Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
PLoS One ; 19(3): e0297739, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38457477

RESUMEN

In recent years, the importance of isolating single cells from blood circulation for several applications, such as non-invasive tumour diagnosis, the monitoring of minimal residual disease, and the analysis of circulating fetal cells for prenatal diagnosis, urged the need to set up innovative methods. For such applications, different methods were developed. All show some weaknesses, especially a limited sensitivity, and specificity. Here we present a new method for isolating a single or a limited number of cells adhered to SBS slides (Tethis S.p.a.) (a glass slide coated with Nanostructured Titanium Dioxide) by Laser Capture Microdissection (LCM) and subsequent Whole Genome Amplification. SBS slides have been shown to have an optimal performance in immobilizing circulating tumour cells (CTCs) from early breast cancer patients. In this work, we spiked cancer cells in blood samples to mimic CTCs. By defining laser parameters to cut intact samples, we were able to isolate genetically intact single cells. We demonstrate that SBS slides are optimally suited for isolating cells using LCM and that this method provides high-quality DNA, ideal for gene-specific assays such as PCR and Sanger sequencing for mutation analysis.


Asunto(s)
Células Neoplásicas Circulantes , Embarazo , Femenino , Humanos , Captura por Microdisección con Láser/métodos , Células Neoplásicas Circulantes/patología , ADN
2.
J Am Soc Nephrol ; 35(1): 117-128, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37749770

RESUMEN

Laser capture microdissection and mass spectrometry (LCM/MS) is a technique that involves dissection of glomeruli from paraffin-embedded biopsy tissue, followed by digestion of the dissected glomerular proteins by trypsin, and subsequently mass spectrometry to identify and semiquantitate the glomerular proteins. LCM/MS has played a crucial role in the identification of novel types of amyloidosis, biomarker discovery in fibrillary GN, and more recently discovery of novel target antigens in membranous nephropathy (MN). In addition, LCM/MS has also confirmed the role for complement proteins in glomerular diseases, including C3 glomerulopathy. LCM/MS is now widely used as a clinical test and considered the gold standard for diagnosis and typing amyloidosis. For the remaining glomerular diseases, LCM/MS has remained a research tool. In this review, we discuss the usefulness of LCM/MS in other glomerular diseases, particularly MN, deposition diseases, and diseases of complement pathways, and advocate more routine use of LCM/MS at the present time in at least certain diseases, such as MN, for target antigen detection. We also discuss the limitations of LCM/MS, particularly the difficulties faced from moving from a research-based technique to a clinical test. Nonetheless, the role of LCM/MS in glomerular diseases is expanding. Currently, LCM/MS may be used to identify the etiology in certain glomerular diseases, but in the future, LCM/MS can play a valuable role in determining pathways of complement activation, inflammation, and fibrosis.


Asunto(s)
Amiloidosis , Glomerulonefritis Membranosa , Enfermedades Renales , Humanos , Enfermedades Renales/patología , Glomérulos Renales/patología , Espectrometría de Masas , Captura por Microdisección con Láser/métodos , Glomerulonefritis Membranosa/metabolismo
3.
Sci Rep ; 13(1): 18678, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907539

RESUMEN

The combination of MALDI mass spectrometry imaging, laser-capture microdissection, and quantitative proteomics allows the identification and characterization of molecularly distinct tissue compartments. Such workflows are typically performed using consecutive tissue sections, and so reliable sectioning and mounting of high-quality tissue sections is a prerequisite of such investigations. Embedding media facilitate the sectioning process but can introduce contaminants which may adversely affect either the mass spectrometry imaging or proteomics analyses. Seven low-temperature embedding media were tested in terms of embedding temperature and cutting performance. The two media that provided the best results (5% gelatin and 2% low-melting point agarose) were compared with non-embedded tissue by both MALDI mass spectrometry imaging of lipids and laser-capture microdissection followed by bottom-up proteomics. Two out of the seven tested media (5% gelatin and 2% low-melting point agarose) provided the best performances on terms of mechanical properties. These media allowed for low-temperature embedding and for the collection of high-quality consecutive sections. Comparisons with non-embedded tissues revealed that both embedding media had no discernable effect on proteomics analysis; 5% gelatin showed a light ion suppression effect in the MALDI mass spectrometry imaging experiments, 2% agarose performed similarly to the non-embedded tissue. 2% low-melting point agarose is proposed for tissue embedding in experiments involving MALDI mass spectrometry imaging of lipids and laser-capture microdissection, proteomics of consecutive tissue sections.


Asunto(s)
Gelatina , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Sefarosa , Proteómica/métodos , Gelatina/química , Captura por Microdisección con Láser/métodos , Rayos Láser , Lípidos , Adhesión en Parafina
4.
Nat Methods ; 20(10): 1530-1536, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37783884

RESUMEN

Single-cell proteomics by mass spectrometry is emerging as a powerful and unbiased method for the characterization of biological heterogeneity. So far, it has been limited to cultured cells, whereas an expansion of the method to complex tissues would greatly enhance biological insights. Here we describe single-cell Deep Visual Proteomics (scDVP), a technology that integrates high-content imaging, laser microdissection and multiplexed mass spectrometry. scDVP resolves the context-dependent, spatial proteome of murine hepatocytes at a current depth of 1,700 proteins from a cell slice. Half of the proteome was differentially regulated in a spatial manner, with protein levels changing dramatically in proximity to the central vein. We applied machine learning to proteome classes and images, which subsequently inferred the spatial proteome from imaging data alone. scDVP is applicable to healthy and diseased tissues and complements other spatial proteomics and spatial omics technologies.


Asunto(s)
Proteoma , Proteómica , Animales , Ratones , Proteoma/análisis , Espectrometría de Masas/métodos , Proteómica/métodos , Captura por Microdisección con Láser/métodos
5.
J Genet Genomics ; 50(9): 641-651, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37544594

RESUMEN

Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context, significantly enhancing our understanding of the intricate and multifaceted biological system. With an increasing focus on spatial heterogeneity, there is a growing need for unbiased, spatially resolved omics technologies. Laser capture microdissection (LCM) is a cutting-edge method for acquiring spatial information that can quickly collect regions of interest (ROIs) from heterogeneous tissues, with resolutions ranging from single cells to cell populations. Thus, LCM has been widely used for studying the cellular and molecular mechanisms of diseases. This review focuses on the differences among four types of commonly used LCM technologies and their applications in omics and disease research. Key attributes of application cases are also highlighted, such as throughput and spatial resolution. In addition, we comprehensively discuss the existing challenges and the great potential of LCM in biomedical research, disease diagnosis, and targeted therapy from the perspective of high-throughput, multi-omics, and single-cell resolution.


Asunto(s)
Investigación Biomédica , Multiómica , Captura por Microdisección con Láser/métodos
6.
Curr Protoc ; 3(7): e844, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37486164

RESUMEN

To study the transcriptome of individual plant cells at specific points in time, we developed protocols for fixation, embedding, and sectioning of plant tissue followed by laser capture microdissection (LCM) and processing for RNA recovery. LCM allows the isolation of individual cell types from heterogeneous tissue sections and is particularly suited to plant processing because it does not require the breakdown of cell walls. This approach allows accurate separation of a small volume of cells that can be used to study gene expression profiles in different tissues or cell layers. The technique requires neither separation of cells by enzymatic digestion of any kind nor cell-specific reporter genes, and it allows storage of fixed and embedded tissue for months before capture. The methods for fixation, embedding, sectioning, and capturing of plant cells that we describe yield high-quality RNA suitable for making libraries for RNASeq. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Tissue Preparation for Laser Capture Microdissection Basic Protocol 2: Tissue Sectioning Basic Protocol 3: Laser Capture Microdissection of Embedded Tissue Basic Protocol 4: RNA Extraction from Laser Capture Microdissection Samples.


Asunto(s)
Plantas , ARN , Captura por Microdisección con Láser/métodos , ARN/genética , Plantas/genética , Transcriptoma , Adhesión en Parafina
7.
Methods Mol Biol ; 2672: 163-175, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37335475

RESUMEN

Laser microdissection (LM) is a powerful tool for various molecular analyses providing pure samples for genomic, transcriptomic, and proteomic studies. Cell subgroups, individual cells, or even chromosomes can be separated via laser beam from complex tissues, visualized under the microscope, and used for subsequent molecular analyses. This technique provides information on nucleic acids and proteins, keeping their spatiotemporal information intact. In short, the slide with tissue is placed under the microscope, imaged by a camera onto a computer screen, where the operator selects cells/chromosomes based on morphology or staining and commands the laser beam to cut the specimen following the selected path. Samples are then collected in a tube and subjected to downstream molecular analysis, such as RT-PCR, next-generation sequencing, or immunoassay.


Asunto(s)
Genoma , Proteómica , Captura por Microdisección con Láser/métodos , Cromosomas , Análisis de la Célula Individual
8.
FEBS Lett ; 597(3): 418-426, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36285639

RESUMEN

Whole-organ transcriptomic analyses have emerged as a common method for characterizing developmental transitions in mammalian organs. However, it is unclear if all cell types in an organ follow the whole-organ defined developmental trajectory. Recently, a postnatal two-stage developmental process was described for the mouse stomach. Here, using laser capture microdissection to obtain in situ transcriptomic data, we show that mouse gastric pit cells exhibit four postnatal developmental stages. Interestingly, early stages are characterized by the up-regulation of genes associated with metabolism, a functionality not typically associated with pit cells. Hence, beyond revealing that not all constituent cells develop according to the whole-organ determined pathway, these results broaden our understanding of the pit cell phenotypic landscape during stomach development.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Ratones , Perfilación de la Expresión Génica/métodos , Mucosa Gástrica , Captura por Microdisección con Láser/métodos , Mamíferos
9.
STAR Protoc ; 3(4): 101698, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36149794

RESUMEN

We describe a pipeline for optimized and streamlined multiplexed immunofluorescence-guided laser capture microdissection allowing the harvest of individual cells based on their phenotype and tissue localization for transcriptomic analysis with next-generation RNA sequencing. Here, we analyze transcriptomes of CD3+ T cells, CD14+ monocytes/macrophages, and melanoma cells in non-dissociated metastatic melanoma tissue. While this protocol is described for melanoma tissues, we successfully applied it to human tonsil, skin, and breast cancer tissues as well as mouse lung tissues. For complete details on the use and execution of this protocol, please refer to Martinek et al. (2022).


Asunto(s)
Captura por Microdisección con Láser , Melanoma , Animales , Humanos , Ratones , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica/métodos , Captura por Microdisección con Láser/métodos , Melanoma/genética , Melanoma/cirugía , Transcriptoma/genética
10.
J Proteome Res ; 21(10): 2435-2442, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36153828

RESUMEN

Paneth cells are antimicrobial peptide-secreting cells located at the base of the crypts of the small intestine. The proteome of Paneth cells is not well defined because of their coexistence with stem cells, making it difficult to culture Paneth cells alone in vitro. Using a simplified toluidine blue O method for staining mouse intestinal tissue, laser capture microdissection (LCM) to isolate cells from the crypt region, and surfactant-assisted one-pot protein digestion, we identified more than 1300 proteins from crypts equivalent to 18,000 cells. Compared with the proteomes of villi and smooth muscle regions, the crypt proteome is highly enriched in defensins, lysozymes, and other antimicrobial peptides that are characteristic of Paneth cells. The sensitivity of the LCM-based proteomics approach was also assessed using a smaller number of cell equivalent tissues: a comparable proteomic coverage can be achieved with 3600 cells. This work is the first proteomics study of intestinal tissue enriched with Paneth cells. The simplified workflow enables profiling of Paneth cell-associated pathological changes at the proteome level directly from frozen intestinal tissue. It may also be useful for proteomics studies of other spatially resolved cell types from other tissues.


Asunto(s)
Células de Paneth , Proteoma , Animales , Defensinas/metabolismo , Captura por Microdisección con Láser/métodos , Ratones , Células de Paneth/metabolismo , Proteoma/genética , Proteoma/metabolismo , Proteómica/métodos , Tensoactivos , Cloruro de Tolonio/metabolismo
11.
Anal Bioanal Chem ; 414(23): 6919-6927, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35945288

RESUMEN

Bones are the site of multiple diseases requiring chemotherapy, including cancer, arthritis, osteoporosis and infections. Yet limited methodologies are available to investigate the spatial distribution and quantitation of small molecule drugs in bone compartments, due to the difficulty of sectioning undecalcified bones and the interference of decalcification methods with spatially resolved drug quantitation. To measure drug concentrations in distinct anatomical bone regions, we have developed a workflow that enables spatial quantitation of thin undecalcified bone sections by laser-capture microdissection coupled to HPLC/tandem mass spectrometry, and spatial mapping on adjacent sections by mass spectrometry imaging. The adhesive film and staining methods were optimized to facilitate histology staining on the same sections used for mass spectrometry image acquisition, revealing drug accumulation in the underlying bone tissue architecture, for the first time. Absolute spatial concentrations of rifampicin, bedaquiline, doxycycline, vancomycin and several of their active metabolites are shown for both small rodent bones and larger rabbit bones that more closely resemble human bone density. Overlaid MALDI mass spectrometry images of drugs and histology staining enabled the generation of semi-quantitative data from regions of interest within anatomical bone compartments. These data correlated with absolute drug concentrations determined by HPLC-MS/MS in laser-capture microdissection samples. Collectively, these techniques enable semi- and fully quantitative drug distribution investigations within bone tissue compartments for the first time. Our workflow can be translated to image and quantify not only drugs but also biomarkers of disease to investigate drug penetration as well as mechanisms underlying bone disorders.


Asunto(s)
Antibacterianos , Espectrometría de Masas en Tándem , Animales , Huesos , Cromatografía Líquida de Alta Presión/métodos , Humanos , Captura por Microdisección con Láser/métodos , Rayos Láser , Conejos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masas en Tándem/métodos
12.
J Vis Exp ; (186)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35993753

RESUMEN

Increasing rates of addiction behavior have motivated mental health researchers and clinicians alike to understand antireward and recovery. This shift away from reward and commencement necessitates novel perspectives, paradigms, and hypotheses along with an expansion of the methods applied to investigate addiction. Here, we provide an example: A systems biology approach to investigate antireward that combines laser capture microdissection (LCM) and high-throughput microfluidic reverse transcription quantitative polymerase chain reactions (RT-qPCR). Gene expression network dynamics were measured and a key driver of neurovisceral dysregulation in alcohol and opioid withdrawal, neuroinflammation, was identified. This combination of technologies provides anatomic and phenotypic specificity at single-cell resolution with high-throughput sensitivity and specific gene expression measures yielding both hypothesis-generating datasets and mechanistic possibilities that generate opportunities for novel insights and treatments.


Asunto(s)
Redes Reguladoras de Genes , Recompensa , Expresión Génica , Captura por Microdisección con Láser/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa
13.
Curr Protoc ; 2(7): e457, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35822833

RESUMEN

Laser Capture Microdissection (LCM) is a method that allows one to select and dissect well-defined structures, specific cell subpopulations, or even single cells from different types of tissue for subsequent extraction of DNA, RNA, or proteins. Its precision allows the dissection of specific groups of cells, avoiding unwanted cells. However, despite its efficiency, several steps can affect the sample RNA integrity. RNA instability represents a challenge in the LCM method, and low RNA integrity can introduce biases, as different transcripts often have different degradation rates. Here we describe an optimized protocol to provide good-concentration and high-quality RNA from specific structures: dentate gyrus and CA1 in the hippocampus, basolateral amygdala, and anterior cingulate cortex of mouse brain tissue. However, the protocol is applicable to other areas of interest. © 2022 Wiley Periodicals LLC. Basic Protocol: Laser capture microdissection of mouse brain tissue.


Asunto(s)
Encéfalo , ARN , Animales , Captura por Microdisección con Láser/métodos , Ratones , ARN/genética , Estabilidad del ARN
14.
Lab Chip ; 22(15): 2869-2877, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35838077

RESUMEN

Spatial proteomics holds great promise for revealing tissue heterogeneity in both physiological and pathological conditions. However, one significant limitation of most spatial proteomics workflows is the requirement of large sample amounts that blurs cell-type-specific or microstructure-specific information. In this study, we developed an improved sample preparation approach for spatial proteomics and integrated it with our previously-established laser capture microdissection (LCM) and microfluidics sample processing platform. Specifically, we developed a hanging drop (HD) method to improve the sample recovery by positioning a nanowell chip upside-down during protein extraction and tryptic digestion steps. Compared with the commonly-used sitting-drop method, the HD method keeps the tissue pixel away from the container surface, and thus improves the accessibility of the extraction/digestion buffer to the tissue sample. The HD method can increase the MS signal by 7 fold, leading to a 66% increase in the number of identified proteins. An average of 721, 1489, and 2521 proteins can be quantitatively profiled from laser-dissected 10 µm-thick mouse liver tissue pixels with areas of 0.0025, 0.01, and 0.04 mm2, respectively. The improved system was further validated in the study of cell-type-specific proteomes of mouse uterine tissues.


Asunto(s)
Proteoma , Proteómica , Animales , Captura por Microdisección con Láser/métodos , Ratones , Proteómica/métodos , Manejo de Especímenes/métodos , Flujo de Trabajo
15.
J Vis Exp ; (184)2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35723500

RESUMEN

The tumor microenvironment (TME) represents a complex ecosystem comprised of dozens of distinct cell types, including tumor, stroma, and immune cell populations. To characterize proteome-level variation and tumor heterogeneity at scale, high-throughput methods are needed to selectively isolate discrete cellular populations in solid tumor malignancies. This protocol describes a high-throughput workflow, enabled by artificial intelligence (AI), that segments images of hematoxylin and eosin (H&E)-stained, thin tissue sections into pathology-confirmed regions of interest for selective harvest of histology-resolved cell populations using laser microdissection (LMD). This strategy includes a novel algorithm enabling the transfer of regions denoting cell populations of interest, annotated using digital image software, directly to laser microscopes, thus enabling more facile collections. Successful implementation of this workflow was performed, demonstrating the utility of this harmonized method to selectively harvest tumor cell populations from the TME for quantitative, multiplexed proteomic analysis by high-resolution mass spectrometry. This strategy fully integrates with routine histopathology review, leveraging digital image analysis to support enrichment of cellular populations of interest and is fully generalizable, enabling harmonized harvests of cell populations from the TME for multiomic analyses.


Asunto(s)
Neoplasias , Proteómica , Inteligencia Artificial , Ecosistema , Humanos , Captura por Microdisección con Láser/métodos , Rayos Láser , Neoplasias/metabolismo , Proteómica/métodos , Microambiente Tumoral
16.
Nat Biotechnol ; 40(8): 1231-1240, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35590073

RESUMEN

Despite the availabilty of imaging-based and mass-spectrometry-based methods for spatial proteomics, a key challenge remains connecting images with single-cell-resolution protein abundance measurements. Here, we introduce Deep Visual Proteomics (DVP), which combines artificial-intelligence-driven image analysis of cellular phenotypes with automated single-cell or single-nucleus laser microdissection and ultra-high-sensitivity mass spectrometry. DVP links protein abundance to complex cellular or subcellular phenotypes while preserving spatial context. By individually excising nuclei from cell culture, we classified distinct cell states with proteomic profiles defined by known and uncharacterized proteins. In an archived primary melanoma tissue, DVP identified spatially resolved proteome changes as normal melanocytes transition to fully invasive melanoma, revealing pathways that change in a spatial manner as cancer progresses, such as mRNA splicing dysregulation in metastatic vertical growth that coincides with reduced interferon signaling and antigen presentation. The ability of DVP to retain precise spatial proteomic information in the tissue context has implications for the molecular profiling of clinical samples.


Asunto(s)
Melanoma , Proteómica , Humanos , Captura por Microdisección con Láser/métodos , Espectrometría de Masas/métodos , Melanoma/genética , Proteoma/química , Proteómica/métodos
17.
J Vis Exp ; (181)2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35435919

RESUMEN

Single-cell methodologies have revolutionized the analysis of the transcriptomes of specific cell types. However, they often require species-specific genetic "toolkits," such as promoters driving tissue-specific expression of fluorescent proteins. Further, protocols that disrupt tissues to isolate individual cells remove cells from their native environment (e.g., signaling from neighbors) and may result in stress responses or other differences from native gene expression states. In the present protocol, laser microdissection (LMD) is optimized to isolate individual nematode tail tips for the study of gene expression during male tail tip morphogenesis. LMD allows the isolation of a portion of the animal without the need for cellular disruption or species-specific toolkits and is thus applicable to any species. Subsequently, single-cell RNA-seq library preparation protocols such as CEL-Seq2 can be applied to LMD-isolated single tissues and analyzed using standard pipelines, given that a well-annotated genome or transcriptome is available for the species. Such data can be used to establish how conserved or different the transcriptomes are that underlie the development of that tissue in different species. Limitations include the ability to cut out the tissue of interest and the sample size. A power analysis shows that as few as 70 tail tips per condition are required for 80% power. Tight synchronization of development is needed to obtain this number of animals at the same developmental stage. Thus, a method to synchronize animals at 1 h intervals is also described.


Asunto(s)
Proteínas , Transcriptoma , Animales , Captura por Microdisección con Láser/métodos , Rayos Láser , Masculino
18.
J Immunol Methods ; 505: 113276, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35476945

RESUMEN

Immuno-laser capture microdissection (Immuno-LCM) has been used to analyze cell-specific gene expression profiles. However, the usefulness of such a technique is frequently limited by RNA degradation. We, therefore, developed a rapid protocol of LCM on mirror sections, which allows for preserving RNA integrity. With such a procedure, we investigated cell-type-specific gene expression of γδ intraepithelial lymphocytes (IELs) in untreated celiac disease (CD). An increase in TGF-ß mRNA expression levels was observed in γδ + IELs compared to intestinal enterocytes (IEs), whereas anti-inflammatory IL-10 mRNA production from γδ + IELs was lower compared to IEs. In untreated CD patients, the production of anti-inflammatory cytokines by γδ + IELs is suggestive of a regulatory function, thus playing a critical role in limiting inflammation. This work underscores the importance of LCM on mirror sections as a valuable tool to perform cell-type-specific molecular analysis in tissue.


Asunto(s)
Enfermedad Celíaca , Transcriptoma , Enfermedad Celíaca/metabolismo , Citocinas/metabolismo , Humanos , Captura por Microdisección con Láser/métodos , ARN Mensajero/análisis , ARN Mensajero/genética
19.
STAR Protoc ; 3(1): 101231, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35284837

RESUMEN

We developed a highly efficient, ultrashort immunohistochemistry-laser capture microdissection (IHC-LMD) protocol, which allows microdissection of up to 250 single cardiomyocytes. Before LMD, murine hearts are excised, snap-frozen, and cryosectioned. RNA isolated from LMD material is of high RNA quality, making it usable for gene expression analysis and RNA sequencing. Challenges and limitations of this protocol include visualization of the immunostaining and nuclei DAPI dye on the PEN slides, and timing and speed to limit RNA degradation as much as possible.


Asunto(s)
Miocitos Cardíacos , ARN , Animales , Inmunohistoquímica , Captura por Microdisección con Láser/métodos , Ratones , Miocitos Cardíacos/química , ARN/genética , Estabilidad del ARN
20.
Anal Bioanal Chem ; 414(18): 5483-5492, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35233697

RESUMEN

Intracellular heterogeneity contributes significantly to cellular physiology and, in a number of debilitating diseases, cellular pathophysiology. This is greatly influenced by distinct organelle populations and to understand the aetiology of disease, it is important to have tools able to isolate and differentially analyse organelles from precise location within tissues. Here, we report the development of a subcellular biopsy technology that facilitates the isolation of organelles, such as mitochondria, from human tissue. We compared the subcellular biopsy technology to laser capture microdissection (LCM) that is the state-of-the-art technique for the isolation of cells from their surrounding tissues. We demonstrate an operational limit of  >20 µm for LCM and then, for the first time in human tissue, show that subcellular biopsy can be used to isolate mitochondria beyond this limit.


Asunto(s)
Genómica , Biopsia , Humanos , Captura por Microdisección con Láser/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...