Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.383
Filtrar
1.
J Med Chem ; 67(8): 6268-6291, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38619191

RESUMEN

Overactivation of cyclic GMP-AMP synthase (cGAS) is implicated in the occurrence of many inflammatory and autoimmune diseases, and inhibition of cGAS with a specific inhibitor has been proposed as a potential therapeutic strategy. However, only a few low-potency cGAS inhibitors have been reported, and few are suitable for clinical investigation. As a continuation of our structural optimization on the reported cGAS inhibitor 6 (G140), we developed a series of spiro[carbazole-3,3'-pyrrolidine] derivatives bearing a unique 2-azaspiro[4.5]decane structural motif, among which compound 30d-S was identified with high cellular effects against cGAS. This compound showed improved plasma exposure, lower clearance, and an oral bioavailability of 35% in rats. Moreover, in the LPS-induced acute lung injury (ALI) mice model, oral administration of compound 30d-S at 30 mg/kg markedly reduced lung inflammation and alleviated histopathological changes. These results confirm that 30d-S is a new efficacious cGAS inhibitor and is worthy of further investigation.


Asunto(s)
Lesión Pulmonar Aguda , Carbazoles , Diseño de Fármacos , Nucleotidiltransferasas , Pirrolidinas , Lesión Pulmonar Aguda/tratamiento farmacológico , Animales , Ratones , Masculino , Humanos , Ratas , Carbazoles/síntesis química , Carbazoles/farmacología , Carbazoles/química , Carbazoles/uso terapéutico , Carbazoles/farmacocinética , Pirrolidinas/farmacología , Pirrolidinas/síntesis química , Pirrolidinas/química , Pirrolidinas/uso terapéutico , Pirrolidinas/farmacocinética , Nucleotidiltransferasas/antagonistas & inhibidores , Nucleotidiltransferasas/metabolismo , Lipopolisacáridos , Ratas Sprague-Dawley , Compuestos de Espiro/síntesis química , Compuestos de Espiro/farmacología , Compuestos de Espiro/química , Compuestos de Espiro/uso terapéutico , Compuestos de Espiro/farmacocinética , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular
2.
ACS Appl Mater Interfaces ; 16(17): 21699-21708, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634764

RESUMEN

Conventional photosensitizers (PSs) used in photodynamic therapy (PDT) have shown preliminary success; however, they are often associated with several limitations including potential dark toxicity in healthy tissues, limited efficacy under acidic and hypoxic conditions, suboptimal fluorescence imaging capabilities, and nonspecific targeting during treatment. In response to these challenges, we developed a heavy-atom-free PS, denoted as Cz-SB, by incorporating ethyl carbazole into a thiophene-fused BODIPY core. A comprehensive investigation into the photophysical properties of Cz-SB was conducted through a synergistic approach involving experimental and computational investigations. The enhancement of intersystem crossing (kISC) and fluorescence emission (kfl) rate constants was achieved through a donor-acceptor pair-mediated charge transfer mechanism. Consequently, Cz-SB demonstrated remarkable efficiency in generating reactive oxygen species (ROS) under acidic and low-oxygen conditions, making it particularly effective for hypoxic cancer PDT. Furthermore, Cz-SB exhibited good biocompatibility, fluorescence imaging capabilities, and a high degree of localization within the mitochondria of living cells. We posit that Cz-SB holds substantial prospects as a versatile PS with innovative molecular design, representing a potential "one-for-all" solution in the realm of cancer phototheranostics.


Asunto(s)
Mitocondrias , Imagen Óptica , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Boro/química , Compuestos de Boro/farmacología , Carbazoles/química , Carbazoles/farmacología , Células HeLa , Tiofenos/química , Tiofenos/farmacología , Línea Celular Tumoral
3.
J Agric Food Chem ; 72(12): 6424-6431, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470989

RESUMEN

Six new 9H-carbazole derivatives (1-6) and nine previously reported compounds (7-15) were isolated from a fermented solid medium of the Thailand mangrove-derived Streptomyces strain, OUCMDZ-5511, under fluoride stress. Compounds 2-5, 12, and 15 were exclusively present in the fluoride-supplemented fermentation medium, while compounds 7-9, 13, and 14 were newly discovered natural products. The molecular structures of the compounds were identified by a spectroscopic analysis. The new compound 2 displayed antiquorum sensing activity against Chromobacterium violaceum ATCC 12472 by reducing the violacein production and inhibiting the biofilm formation in a concentration-dependent manner. The study revealed that compound 2 could be a novel potential inhibitor of quorum sensing.


Asunto(s)
Fluoruros , Streptomyces , Fluoruros/farmacología , Antibacterianos/farmacología , Percepción de Quorum , Carbazoles/farmacología , Biopelículas
4.
Int J Biol Macromol ; 267(Pt 1): 131252, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554897

RESUMEN

This work aimed to synthesize hydrogels by combining carbazole (Carb) with 2-hydroxy, ß-cyclodextrin (HPßCD)/polyacrylamide (PAA) hybrid complexes. The hydrogels were then evaluated for their potential use in treating infected wounds. The physicochemical structures of the preparations were evaluated using several characterization methods including FTIR, FESEM, EDX, XRD, pH sensitivity, and TGA. Moreover, In vitro release, toxicity, antibacterial activity and in vivo infected wound healing activity were evaluated. Physicochemical testing verified the effective synthesis of the preparations and the timely release of Carb. The P(AA-co-AM)/HPßCD material exhibited an open structure characterized by macroscopic voids, whereas the hydrogels displayed surfaces that were not uniform. The FTIR analysis revealed the creation of a novel polymeric hydrogel composed of HPßCD as the main polymer structure. The hydrogels exhibited good reversible swelling and recoverable deformation, with an optimal swelling ratio of 30.12 achieved at pH 7.4. The antibacterial and safety of the formulations were validated by in vitro studies. ß.Dex/PAA/Carb hydrogels have been shown to effectively expedite the healing of infected wounds by promoting the production of CD31, FGF-2, and COL1A, while reducing the levels of ROS, CD68, COX-2, and NF-κB. Overall, the combination of Carb, ß.Dex, and PAA molecules had a synergistic impact on the healing process of infected wounds.


Asunto(s)
Resinas Acrílicas , Antibacterianos , Carbazoles , Hidrogeles , Cicatrización de Heridas , beta-Ciclodextrinas , Animales , Resinas Acrílicas/química , Hidrogeles/química , Hidrogeles/síntesis química , Hidrogeles/farmacología , Ratones , beta-Ciclodextrinas/química , Carbazoles/química , Carbazoles/farmacología , Carbazoles/síntesis química , Cicatrización de Heridas/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Modelos Animales de Enfermedad , Liberación de Fármacos
5.
Appl Environ Microbiol ; 90(3): e0218723, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38307543

RESUMEN

Streptocarbazoles are a class of indolocarbazole (ICZ) compounds produced by Streptomyces strains that feature unique cyclic N-glycosidic linkages between the 1,3-carbon atoms of the glycosyl moiety and the two indole nitrogen atoms. Although several streptocarbazole compounds display effective cytotoxic activity, their biosynthesis remains unclear. Herein, through the inactivation of the aminotransferase gene spcI in the staurosporine biosynthetic gene cluster spc followed by heterologous expression, two new streptocarbazole derivatives (1 and 3) and three known ICZs (2, 4, and 5) were generated. Their structures were determined by a combination of spectroscopic methods, circular dichroism measurements, and single-crystal X-ray diffraction. Compounds 1-4 displayed moderate cytotoxicity against HCT-116 cell line, and compounds 3 and 4 were effective against Huh 7 cell line. Double-gene knockout experiments allowed us to propose a biosynthetic pathway for streptocarbazole productions. Furthermore, by overexpression of the involving key enzymes, the production of streptocarbazoles 1 and 3 were improved by approximately 1.5-2.5 fold. IMPORTANCE: Indolocarbazoles (ICZs) are a group of antitumor agents, with several analogs used in clinical trials. Therefore, the identification of novel ICZ compounds is important for drug discovery. Streptocarbazoles harbor unique N-glycosidic linkages (N13-C1' and N12-C3'), distinguishing them from the representative ICZ compound staurosporine; however, their biosynthesis remains unclear. In this study, two new streptocarbazoles (1 and 3) with cytotoxic activities were obtained by manipulating the staurosporine biosynthetic gene cluster spc followed by heterologous expression. The biosynthetic pathway of streptocarbazoles was proposed, and their productions were improved through the overexpression of the key enzymes involved. This study enriches the structural diversity of ICZ compounds and would facilitate the discovery of new streptocarbazoles via synthetic biological strategies.


Asunto(s)
Carbazoles , Streptomyces , Estaurosporina/farmacología , Carbazoles/farmacología , Carbazoles/química , Carbazoles/metabolismo , Streptomyces/metabolismo , Familia de Multigenes
6.
J Enzyme Inhib Med Chem ; 39(1): 2302920, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38221785

RESUMEN

Human DNA topoisomerases are essential for crucial cellular processes, including DNA replication, transcription, chromatin condensation, and maintenance of its structure. One of the significant strategies employed in cancer treatment involves the inhibition of a specific type of topoisomerase, known as topoisomerase II (Topo II). Carbazole derivatives, recognised for their varied biological activities, have recently become a significant focus in oncological research. This study assesses the efficacy of three symmetrically substituted carbazole derivatives: 2,7-Di(2-furyl)-9H-carbazole (27a), 3,6-Di(2-furyl)-9H-carbazole (36a), and 3,6-Di(2-thienyl)-9H-carbazole (36b) - as anticancer agents. Among investigated carbazole derivatives, compound 3,6-di(2-furyl)-9H-carbazole bearing two furan moieties emerged as a novel catalytic inhibitor of Topo II. Notably, 3,6-di(2-furyl)-9H-carbazole effectively selectively inhibited the relaxation and decatenation activities of Topo IIα, with minimal effects on the IIß isoform. These findings underscore the potential of compound 3,6-Di(2-furyl)-9H-carbazole as a promising lead candidate warranting further investigation in the realm of anticancer drug development.


Asunto(s)
Antineoplásicos , Inhibidores de Topoisomerasa II , Humanos , Inhibidores de Topoisomerasa II/farmacología , Inhibidores de Topoisomerasa II/química , Antineoplásicos/farmacología , Antineoplásicos/química , Carbazoles/farmacología , Carbazoles/química , ADN-Topoisomerasas de Tipo II , Apoptosis
7.
Int Immunopharmacol ; 128: 111562, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38244515

RESUMEN

Ankylosing spondylitis (AS), is known as a chronic inflammatory autoimmune disease, there is evidence to suggest that gut microbiota disorders may be related to the occurrence and development of AS. Studies have shown that 6-formylindolo[3, 2-b]carbazole (FICZ) has the ability to modulate intestinal homeostasis and inhibit inflammatory responses. The purpose of this work is to evaluate the protective role of FICZ in treating AS and elucidate potential mechanisms. FICZ was administered to the proteoglycan (PG)-induced AS mice for 7 consecutive weeks. The effects of FICZ on AS mice were evaluated by the disease severity, intestinal histopathology, proinflammatory cytokine levels, and intestinal mucosal barrier function. The gut microbiota compositions were profiled through 16S rDNA high-throughput sequencing. We found that FICZ significantly reduced the severity of AS and resulted in the downregulating of TNF-α and IL-17A inflammatory cytokines. Moreover, FICZ ameliorated pathological changes in the ileal and improved intestinal mucosal barrier function. Furthermore, FICZ altered the composition of the gut microbiota by increasing the Bacteroidetes/Firmicutes phylum ratio and enriched the genes related to "glycan biosynthesis and metabolism", thus reversing the process of AS. In conclusion, FICZ suppressed the progression of AS and altered gut microbiota in AS mice, which provided new insight into AS therapy strategy.


Asunto(s)
Microbioma Gastrointestinal , Espondilitis Anquilosante , Ratones , Animales , Citocinas/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Carbazoles/farmacología
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123912, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266605

RESUMEN

A carbazole thiophene-aldehyde and 4-methylbenzenesulfonhydrazide conjugate CSH was synthesized by introducing 5-thiophene aldehyde at the 3-position of the carbazole group as the precursor and then condensing it with 4-methylbenzenesulfonhydrazide. CSH has high selectivity and sensitivity towards ClO-, which can specifically identify ClO- by UV-Vis and fluorescence spectroscopy. CSH can rapidly respond to ClO- in the physiological pH range through a fluorescence quenching pattern, accompanied by the color of CSH changing markedly from turquoise to yellowish green under the 365 nm UV light. Probe CSH exhibits a quantitative response to ClO- (0-11 µM) with a low detection limit (1.16 × 10-6 M). Cell imaging experiments have shown that CSH can capture fluorescent signals in the cyan and yellow channels of HeLa cells through fluorescence confocal microscopy, and can successfully identify exogenous ClO- in HeLa cells. In addition, probe CSH can also be used to detect ClO- in environmental water samples. These results indicate that CSH has potential application prospects in the environmental analysis and biological aspects.


Asunto(s)
Colorantes Fluorescentes , Ácido Hipocloroso , Humanos , Colorantes Fluorescentes/farmacología , Colorantes Fluorescentes/química , Ácido Hipocloroso/análisis , Células HeLa , Carbazoles/farmacología , Aldehídos
9.
J Biomol Struct Dyn ; 42(2): 993-1014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37021485

RESUMEN

The human serotonin transporters (hSERTs) are neurotransmitter sodium symporters of the aminergic G protein-coupled receptors, regulating the synaptic serotonin and neuropharmacological processes related to neuropsychiatric disorders, notably, depression. Selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine and (S)-citalopram are competitive inhibitors of hSERTs and are commonly the first-line medications for major depressive disorder (MDD). However, treatment-resistance and unpleasant aftereffects constitute their clinical drawbacks. Interestingly, vilazodone emerged with polypharmacological (competitive and allosteric) inhibitions on hSERTs, amenable to improved efficacy. However, its application usually warrants adjuvant/combination therapy, another subject of critical adverse events. Thus, the discovery of alternatives with polypharmacological potentials (one-drug-multiple-target) and improved safety remains essential. In this study, carbazole analogues from chemical libraries were explored using docking and molecular dynamics (MD) simulation. Selectively, two IBScreen ligands, STOCK3S-30866 and STOCK1N-37454 predictively bound to the active pockets and expanded boundaries (extracellular vestibules) of the hSERTs more potently than vilazodone and (S)-citalopram. For instance, the two ligands showed docking scores of -9.52 and -9.59 kcal/mol and MM-GBSA scores of -92.96 and -65.66 kcal/mol respectively compared to vilazodone's respective scores of -7.828 and -59.27 against the central active site of the hSERT (PDB 7LWD). Similarly, the two ligands also docked to the allosteric pocket (PDB 5I73) with scores of -8.15 and -8.40 kcal/mol and MM-GBSA of -96.14 and -68.46 kcal/mol whereas (S)-citalopram has -6.90 and -69.39 kcal/mol respectively. The ligands also conferred conformational stability on the receptors during 100 ns MD simulations and displayed interesting ADMET profiles, representing promising hSERT modulators for MDD upon experimental validation.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Trastorno Depresivo Mayor , Proteínas de Transporte de Serotonina en la Membrana Plasmática , Humanos , Proteínas de Transporte de Serotonina en la Membrana Plasmática/química , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Clorhidrato de Vilazodona , Citalopram/farmacología , Citalopram/metabolismo , Serotonina/química , Serotonina/metabolismo , Simulación de Dinámica Molecular , Carbazoles/farmacología , Simulación del Acoplamiento Molecular
10.
Comput Biol Chem ; 108: 107979, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37989072

RESUMEN

With increase in cancer incidences, alternative strategies for disease management are of utmost importance. Carbazole, is a compound that is being studied extensively as an anti-cancer compound. In this work, we aimed to investigate a carbazole derivative against specific cancer types such as breast and colorectal, based on the off-target analyses of carbazole derivative. The present work shortlisted 6 proteins that have an association in both cancer types, and then employed two different molecular docking strategies to examine the binding stability of carbazole derivative: a blind-docking state, where the pockets were undefined and mutation-docking state, where possible mutations were induced within the proteins. The results showed that CDK1 bound best in both states to carbazole derivative, and performed better than an array of positive controls. Molecular dynamic simulations at 100 ns further proved its stability, with carbazole derivative-CDK1-blind and mutated complex having RMSD values between 3.2 and 3.6 Å, and 2.8-3.2 Šrespectively. Molecular-mechanics generalized born and surface area solvation disclosed free energy of binding for the complexes as -28.79 ± 3.97 kcal/mol and -31.86 ± 5.09 kcal/mol respectively, with carbazole derivative bound stably within the binding pocket at every 10 ns of the 100 ns trajectory. Radial distribution functions showed that the bell curve was well within 6 Å, thus showing that carbazole derivative and its atoms do not deviate away from the pocket, suggesting its ability to be used as a good anti-cancer compound against breast and colorectal.


Asunto(s)
Neoplasias de la Mama , Carbazoles , Neoplasias Colorrectales , Simulación de Dinámica Molecular , Humanos , Carbazoles/química , Carbazoles/farmacología , Carbazoles/uso terapéutico , Proteína Quinasa CDC2/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Expresión Génica , Simulación del Acoplamiento Molecular , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética
11.
Eur J Med Chem ; 264: 116046, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38103539

RESUMEN

G-quadruplex (G4) formation was considered to be more prevalent in the mitochondrial DNA (mtDNA) of cancer cells compared with normal cells. Stabilization of these G4s may induce mtDNA instability and cause mitochondrial dysfunction and subsequent cell death, which may be treated as a new strategy for cancer treatment. However, few ligands were developed to target mtG4s, leaving a huge room to improve. In this study, we designed and synthesized a series of carbazole-based ligands, among which, BKN-1 was identified as the most promising mitochondrial targeting fluorescent ligand with far-red emission. Then, we demonstrated that BKN-1 may robustly interact with mtG4s via a variety of biophysical, biological experiments. Subsequently, we proved that BKN-1 may cause mtDNA loss, disrupt mitochondrial integrity, decrease ATP level and trigger unbalanced ROS, thereby leading to apoptosis and autophagy. Finally, we verified that BKN-1 had good anti-tumor activity in both cellular and in vivo models. Altogether, this study provided a dual-function ligand that may not only track the formation of mtG4s but also induce mitochondrial dysfunction, which may be developed into an applicable chemical tool for investigating the structure and function of mtG4s, and moreover, an effective therapeutic agent for cancer interference.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , G-Cuádruplex , Enfermedades Mitocondriales , Humanos , Femenino , ADN Mitocondrial , Neoplasias de la Mama/tratamiento farmacológico , Ligandos , Antineoplásicos/química , Carbazoles/farmacología , Carbazoles/química
12.
Cancer Biol Ther ; 24(1): 2271212, 2023 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-37906510

RESUMEN

Anaplastic lymphoma kinase-positive large B-cell lymphoma (ALK+ LBCL) is a rare subtype of non-Hodgkin lymphoma. ALK inhibitors are being tried to treat recurrent/refractory ALK+ LBCL. A majority of patients with ALK+ tumors respond to crizotinib, but partial cases ultimately develop resistance about a year later. Here, we report a case of ALK+ LBCL carrying a new fusion gene involving CDK14 and ALK, CLTC-ALK gene rearrangements and MTOR gene mutation. The patient had progressive disease after combination of crizotinib and chemotherapy treatment about 5.5 months later, accompanied by reduced abundance of CDK14-ALK, increased abundance of CLTC-ALK and a novel MFHAS1 gene mutation. However, MTOR mutation turned negative. The patient received alectinib combined with hyper-CVAD, then followed by alectinib as monotherapy for 21 months. The patient achieved partial response and remained in a stable condition. This case suggests that CDK14-ALK fusion gene may be more sensitive to crizotinib than CLTC-ALK fusion gene. MTOR is associated with the anti-tumor mechanism of ALK inhibitors. MFHAS1 gene mutation and/or CLTC-ALK gene copy number amplification may involve resistance to crizotinib. Furthermore, alectinib may inhibit the carcinogenicity of these gene changes and improve the prognosis of ALK+ LBCL.


The novel CDK14-ALK fusion gene in ALK+ LBCL was sensitive to crizotinib.MFHAS1 gene mutation and/or CLTC-ALK gene copy number amplification may involve resistance to crizotinib.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Linfoma de Células B , Humanos , Quinasa de Linfoma Anaplásico/genética , Carbazoles/farmacología , Carbazoles/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Proteínas de Ciclo Celular/genética , Crizotinib/farmacología , Crizotinib/uso terapéutico , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasias Pulmonares/patología , Linfoma de Células B/tratamiento farmacológico , Mutación , Proteínas Oncogénicas/genética , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Serina-Treonina Quinasas TOR/genética
13.
Front Cell Infect Microbiol ; 13: 1181516, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37680749

RESUMEN

Introduction: One of the promising leads for the rapid discovery of alternative antimicrobial agents is to repurpose other drugs, such as nonsteroidal anti-inflammatory agents (NSAIDs) for fighting bacterial infections and antimicrobial resistance. Methods: A series of new carbazole derivatives based on the readily available anti-inflammatory drug carprofen has been obtained by nitration, halogenation and N-alkylation of carprofen and its esters. The structures of these carbazole compounds were assigned by NMR and IR spectroscopy. Regioselective electrophilic substitution by nitration and halogenation at the carbazole ring was assigned from H NMR spectra. The single crystal X-ray structures of two representative derivatives obtained by dibromination of carprofen, were also determined. The total antioxidant capacity (TAC) was measured using the DPPH method. The antimicrobial activity assay was performed using quantitative methods, allowing establishment of the minimal inhibitory/bactericidal/biofilm eradication concentrations (MIC/MBC/MBEC) on Gram-positive (Staphylococcus aureus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) strains. Computational assays have been performed to assess the drug- and lead-likeness, pharmacokinetics (ADME-Tox) and pharmacogenomics profiles. Results and discussion: The crystal X-ray structures of 3,8-dibromocarprofen and its methyl ester have revealed significant differences in their supramolecular assemblies. The most active antioxidant compound was 1i, bearing one chlorine and two bromine atoms, as well as the CO2Me group. Among the tested derivatives, 1h bearing one chlorine and two bromine atoms has exhibited the widest antibacterial spectrum and the most intensive inhibitory activity, especially against the Gram-positive strains, in planktonic and biofilm growth state. The compounds 1a (bearing one chlorine, one NO2 and one CO2Me group) and 1i (bearing one chlorine, two bromine atoms and a CO2Me group) exhibited the best antibiofilm activity in the case of the P. aeruginosa strain. Moreover, these compounds comply with the drug-likeness rules, have good oral bioavailability and are not carcinogenic or mutagenic. The results demonstrate that these new carbazole derivatives have a molecular profile which deserves to be explored further for the development of novel antibacterial and antibiofilm agents.


Asunto(s)
Antiinflamatorios no Esteroideos , Cloro , Bromo , Antioxidantes/farmacología , Reposicionamiento de Medicamentos , Antiinflamatorios , Carbazoles/farmacología , Antibacterianos/farmacología , Biopelículas
14.
Biochem Pharmacol ; 216: 115788, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683841

RESUMEN

Non-small cell lung carcinomas (NSCLCs) commonly harbor activating mutations in the epidermal growth factor receptor (EGFR). Drugs targeting the tyrosine kinase activity of EGFR have shown effectiveness in inhibiting the growth of cancer cells with EGFR mutations. However, the development of additional mutations in cancer cells often leads to the persistence of the disease, necessitating alternative strategies to overcome this challenge. We explored the efficacy of stabilizing the G-quadruplex structure formed in the promoter region of EGFR as a means to suppress its expression and impede the growth of cancer cells with EGFR mutations. We revealed that the carbazole derivative BMVC-8C3O effectively suppressed EGFR expression and demonstrated significant growth inhibition in EGFR-mutated NSCLC cells, both in cell culture and mouse xenograft models. Importantly, the observed repression of EGFR expression and growth inhibition were not exclusive to carbazole derivatives, as several other G-quadruplex ligands exhibited similar effects. The growth-inhibitory activity of BMVC-8C3O is attributed, at least in part, to the repression of EGFR, although it is possible that additional cellular targets are also affected. Remarkably, the growth-inhibitory effect was observed even in osimertinib-resistant cells, indicating that BMVC-8C3O holds promise for treating drug-resistant NSCLC. Our findings present a promising and innovative approach for inhibiting the growth of NSCLC cells with EGFR mutations by effectively suppressing EGFR expression. The demonstrated efficacy of G-quadruplex ligands in this study highlights their potential as candidates for further development in NSCLC therapy.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Ratones , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/patología , Línea Celular Tumoral , Receptores ErbB/metabolismo , Mutación , Carbazoles/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Resistencia a Antineoplásicos , Compuestos de Anilina/farmacología
16.
Molecules ; 28(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37630424

RESUMEN

Due to the excellent characteristics of fluorescence-based imaging, such as non-invasive detection of biomarkers in vitro and in vivo with high sensitivity, good spatio-temporal resolution and fast response times, it has shown significant prospects in various applications. Compounds with both biological activities and fluorescent properties have the potential for integrated diagnosis and treatment application. Alectinib and Rilpivirine are two excellent drugs on sale that represent a clinically approved targeted therapy for ALK-rearranged NSCLC and have exhibited more favorable safety and tolerance profiles in Phase III clinical trials, ECHO and THRIVE, respectively. The optical properties of these two drugs, Alectinib and Rilpivirine, were deeply explored, firstly through the simulation of molecular structures, electrostatic potential, OPA/TPA and emission spectral properties and experiments on UV-vis spectra, fluorescence and cell imaging. It was found that Alectinib exhibited 7.8% of fluorescence quantum yield at the 450 nm excited wavelength, due to a larger electronic transition dipole moment (8.41 Debye), bigger charge transition quantity (0.682 e) and smaller reorganization energy (2821.6 cm-1). The stronger UV-vis spectra of Rilpivirine were due to a larger electron-hole overlap index (Sr: 0.733) and were also seen in CDD plots. Furthermore, Alectinib possessed obvious active two-photon absorption properties (δmaxTPA* ϕ = 201.75 GM), which have potential TPA imaging applications in bio-systems. Lastly, Alectinib and Rilpivirine displayed green fluorescence in HeLa cells, suggesting the potential ability for biological imaging. Investigation using theoretical and experimental methods is certainly encouraged, given the particular significance of developing integrated diagnosis and treatment.


Asunto(s)
Neoplasias Pulmonares , Rilpivirina , Humanos , Células HeLa , Carbazoles/farmacología
17.
J Thorac Oncol ; 18(12): 1743-1755, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37574132

RESUMEN

INTRODUCTION: This open-label, phase 3 trial (ALTA-3; NCT03596866) compared efficacy and safety of brigatinib versus alectinib for ALK+ NSCLC after disease progression on crizotinib. METHODS: Patients with advanced ALK+ NSCLC that progressed on crizotinib were randomized 1:1 to brigatinib 180 mg once daily (7-d lead-in, 90 mg) or alectinib 600 mg twice daily, aiming to test superiority. The primary end point was blinded independent review committee-assessed progression-free survival (PFS). Interim analysis for efficacy and futility was planned at approximately 70% of 164 expected PFS events. RESULTS: The population (N = 248; brigatinib, n = 125; alectinib, n = 123) was notable for long median duration of prior crizotinib (16.0-16.8 mo) and low rate of ALK fusion in baseline circulating tumor DNA (ctDNA; 78 of 232 [34%]). Median blinded independent review committee-assessed PFS was 19.3 months with brigatinib and 19.2 months with alectinib (hazard ratio = 0.97 [95% confidence interval: 0.66-1.42], p = 0.8672]). The study met futility criterion. Overall survival was immature (41 events [17%]). Exploratory analyses pooled across the treatment groups revealed median PFS of 11.1 versus 22.5 months in patients with versus without ctDNA-detectable ALK fusion at baseline (hazard ratio: 0.48 [95% confidence interval: 0.32-0.71]). Treatment-related adverse events in more than 30% of patients (brigatinib, alectinib) were elevated levels of blood creatine phosphokinase (70%, 29%), aspartate aminotransferase (53%, 38%), and alanine aminotransferase (40%, 36%). CONCLUSIONS: Brigatinib was not superior to alectinib for PFS in crizotinib-pretreated ALK+ NSCLC. Safety was consistent with the well-established and unique profiles of each drug. The low proportion of patients with ctDNA-detectable ALK fusion may account for prolonged PFS with both drugs in ALTA-3.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Quinasa de Linfoma Anaplásico/genética , Carbazoles/farmacología , Carbazoles/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Crizotinib/farmacología , Crizotinib/uso terapéutico , Progresión de la Enfermedad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/uso terapéutico
18.
Sci Rep ; 13(1): 10889, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407605

RESUMEN

Alzheimer's disease (AD) is characterized by misfolding, oligomerization, and accumulation of amyloid-ß (Aß) peptides in the brain. Aß monomers transform into Aß oligomers, which are toxic species, inducing tau hyperphosphorylation and the downstream effects on microglia and astrocytes, triggering synaptic and cognitive dysfunctions. The oligomers then deposit into Aß plaques, primarily composed of ß-stranded fibrils, required for definitive AD diagnosis. As amyloid burden plays the pivotal role in AD pathogenesis, many efforts are devoted in preventing amyloidosis as a therapeutic approach to impede the disease progression. Here, we discovered carprofen, a non-steroidal anti-inflammatory drug, accelerates Aß aggregating into fibrils and increases Aß plaques when intraperitoneally injected to 5XFAD transgenic mouse model. However, the drug seems to alleviate the key Alzheimer-like phenotypes induced by Aß aggregation as we found attenuated neuroinflammation, improved post-synaptic density expression, associated with synaptic plasticity, and decreased phosphorylated tau levels. Carprofen also rescued impaired working memory as we discovered improved spontaneous alternation performance through Y-maze test assessed with Aß(1-42)-infused mouse model. Collectively, while carprofen accelerates the conversion of Aß monomers into fibrils in vitro, the drug ameliorates the major pathological hallmarks of AD in vivo.


Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Péptidos beta-Amiloides/metabolismo , Carbazoles/farmacología , Carbazoles/uso terapéutico , Trastornos de la Memoria/patología , Modelos Animales de Enfermedad
19.
Eur J Med Chem ; 259: 115627, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37467619

RESUMEN

Since the first natural carbazole alkaloid, murrayanine, was isolated from Mwraya Spreng, carbazole alkaloid derivatives have been widely concerned for their anti-tumor, anti-viral and anti-bacterial activities. In recent decades, a growing body of data suggest that carbazole alkaloids and their derivatives have different biological activities. This is the first comprehensive description of the antifungal and antibacterial activities of carbazole alkaloids in the past decade (2012-2022), including natural and partially synthesized carbazole alkaloids in the past decade. Finally, the challenges and problems faced by this kind of alkaloids are summarized. This paper will be helpful for further exploration of this kind of alkaloids.


Asunto(s)
Alcaloides , Antineoplásicos , Alcaloides/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Antineoplásicos/farmacología , Carbazoles/farmacología , Estructura Molecular
20.
Fish Shellfish Immunol ; 139: 108897, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37301309

RESUMEN

Aquatic ecosystems are being more contaminated with polyhalogenated carbazoles (PHCZs), which raising concerns about their impact on aquatic organisms. Lycopene (LYC) exhibits several beneficial properties for fish via enhance antioxidant defenses and improve immunity. In this study, we attempted to investigate the hepatotoxic effects of typical PHCZs 3, 6-dichlorocarbazole (3,6-DCCZ) and the protective mechanisms of LYC. In this study, we found that yellow catfish (Pelteobagrus fulvidraco) exposure to 3,6-DCCZ (1.2 mg/L) resulted in hepatic inflammatory infiltration and disordered hepatocyte arrangement. Besides, we observed that 3,6-DCCZ exposure resulted in hepatic reactive oxygen species (ROS) overproduction and excessive autophagosome accumulation, accompanied with inhibition of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT) pathway. Subsequently, we confirmed that 3,6-DCCZ exposure triggered hepatic uncontrolled inflammatory response via activation of nuclear factor-κB (NF-κB) pathway, along with decreased plasma complement C3 (C3) and complement C4 (C4) levels. Meanwhile, yellow catfish exposed to 3,6-DCCZ exhibit an increased hepatic apoptosis phenomenon, as evidenced by the elevated number of positive TUNEL cells and upregulated expression of caspase3 and cytochrome C (CytC). In contrast, LYC treatment could alleviate the 3,6-DCCZ-induced pathological changes, hepatic ROS accumulation, autophagy, inflammatory response and apoptosis. To sum up, this study provided the demonstration that LYC exerts hepatoprotective effects to alleviate 3,6-DCCZ-induced liver damage by inihibiting ROS/PI3K-AKT/NF-κB signaling in yellow catfish.


Asunto(s)
Bagres , FN-kappa B , Animales , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Licopeno/farmacología , Fosfatidilinositol 3-Quinasas/metabolismo , Bagres/metabolismo , Carbazoles/metabolismo , Carbazoles/farmacología , Ecosistema , Hígado/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...