Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 35(11): 1897-1914.e11, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37858332

RESUMEN

Genetic studies have identified numerous loci associated with type 2 diabetes (T2D), but the functional roles of many loci remain unexplored. Here, we engineered isogenic knockout human embryonic stem cell lines for 20 genes associated with T2D risk. We examined the impacts of each knockout on ß cell differentiation, functions, and survival. We generated gene expression and chromatin accessibility profiles on ß cells derived from each knockout line. Analyses of T2D-association signals overlapping HNF4A-dependent ATAC peaks identified a likely causal variant at the FAIM2 T2D-association signal. Additionally, the integrative association analyses identified four genes (CP, RNASE1, PCSK1N, and GSTA2) associated with insulin production, and two genes (TAGLN3 and DHRS2) associated with ß cell sensitivity to lipotoxicity. Finally, we leveraged deep ATAC-seq read coverage to assess allele-specific imbalance at variants heterozygous in the parental line and identified a single likely functional variant at each of 23 T2D-association signals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Embrionarias Humanas , Células Secretoras de Insulina , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Células Secretoras de Insulina/metabolismo , Polimorfismo de Nucleótido Simple , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo
2.
Biochem Biophys Res Commun ; 663: 41-46, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37119764

RESUMEN

Renal cell carcinoma (RCC), also known as kidney cancer, is a common malignant tumor of the urinary system. While surgical treatment is essential, novel therapeutic targets and corresponding drugs for RCC are still needed due to the high relapse rate and low five-year survival rate. In this study, we found that SUV420H2 is overexpressed in renal cancers and that high SUV420H2 expression is associated with a poor prognosis, as evidenced by RCC RNA-seq results derived from the TCGA. SUV420H2 knockdown using siRNA led to growth suppression and cell apoptosis in the A498 cell line. Furthermore, we identified DHRS2 as a direct target of SUV420H2 in the apoptosis process through a ChIP assay with a histone 4 lysine 20 (H4K20) trimethylation antibody. Rescue experiments showed that cotreatment with siSUV420H2 and siDHRS2 attenuated cell growth suppression induced by SUV420H2 knockdown only. Additionally, treatment with the SUV420H2 inhibitor A-196 induced cell apoptosis via upregulation of DHRS2. Taken together, our findings suggest that SUV420H2 may be a potential therapeutic target for the treatment of renal cancer.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/patología , Epigénesis Genética , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Recurrencia Local de Neoplasia/genética , Neoplasias Renales/genética , Neoplasias Renales/patología , Apoptosis , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proliferación Celular , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo
3.
Anticancer Drugs ; 33(10): 1058-1068, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36206098

RESUMEN

Long noncoding RNAs (lncRNAs) have been demonstrated to participate in various biological processes and play key roles in tumorigenesis and metastasis. Pituitary adenoma (PA) is one of the most common malignancies in central nervous system. Recently, multiple lncRNAs have been identified to regulate PA initiation, progression and metastasis. we aimed to elucidate the expression pattern and function of lncRNA MYMLR in PA development. The expression of lncRNA MYMLR in PA tissues and cells was examined by real-time quantitative PCR. Knockdown of MYMLR expression was achieved by using shRNA. The function of MYMLR and regulatory network were analyzed using CCK-8 assay, wound-healing assay, migration assay and Annexin V/PI staining. Xenograft tumor model was used to explore the function of MYMLR in vivo . Bioinformatics analysis and luciferase reporter assay were conducted to investigate the interaction between MYMLR and its regulatory network. LncRNA MYMLR was highly expressed in PA tissues compared with that in normal tissues. Knockdown of MYMLR suppressed cell proliferation, migration and invasion, while promoting PA cell apoptosis. Mechanistically, MYMLR functioned as a competing endogenous RNA (ceRNA) sponging microRNA miR-197-3p. Furthermore, miR-197-3p exerted its tumor inhibitory role via negatively regulating carbonyl reductase 1 (CBR1). Overexpression of CBR1 antagonized the inhibitory effect of lncRNA MYMLR knockdown or miR-197-3p overexpression. In addition, xenograft tumor model revealed that knockdown of lncRNA MYMLR suppressed PA tumor development in vivo via regulating CBR1. Our findings suggest a regulatory network of lncRNA MYMLR/miR-197-3p/CBR1, which benefits the understanding of PA development and provides a promising lncRNA-direct therapeutic strategy against PA.


Asunto(s)
Carbonil Reductasa (NADPH) , MicroARNs , Neoplasias Hipofisarias , ARN Largo no Codificante , Humanos , Anexina A5/genética , Anexina A5/metabolismo , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/fisiología , Regulación Neoplásica de la Expresión Génica , Luciferasas/genética , Luciferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hipofisarias/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño , Animales
4.
Cell Death Dis ; 13(10): 845, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192391

RESUMEN

The short-chain dehydrogenase/reductase (SDR) superfamily has essential roles in lipid metabolism and redox sensing. In recent years, accumulating evidence highlights the emerging association between SDR family enzymes and cancer. Dehydrogenase/reductase member 2(DHRS2) belongs to the NADH/NADPH-dependent SDR family, and extensively participates in the regulation of the proliferation, migration, and chemoresistance of cancer cells. However, the underlying mechanism has not been well defined. In the present study, we have demonstrated that DHRS2 inhibits the growth and metastasis of ovarian cancer (OC) cells in vitro and in vivo. Mechanistically, the combination of transcriptome and metabolome reveals an interruption of choline metabolism by DHRS2. DHRS2 post-transcriptionally downregulates choline kinase α (CHKα) to inhibit AKT signaling activation and reduce phosphorylcholine (PC)/glycerophosphorylcholine (GPC) ratio, impeding choline metabolism reprogramming in OC. These actions mainly account for the tumor-suppressive role of DHRS2 in OC. Overall, our findings establish the mechanistic connection among metabolic enzymes, metabolites, and the malignant phenotype of cancer cells. This could result in further development of novel pharmacological tools against OC by the induction of DHRS2 to disrupt the choline metabolic pathway.


Asunto(s)
Colina Quinasa , Neoplasias Ováricas , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Proliferación Celular , Colina/metabolismo , Colina Quinasa/genética , Colina Quinasa/metabolismo , Regulación hacia Abajo , Femenino , Glicerilfosforilcolina/metabolismo , Humanos , NAD/metabolismo , NADP/metabolismo , Neoplasias Ováricas/genética , Oxidorreductasas/genética , Fosforilcolina/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo
5.
J Steroid Biochem Mol Biol ; 215: 106025, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34775032

RESUMEN

Nowadays, 17ß-estradiol (E2) biodegradation pathway has still not been identified in bacteria. To bridge this gap, we have described a novel E2 degradation pathway in Rhodococcus sp. P14 in this study, which showed that estradiol could be first transferred to estrone (E1) and thereby further converted into 16-hydroxyestrone, and then transformed into opened estrogen D ring. In order to identify the genes, which may be responsible for the pathway, transcriptome analysis was performed during E2 degradation in strain P14. The results showed that the expression of a short-chain dehydrogenase (SDR) gene and a CYP123 gene in the same gene cluster could be induced significantly by E2. Based on gene analysis, this gene cluster was found to play an important role in transforming E2 to 16-hydroxyestrone. The function of CYP123 was unknown before this study, and was found to harbor the activity of 16-estrone hydratase. Moreover, the global response to E2 in strain P14 was also analyzed by transcriptome analysis. It was observed that various genes involved in the metabolism processes, like the TCA cycle, lipid and amino acid metabolism, as well as glycolysis showed a significant increase in mRNA levels in response to strain P14 that can use E2 as the single carbon source. Overall, this study provides us an in depth understanding of the E2 degradation mechanisms in bacteria and also sheds light about the ability of strain P14 to effectively use E2 as the major carbon source for promoting its growth.


Asunto(s)
Carbonil Reductasa (NADPH)/genética , Sistema Enzimático del Citocromo P-450/genética , Estradiol/metabolismo , Regulación Bacteriana de la Expresión Génica , Rhodococcus/metabolismo , Transcriptoma , Biotransformación , Carbono/metabolismo , Carbonil Reductasa (NADPH)/metabolismo , Ciclo del Ácido Cítrico/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Estrona/metabolismo , Ontología de Genes , Hidroxiestronas/metabolismo , Metabolismo de los Lípidos/genética , Anotación de Secuencia Molecular , Familia de Multigenes , Filogenia , ARN Mensajero/genética , ARN Mensajero/metabolismo , Rhodococcus/clasificación , Rhodococcus/genética
6.
Chem Biol Interact ; 351: 109752, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34801537

RESUMEN

2,4,6-trinitrotoluene (TNT) is a known source of reactive oxygen species (ROS), which cause oxidative stress in aquatic ecosystems. Carbonyl reductases (CRs) are one of several possible defense mechanisms induced against ROS products, especially those that result in the 'so-called' carbonyl stress. Daphnia magna, a freshwater organism living in stagnant freshwater bodies, expresses four copies of the CR gene (Dma_CR1, Dma_CR2, Dma_CR3 and Dma_CR4). In this study, induction of all four copies of Dma_CR by 2-amino-4,6-dinitrotoluene (2-ADNT) and 4-amino-2,6-dinitrotoluene (4-ADNT), was investigated. Reverse transcription polymerase chain reaction (RT-PCR) analysis of treated daphnids revealed up-regulation of Dma_CR1 alone in response to TNT, but not 2-ADNT and 4-ADNT (which are key metabolites of TNT). This concentration- and time-dependent up-regulation in mRNA-expression was observed both in the presence and absence of light, in the same magnitude. Moreover, significant change in mRNA-expression could be observed 8 h after treatment with TNT. In the presence of TNT, the antioxidant N-acetylcysteine (NAc) could not reverse TNT-induced up-regulation of Dma_CR1 mRNA-expression. On the other hand, withdrawal of TNT from the culture medium caused a significant reduction in the TNT-induced mRNA-expression of Dma_CR1 within 24 h. These findings highlight the potential of Dma_CR1 as a biomarker for biomonitoring of TNT levels in freshwater bodies.


Asunto(s)
Carbonil Reductasa (NADPH)/metabolismo , Daphnia/efectos de los fármacos , Trinitrotolueno/farmacología , Regulación hacia Arriba/efectos de los fármacos , Contaminantes Químicos del Agua/farmacología , Compuestos de Anilina/farmacología , Animales , Biomarcadores/metabolismo , Carbonil Reductasa (NADPH)/genética
7.
Biochem J ; 478(19): 3597-3611, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34542554

RESUMEN

The hetero-oligomeric retinoid oxidoreductase complex (ROC) catalyzes the interconversion of all-trans-retinol and all-trans-retinaldehyde to maintain the steady-state output of retinaldehyde, the precursor of all-trans-retinoic acid that regulates the transcription of numerous genes. The interconversion is catalyzed by two distinct components of the ROC: the NAD(H)-dependent retinol dehydrogenase 10 (RDH10) and the NADP(H)-dependent dehydrogenase reductase 3 (DHRS3). The binding between RDH10 and DHRS3 subunits in the ROC results in mutual activation of the subunits. The molecular basis for their activation is currently unknown. Here, we applied site-directed mutagenesis to investigate the roles of amino acid residues previously implied in subunit interactions in other SDRs to obtain the first insight into the subunit interactions in the ROC. The results of these studies suggest that the cofactor binding to RDH10 subunit is critical for the activation of DHRS3 subunit and vice versa. The C-terminal residues 317-331 of RDH10 are critical for the activity of RDH10 homo-oligomers but not for the binding to DHRS3. The C-terminal residues 291-295 are required for DHRS3 subunit activity of the ROC. The highly conserved C-terminal cysteines appear to be involved in inter-subunit communications, affecting the affinity of the cofactor binding site in RDH10 homo-oligomers as well as in the ROC. Modeling of the ROC quaternary structure based on other known structures of SDRs suggests that its integral membrane-associated subunits may be inserted in adjacent membranes of the endoplasmic reticulum (ER), making the formation and function of the ROC dependent on the dynamic nature of the tubular ER network.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Carbonil Reductasa (NADPH)/metabolismo , Proteínas de la Membrana/metabolismo , Retinaldehído/metabolismo , Tretinoina/metabolismo , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Secuencia de Aminoácidos , Animales , Biocatálisis , Carbonil Reductasa (NADPH)/química , Carbonil Reductasa (NADPH)/genética , Dominio Catalítico , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutagénesis Sitio-Dirigida/métodos , Estructura Cuaternaria de Proteína , Spodoptera/citología , Relación Estructura-Actividad
8.
Genomics ; 113(3): 1057-1069, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33667649

RESUMEN

The Bromodomain and Extra-terminal domain (BET) proteins are promising targets in treating cancers. Although BET inhibitors have been in clinical trials, they are limited by lacking of suitable biomarkers to indicate drug responses in different cancers. Here we identify DHRS2, ETV4 and NOTUM as potential biomarkers to indicate drug resistance in liver cancer cells of a recently discovered BET inhibitor, Hjp-6-171. Furthermore, we confirm that reactivation of WNT pathway, the target of NOTUM, contributes to the drug sensitivity restoration in Hjp-6-171 resistant cells. Specially, combinations of Hjp-6-171 and a GSK3ß inhibitor CHIR-98014 show remarkable therapeutic effects in vitro and in vivo. Integrating RNA-seq and ChIP-seq data, we reveal the expression signature of ß-catenin regulated genes is contrary in sensitive cells to that in resistant cells. We propose WNT signaling molecules such as ß-catenin and ETV4 to be candidate biomarkers to indicate BET inhibitor responses in liver cancer patients.


Asunto(s)
Neoplasias Hepáticas , Vía de Señalización Wnt , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Vía de Señalización Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
9.
Microb Genom ; 6(11)2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33048043

RESUMEN

Several monosaccharides constitute naturally occurring glycans, but it is uncertain whether they constitute a universal set like the alphabets of proteins and DNA. Based on the available experimental observations, it is hypothesized herein that the glycan alphabet is not universal. Data on the presence/absence of pathways for the biosynthesis of 55 monosaccharides in 12 939 completely sequenced archaeal and bacterial genomes are presented in support of this hypothesis. Pathways were identified by searching for homologues of biosynthesis pathway enzymes. Substantial variations were observed in the set of monosaccharides used by organisms belonging to the same phylum, genera and even species. Monosaccharides were grouped as common, less common and rare based on their prevalence in Archaea and Bacteria. It was observed that fewer enzymes are sufficient to biosynthesize monosaccharides in the common group. It appears that the common group originated before the formation of the three domains of life. In contrast, the rare group is confined to a few species in a few phyla, suggesting that these monosaccharides evolved much later. Fold conservation, as observed in aminotransferases and SDR (short-chain dehydrogenase reductase) superfamily members involved in monosaccharide biosynthesis, suggests neo- and sub-functionalization of genes led to the formation of the rare group monosaccharides. The non-universality of the glycan alphabet begets questions about the role of different monosaccharides in determining an organism's fitness.


Asunto(s)
Archaea/metabolismo , Bacterias/metabolismo , Redes y Vías Metabólicas/genética , Monosacáridos/metabolismo , Polisacáridos/biosíntesis , Archaea/genética , Bacterias/genética , Carbonil Reductasa (NADPH)/genética , Genoma Arqueal/genética , Genoma Bacteriano/genética , Transaminasas/genética
10.
FEBS Lett ; 594(20): 3395-3405, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32767399

RESUMEN

DNA topoisomerase II beta (TOP2B) has a role in transcriptional regulation. Here, to further investigate transcriptional regulation by TOP2B, we used RNA-sequencing and real-time PCR to analyse the differential gene expression profiles of wild-type and two independent TOP2B-null pre-B Nalm-6 cell lines, one generated by targeted insertion and the other using CRISPR-Cas9 gene editing. We identified carbonyl reductase 1 (CBR1) among the most significantly downregulated genes in these TOP2B-null cells. Reduced CBR1 expression was accompanied by loss of binding of the transcription factors USF2 and MAX to the CBR1 promoter. We describe possible mechanisms by which loss of TOP2B results in CBR1 downregulation. To our knowledge, this is the first report of a link between TOP2B and CBR1.


Asunto(s)
Carbonil Reductasa (NADPH)/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Regulación de la Expresión Génica , Transcripción Genética , Carbonil Reductasa (NADPH)/metabolismo , Línea Celular , Epigénesis Genética , Perfilación de la Expresión Génica , Genoma Humano , Humanos , Regiones Promotoras Genéticas
11.
Turk J Haematol ; 37(4): 226-233, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32586085

RESUMEN

Objective: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive disease resulting from the accumulation of genetic changes that affect the development of T-cells. The precise role of lymphoid enhancer-binding factor 1 (LEF1) in T-ALL has been controversial since both overexpression and inactivating LEF1 mutations have been reported to date. Here, we investigate the potential gene targets of LEF1 in the Jurkat human T-cell leukemia cell line. Materials and Methods: We used small interfering RNA (siRNA) technology to knock down LEF1 in Jurkat cells and then compared the gene expression levels in the LEF1 knockdown cells with non-targeting siRNA-transfected and non-transfected cells by employing microarray analysis. Results: We identified DHRS2, a tumor suppressor gene, as the most significantly downregulated gene in LEF1 knockdown cells, and we further confirmed its downregulation by real-time quantitative polymerase chain reaction (qRT-PCR) in mRNA and at protein level by western blotting. Conclusion: Our results revealed that DHRS2 is positively regulated by LEF1 in Jurkat cells, which indicates the capability of LEF1 as a tumor suppressor and, together with previous reports, suggests that LEF1 exhibits a regulatory role in T-ALL via not only its oncogenic targets but also tumor suppressor genes.


Asunto(s)
Carbonil Reductasa (NADPH)/genética , Regulación Leucémica de la Expresión Génica , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Biomarcadores de Tumor , Biología Computacional/métodos , Humanos , Células Jurkat , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Interferencia de ARN , ARN Mensajero , ARN Interferente Pequeño/genética
12.
Drug Dev Res ; 81(7): 885-892, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542754

RESUMEN

Investigate the effect of flufenamic acid (FFA) on lung injury of sepsis rats. Rat sepsis model was established using cecal ligation and puncture (CLP). The pathomorphology of lung tissue was detected by Hematoxylin-eosin (H&E) staining. The expression levels of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and high mobility group box-1 (HMGB-1) in serum and TNF-α, IL-6, malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) in lung tissues. The viability of RLE-6TN cells was detected by CCK-8 assay. The expression of carbonyl reductase 1 (CBR1) in RLE-6TN cells was analyzed by Western blot analysis and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The inflammatory response was obviously enhanced in CLP-constructed sepsis rats and alleviated by FFA treatment. Sepsis induced the increase of W/D ratio, promoted the levels of TNF-α, IL-6, HMGBR1, and MDA and inhibited the levels of SOD and GSH. FFA could effectively alleviate the sepsis-induced lung injury. The viability of RLE-6TN cells induced by LPS was improved with the treatment of FFA. CBR1 expression in LPS-induced RLE-6TN cells was decreased and FFA could up-regulate the CBR1 expression. In addition, LPS-induced lung injury promoted the inflammatory response in lung tissues, increased the W/D ratio and levels of TNF-α, IL-6, HMGBR1, and MDA while inhibited the levels of SOD and GSH. FFA could effectively improve the LPS-induced lung injury while the effect of FFA on LPS-induced lung injury was alleviated by CBR1 interference. FFA may alleviate sepsis-induced lung injury by up-regulating CBR1.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Carbonil Reductasa (NADPH)/metabolismo , Ácido Flufenámico/uso terapéutico , Sepsis/tratamiento farmacológico , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Antiinflamatorios/farmacología , Carbonil Reductasa (NADPH)/genética , Línea Celular , Ácido Flufenámico/farmacología , Glutatión/metabolismo , Interleucina-6/sangre , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Malondialdehído/metabolismo , Estrés Oxidativo/efectos de los fármacos , Ratas Sprague-Dawley , Sepsis/complicaciones , Sepsis/metabolismo , Sepsis/patología , Superóxido Dismutasa/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Regulación hacia Arriba/efectos de los fármacos
13.
Epigenetics ; 15(1-2): 122-133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31423895

RESUMEN

Histone deacetylases (HDACs) have been linked to a variety of cancers, and HDAC inhibitors (HDACi) are a promising class of drugs that have demonstrated anti-cancer effects. However, we have little knowledge regarding the selection and application of HDAC inhibitors to the personalized treatment of ovarian cancer (OC). Here, we report a correlation between the high expression of HDACs and poor outcomes in OC patients, which reveals that HDACi are a class of agents that show great promise for the treatment of OC. Furthermore, we found that HDACi increased both the mRNA and protein levels of DHRS2, which has been shown to be closely linked to HDACi sensitivity when it is highly expressed, especially in ovarian cancer cells. Consistently, we found that suppression of DHRS2 reduced the sensitivity of OC cells to HDAC inhibitors via attenuation of the inhibitory effects of HDAC inhibitors on Mcl-1 in vitro. Our study demonstrated that DHRS2 expression was decreased in OC tissues and that high expression of DHRS2 was correlated with better outcomes in OC patients. In addition, DHRS2 expression was closely related to the effects of chemotherapy. Our study reveals the role of DHRS2 in cell apoptosis induced by HDAC inhibitors and explores the clinical attributes of DHRS2 in OC from a new perspective, suggesting that OC patients with high DHRS2 expression may benefit from treatment with HDAC inhibitors.


Asunto(s)
Biomarcadores de Tumor/genética , Carbonil Reductasa (NADPH)/genética , Resistencia a Antineoplásicos , Neoplasias Ováricas/genética , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Carbonil Reductasa (NADPH)/metabolismo , Línea Celular Tumoral , Femenino , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Humanos , Neoplasias Ováricas/patología , Pronóstico
14.
ACS Chem Biol ; 15(1): 44-51, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31860257

RESUMEN

Fusidane-type antibiotics are a group of triterpenoid antibiotics. They include helvolic acid, fusidic acid, and cephalosporin P1, among which fusidic acid has been used clinically. We have recently elucidated the biosynthesis of helvolic acid and fusidic acid, which share an early biosynthetic route involving six conserved enzymes. Here, we report two separate gene clusters for cephalosporin P1 biosynthesis. One consists of the six conserved genes, and the other contains three genes encoding a P450 enzyme (CepB4), an acetyltransferase (CepD2), and a short-chain dehydrogenase/reductase (CepC2). Introduction of these three genes into Aspergillus oryzae, which harbors the six conserved genes, produced cephalosporin P1. Stepwise introduction revealed that CepB4 not only catalyzes stereoselective dual oxidation of C6 and C7, but also monooxygenation of C6 or C7. This led to the generation of five new analogues. Using monohydroxylated products as substrates, we demonstrated that CepD2 specifically acetylates C6-OH, although both C6-OH and C7-OH acetylated analogues have been identified in nature.


Asunto(s)
Cefalosporinas/biosíntesis , Sistema Enzimático del Citocromo P-450/metabolismo , Enzimas Multifuncionales/metabolismo , Acetilación , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Aspergillus oryzae/genética , Secuencia de Bases , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo , Dominio Catalítico , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Ácido Fusídico/análogos & derivados , Ácido Fusídico/química , Regulación de la Expresión Génica , Hidroxilación , Estructura Molecular , Enzimas Multifuncionales/genética , Oxidación-Reducción
15.
Oncol Rep ; 42(5): 1725-1734, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31436301

RESUMEN

Oxaliplatin (Oxa)­based chemotherapy is widely used as the first­line treatment for colorectal cancer (CRC). However, Oxa­resistance is common for many postoperative CRC patients. To explore drug resistance in CRC, an Oxa­resistant cell line, HCT116/Oxa, was established from parental HCT116 cells. These Oxa­resistant cells exhibited characteristics of epithelial­mesenchymal transition (EMT) and a higher migratory capacity than parental cells. Protein profiles of HCT116/Oxa and HCT116 cells were compared using a tandem mass tag­based quantitative proteomics technique. The protein dehydrogenase/reductase SDR family member 2 (DHRS2) was revealed to be highly expressed in HCT116/Oxa cells. Silencing of DHRS2 in HCT116/Oxa cells effectively restored Oxa­sensitivity by suppressing the expression of excision repair cross­complementing group 1 protein via a p53­dependent pathway, and reversed the EMT phenotype. Overall, the suppression of DHRS2 expression may be a promising strategy for the prevention of Oxa­resistance in CRC.


Asunto(s)
Carbonil Reductasa (NADPH)/antagonistas & inhibidores , Neoplasias Colorrectales/metabolismo , Proteínas de Unión al ADN/metabolismo , Resistencia a Antineoplásicos , Endonucleasas/metabolismo , Antígenos CD/metabolismo , Antineoplásicos/farmacología , Cadherinas/metabolismo , Carbonil Reductasa (NADPH)/genética , Movimiento Celular/efectos de los fármacos , Cromatografía Liquida , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Regulación hacia Abajo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen , Células HCT116 , Humanos , Oxaliplatino/farmacología , Proteómica , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem
16.
J Exp Clin Cancer Res ; 38(1): 300, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291971

RESUMEN

BACKGROUND: Cancer is fundamentally a deregulation of cell growth and proliferation. Cancer cells often have perturbed metabolism that leads to the alteration of metabolic intermediates. Dehydrogenase/reductase member 2 (DHRS2) belongs to short-chain alcohol dehydrogenase/reductase (SDR) superfamily, which is functionally involved in a number of intermediary metabolic processes and in the metabolism of lipid signaling molecules. DHRS2 displays closely association with the inhibition of cell proliferation, migration and quiescence in cancers. METHODS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4- sulfophenyl)-2H-tetrazolium (MTS), 5-ethynyl-2'-deoxyuridine (EdU) and colony formation assays were applied to evaluate the proliferative ability of nasopharyngeal carcinoma (NPC) cells. We performed lipid metabolite profiling using gas chromatography coupled with mass spectrometry (GC/MS) to identify the proximal metabolite changes linked to DHRS2 overexpression. RNA sequencing technique combined with differentially expressed genes analysis was applied to identify the expression of genes responsible for the anti-tumor effect of trichothecin (TCN), a natural sesquiterpenoid compound isolated from an endophytic fungus. RESULTS: Our current findings reveal that DHRS2 affects lipid metabolite profiling to induce cell cycle arrest and growth inhibition in NPC cells. Furthermore, we demonstrate that TCN is able to induce growth inhibition of NPC in vitro and in vivo by up-regulating DHRS2. CONCLUSIONS: Our report suggests that activating DHRS2 to reprogram lipid homeostasis may be a target for the development of targeted therapies against NPC. Moreover, TCN could be exploited for therapeutic gain against NPC by targeting DHRS2 and it may also be developed as a tool to enhance understanding the biological function of DHRS2.


Asunto(s)
Carbonil Reductasa (NADPH)/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patología , Animales , Carbonil Reductasa (NADPH)/metabolismo , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , Carcinoma Nasofaríngeo/metabolismo , Tricotecenos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Mol Med Rep ; 18(3): 2651-2660, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30015886

RESUMEN

The aim of the present study was to explore the candidate genes, chemicals and mechanisms of congenital obstructive nephropathy (CON). The gene expression profiles of GSE48041, including 24 kidney tissue samples from megabladder (mgb­/­) mouse were downloaded from the Gene Expression Omnibus database. Samples were divided into 4 groups: Control, mild, moderate and severe. Differentially expressed genes (DEGs), protein­protein interaction network, Kyoto Encyclopedia of Genes and Genomes pathways and transcription factor (TF)­target gene analyses were performed on Set 1 (mild, moderate and severe groups), while Gene Ontology (GO) function enrichment analysis and chemical investigation were performed on Set 2 (severe group). A total of 187 and 139 DEGs were obtained in Set 1 and Set 2, respectively. Chemical carcinogenesis [enriched by genes such as Carbonyl reductase 1 (CBR1)] was one of the most prominent pathways in Set 1. GO analysis for Set 2 revealed that DEGs were mainly assembled in functions such as cellular response to interleukin­1 and cellular response to tumor necrosis. Furthermore, genes such as Fos Proto­Oncogene (FOS) were co­regulated by TFs including RNA polymerase II subunit A (Polr2a) and serum response factor (Srf). Chemical cyclosporine served the most important role in Set 2 by targeting several DEGs in Set 2. DEGs such as CBR1 and FOS, TFs including Polr2a and Srf, and pathways such as chemical carcinogenesis may serve important roles in the process of CON. Interleukin­1 and tumor necrosis function may be novel targets for CON gene therapy. Furthermore, cyclosporine may be a promising option for future CON therapy.


Asunto(s)
Biología Computacional , Enfermedades Renales/patología , Animales , Carbonil Reductasa (NADPH)/genética , Carbonil Reductasa (NADPH)/metabolismo , Bases de Datos Genéticas , Regulación de la Expresión Génica , Redes Reguladoras de Genes/genética , Humanos , Riñón/metabolismo , Enfermedades Renales/congénito , Enfermedades Renales/genética , Ratones , Ratones Noqueados , Mapas de Interacción de Proteínas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcriptoma
18.
Sci Rep ; 7(1): 10633, 2017 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-28878267

RESUMEN

Carbonyl Reductase 1 (CBR1) is a ubiquitously expressed cytosolic enzyme important in exogenous drug metabolism but the physiological function of which is unknown. Here, we describe a role for CBR1 in metabolism of glucocorticoids. CBR1 catalyzes the NADPH- dependent production of 20ß-dihydrocortisol (20ß-DHF) from cortisol. CBR1 provides the major route of cortisol metabolism in horses and is up-regulated in adipose tissue in obesity in horses, humans and mice. We demonstrate that 20ß-DHF is a weak endogenous agonist of the human glucocorticoid receptor (GR). Pharmacological inhibition of CBR1 in diet-induced obesity in mice results in more marked glucose intolerance with evidence for enhanced hepatic GR signaling. These findings suggest that CBR1 generating 20ß-dihydrocortisol is a novel pathway modulating GR activation and providing enzymatic protection against excessive GR activation in obesity.


Asunto(s)
Carbonil Reductasa (NADPH)/metabolismo , Metabolismo Energético , Glucocorticoides/metabolismo , Obesidad/metabolismo , Receptores de Glucocorticoides/metabolismo , Animales , Carbonil Reductasa (NADPH)/genética , Modelos Animales de Enfermedad , Femenino , Expresión Génica , Estudios de Asociación Genética , Variación Genética , Glucocorticoides/química , Glucocorticoides/orina , Caballos , Humanos , Hidrocortisona/metabolismo , Hidroxicorticoesteroides/metabolismo , Hidroxicorticoesteroides/orina , Hígado/metabolismo , Masculino , Ratones , Modelos Moleculares , Conformación Molecular , Obesidad/genética , Fenotipo , Unión Proteica , Receptores de Glucocorticoides/agonistas , Receptores de Glucocorticoides/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...