRNA-loaded DCs. Second, we will give a detailed description of a novel procedure to generate a vaccine consisting of tumor antigen-expressing dendritic cells with an in vitro superior capacity to induce anti-tumor immune responses. Here, immature DCs are electroporated with mRNAs encoding a tumor antigen, CD40 ligand (CD40L), CD70, and constitutively active (caTLR4) to generate mature antigen-presenting DCs.


Asunto(s)
Antígenos de Neoplasias/inmunología , Células Dendríticas/inmunología , Electroporación/métodos , Inmunoterapia/métodos , Melanoma/inmunología , Melanoma/terapia , Vacunas contra el Cáncer/administración & dosificación , Vacunas contra el Cáncer/inmunología , Diferenciación Celular , Células Dendríticas/citología , Humanos , Monitorización Inmunológica , Caperuzas de ARN/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vacunación
10.
Mol Cell ; 37(4): 580-7, 2010 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-20188675

RESUMEN

Termination of RNA polymerase II (RNAPII) transcription of protein-coding genes occurs downstream of cleavage/polyadenylation sites. According to the "torpedo" model, the 5'-3' exonuclease Rat1p/Xrn2p attacks the newly formed 5' end of the cleaved pre-mRNA, causing the still transcribing RNAPII to terminate. Here we demonstrate a similar role of S. cerevisiae Rat1p within the gene body. We find that the transcription processivity defect imposed on RNAPII by the rpb1-N488D mutation is corrected upon Rat1p inactivation. Importantly, Rat1p-dependent transcription termination occurs upstream the polyadenylation site. Genetic and biochemical evidence demonstrate that mRNA capping is defective in rpb1-N488D cells, which leads to increased levels of Rat1p all along the gene locus. Consistently, Rat1p-dependent RNAPII termination is also observed in the capping-deficient ceg1-63 strain. Our data suggest that Rat1p serves to terminate RNAPII molecules engaged in the production of uncapped RNA, regardless of their position on the gene locus.


Asunto(s)
Exorribonucleasas/metabolismo , Caperuzas de ARN/biosíntesis , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Transcripción Genética , Exorribonucleasas/genética , Regulación Fúngica de la Expresión Génica , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Caperuzas de ARN/genética , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Wiley Interdiscip Rev RNA ; 1(1): 152-72, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21956912

RESUMEN

The 5' guanine-N7 methyl cap is unique to cellular and viral messenger RNA (mRNA) and is the first co-transcriptional modification of mRNA. The mRNA cap plays a pivotal role in mRNA biogenesis and stability, and is essential for efficient splicing, mRNA export, and translation. Capping occurs by a series of three enzymatic reactions that results in formation of N7-methyl guanosine linked through a 5'-5' inverted triphosphate bridge to the first nucleotide of a nascent transcript. Capping of cellular mRNA occurs co-transcriptionally and in vivo requires that the capping apparatus be physically associated with the RNA polymerase II elongation complex. Certain capped mRNAs undergo further methylation to generate distinct cap structures. Although mRNA capping is conserved among viruses and eukaryotes, some viruses have adopted strategies for capping mRNA that are distinct from the cellular mRNA capping pathway.


Asunto(s)
Enzimas/fisiología , Caperuzas de ARN/biosíntesis , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Ácido Anhídrido Hidrolasas/fisiología , Animales , Enzimas/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares , Conformación de Ácido Nucleico , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Nucleotidiltransferasas/fisiología , Caperuzas de ARN/química , Caperuzas de ARN/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Viral/química , ARN Viral/genética , ARN Viral/metabolismo
12.
Biochem J ; 425(2): 295-302, 2009 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20025612

RESUMEN

The 7-methylguanosine cap added to the 5' end of mRNA is essential for efficient gene expression and cell viability. Methylation of the guanosine cap is necessary for the translation of most cellular mRNAs in all eukaryotic organisms in which it has been investigated. In some experimental systems, cap methylation has also been demonstrated to promote transcription, splicing, polyadenylation and nuclear export of mRNA. The present review discusses how the 7-methylguanosine cap is synthesized by cellular enzymes, the impact that the 7-methylguanosine cap has on biological processes, and how the mRNA cap methylation reaction is regulated.


Asunto(s)
Regulación de la Expresión Génica , Caperuzas de ARN/metabolismo , Guanosina/análogos & derivados , Guanosina/biosíntesis , Guanosina/metabolismo , Metilación , Caperuzas de ARN/biosíntesis , Transcripción Genética
13.
Artículo en Inglés | MEDLINE | ID: mdl-18607096

RESUMEN

Human NUDT16, a decapping enzyme belonging to the Nudix superfamily, plays a pivotal role in U8 snoRNA stability. Recombinant NUDT16 expressed in Escherichia coli was crystallized using the hanging-drop vapour-diffusion method. The crystals, which diffracted to 2.10 A resolution, belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 44.47, b = 79.32, c = 97.20 A. The Matthews coefficient and the solvent content were calculated to be 1.92 A(3) Da(-1) and 35.84%, respectively, for two molecules per asymmetric unit.


Asunto(s)
Pirofosfatasas/química , Cristalización , Cristalografía por Rayos X , Humanos , Pirofosfatasas/biosíntesis , Pirofosfatasas/genética , Caperuzas de ARN/biosíntesis , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
14.
BMC Mol Biol ; 8: 86, 2007 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-17903271

RESUMEN

BACKGROUND: The 2,2,7-trimethylguanosine (TMG) cap structure is an important functional characteristic of ncRNAs with critical cellular roles, such as some snRNAs. Here we used immunoprecipitation with both K121 and R1131 anti-TMG antibodies to systematically identify the TMG cap structures for all presently characterized ncRNAs in C. elegans. RESULTS: The two anti-TMG antibodies precipitated a similar group of the C. elegans ncRNAs. All snRNAs known to have a TMG cap structure were found in the precipitate, indicating that our identification system was efficient. Other ncRNA families related to splicing, such as SL RNAs and Sm Y RNAs, were also found in the precipitate, as were 7 C/D box snoRNAs. Further analysis showed that the SL RNAs and the Sm Y RNAs shared a very similar Sm binding site element (AAU4-5GGA), which sequence composition differed somewhat from those of other U snRNAs. There were also 16 ncRNAs without an Sm binding site element in the precipitate, suggesting that for these ncRNAs, TMG formation may occur independently of Sm proteins. CONCLUSION: Our results showed that most ncRNAs predicted to be transcribed by RNA polymerase II had a TMG cap, while those predicted to be transcribed by RNA plymerase III or located in introns did not have a TMG cap structure. Compared to ncRNAs without a TMG cap, TMG-capped ncRNAs tended to have higher expression levels. Five functionally non-annotated ncRNAs also have a TMG cap structure, which might be helpful for identifying the cellular roles of these ncRNAs.


Asunto(s)
Caenorhabditis elegans/metabolismo , Caperuzas de ARN/química , ARN no Traducido/química , Animales , Anticuerpos/inmunología , Anticuerpos/farmacología , Secuencia de Bases , Sitios de Unión , Caenorhabditis elegans/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Inmunoprecipitación , Datos de Secuencia Molecular , Caperuzas de ARN/biosíntesis , Caperuzas de ARN/inmunología , ARN no Traducido/genética , ARN no Traducido/inmunología , Secuencias Reguladoras de Ácido Ribonucleico , Transcripción Genética/efectos de los fármacos
15.
FEBS Lett ; 580(3): 867-77, 2006 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-16413541

RESUMEN

The West Nile virus (WNV) RNA genome harbors the characteristic methylated cap structure present at the 5' end of eukaryotic mRNAs. In the present study, we report a detailed study of the binding energetics and thermodynamic parameters involved in the interaction between RNA and the WNV RNA triphosphatase, an enzyme involved in the synthesis of the RNA cap structure. Fluorescence spectroscopy assays revealed that the initial interaction between RNA and the enzyme is characterized by a high enthalpy of association and that the minimal RNA binding site of NS3 is 13 nucleotides. In order to provide insight into the relationship between the enzyme structure and RNA binding, we also correlated the effect of RNA binding on protein structure using both circular dichroism and denaturation studies as structural indicators. Our data indicate that the protein undergoes structural modifications upon RNA binding, although the interaction does not significantly modify the stability of the protein.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , ARN Viral/química , Proteínas no Estructurales Virales/química , Virus del Nilo Occidental , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Dicroismo Circular , Unión Proteica , Estructura Terciaria de Proteína , Caperuzas de ARN/biosíntesis , Caperuzas de ARN/química , Caperuzas de ARN/genética , ARN Helicasas/química , ARN Helicasas/genética , ARN Helicasas/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Relación Estructura-Actividad , Termodinámica , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/metabolismo
16.
J Virol ; 79(20): 13105-15, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16189012

RESUMEN

Respiratory syncytial virus (RSV) is a major cause of respiratory illness in infants, immunocompromised patients, and the elderly. New antiviral agents would be important tools in the treatment of acute RSV disease. RSV encodes its own RNA-dependent RNA polymerase that is responsible for the synthesis of both genomic RNA and subgenomic mRNAs. The viral polymerase also cotranscriptionally caps and polyadenylates the RSV mRNAs at their 5' and 3' ends, respectively. We have previously reported the discovery of the first nonnucleoside transcriptase inhibitor of RSV polymerase through high-throughput screening. Here we report the design of inhibitors that have improved potency both in vitro and in antiviral assays and that also exhibit activity in a mouse model of RSV infection. We have isolated virus with reduced susceptibility to this class of inhibitors. The mutations conferring resistance mapped to a novel motif within the RSV L gene, which encodes the catalytic subunit of RSV polymerase. This motif is distinct from the catalytic region of the L protein and bears some similarity to the nucleotide binding domain within nucleoside diphosphate kinases. These findings lead to the hypothesis that this class of inhibitors may block synthesis of RSV mRNAs by inhibiting guanylylation of viral transcripts. We show that short transcripts produced in the presence of inhibitor in vitro do not contain a 5' cap but, instead, are triphosphorylated, confirming this hypothesis. These inhibitors constitute useful tools for elucidating the molecular mechanism of RSV capping and represent valid leads for the development of novel anti-RSV therapeutics.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , ARN Mensajero/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Virus Sincitiales Respiratorios/efectos de los fármacos , Virus Sincitiales Respiratorios/enzimología , Ribonucleoproteínas/farmacología , Administración Intranasal , Secuencia de Aminoácidos , Animales , Dominio Catalítico/genética , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Caperuzas de ARN/biosíntesis , Caperuzas de ARN/efectos de los fármacos , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/genética , Infecciones por Virus Sincitial Respiratorio/prevención & control , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/fisiología , Ribonucleoproteínas/administración & dosificación , Ribonucleoproteínas/química , Alineación de Secuencia , Replicación Viral/efectos de los fármacos
17.
Proc Natl Acad Sci U S A ; 101(20): 7572-7, 2004 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-15136722

RESUMEN

Capping of the 5' ends of nascent RNA polymerase II transcripts is the first pre-mRNA processing event in all eukaryotic cells. Capping enzyme (CE) is recruited to transcription complexes soon after initiation by the phosphorylation of Ser-5 of the carboxyl-terminal domain of the largest subunit of RNA polymerase II. Here, we analyze the role of CE in promoter clearance and its functional interactions with different factors that are involved in promoter clearance. FCP1-mediated dephosphorylation of the carboxyl-terminal domain results in a drastic decrease in cotranscriptional capping efficiency but is reversed by the presence of DRB sensitivity-inducing factor (DSIF). These results suggest involvement of DSIF in CE recruitment. Importantly, CE relieves transcriptional repression by the negative elongation factor, indicating a critical role of CE in the elongation checkpoint control mechanism during promoter clearance. This functional interaction between CE and the negative elongation factor documents a dynamic role of CE in promoter clearance beyond its catalytic activities.


Asunto(s)
Regiones Promotoras Genéticas , Caperuzas de ARN/biosíntesis , ARN Polimerasa II/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Factores de Transcripción , Transcripción Genética , Factores de Elongación Transcripcional
18.
Genomics Proteomics Bioinformatics ; 2(2): 70-6, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15629046

RESUMEN

Sequence-based molecular phylogenies have provided new models of early eukaryotic evolution. This includes the widely accepted hypothesis that animals are related most closely to fungi, and that the two should be grouped together as the Opisthokonta. Although most published phylogenies have supported an opisthokont relationship, a number of genes contain a tree-building signal that clusters animal and green plant sequences, to the exclusion of fungi. The alternative tree-building signal is especially intriguing in light of emerging data from genomic and proteomic studies that indicate striking and potentially synapomorphic similarities between plants and animals. This paper reviews these new lines of evidence, which have yet to be incorporated into models of broad scale eukaryotic evolution.


Asunto(s)
Evolución Biológica , Hongos/genética , Genómica , Plantas/genética , Proteómica , Animales , Diferenciación Celular/fisiología , Hongos/citología , Humanos , Filogenia , Células Vegetales , Caperuzas de ARN/biosíntesis , ARN Mensajero/metabolismo
19.
Virology ; 304(2): 167-75, 2002 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-12504559

RESUMEN

The bifunctional mammalian mRNA capping enzyme (Mce1) consists of an N-terminal triphosphatase domain Mce1(1-210) fused to a C-terminal guanylyltransferase domain Mce1(211-597). The physical domain order H(2)N-triphosphatase-guanylyltransferase-COOH mimics the temporal order of the capping reactions. To determine if the physical domain order is functionally important in vivo, we engineered an "inverted" mammalian capping enzyme InvMce1 [H(2)N-Mce1(211-597)-(1-210)-COOH]. We found that InvMce1 complemented the growth of Saccharomyces cerevisiae cet1delta and ceg1delta strains in which the endogenous yeast triphosphatase and guanylyltransferase genes were deleted. By testing truncated versions of InvMce1, we determined that Mce1(1-178) comprises a minimal functional triphosphatase domain. Baculovirus phosphatase (BVP) is a monofunctional single-domain protein with RNA triphosphatase and RNA diphosphatase activities and an undefined role in viral RNA metabolism. Here we demonstrated that BVP can function as an RNA triphosphatase for cap formation in vivo when fused to the C-terminus of Mce1(211-597). By characterizing a series of InvMce1-BVP derivatives with amino acid substitutions in the phosphate-binding loop of BVP, we showed that the in vivo activity of the mutant chimeras in cap formation is contingent upon in vitro phosphohydrolase activity of the respective BVP proteins. BVP catalysis in vitro was not limited to 5'-phosphorylated RNA or nucleotide substrates, but also embraced tripolyphosphatase and pyrophosphatase activities. BVP-specific activities with nucleotide and inorganic substrates were as follows: ATP (14 min(-1)), ADP (31 min(-1)), PPP(i) (3.7 min(-1)), and PP(i) (1 min(-1)). BVP did not hydrolyze AMP. We surmise that BVP has adapted the cysteinyl phosphatase fold to the hydrolysis of phosphoanhydrides.


Asunto(s)
Ácido Anhídrido Hidrolasas/química , Complejos Multienzimáticos/química , Nucleotidiltransferasas/química , Monoéster Fosfórico Hidrolasas/fisiología , Caperuzas de ARN/biosíntesis , Ácido Anhídrido Hidrolasas/fisiología , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Complejos Multienzimáticos/fisiología , Mutación , Nucleotidiltransferasas/fisiología , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...