Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.749
Filtrar
1.
Carcinogenesis ; 45(5): 288-299, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466106

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.


Asunto(s)
Benzo(a)pireno , Metilación de ADN , Epigénesis Genética , Ratones Pelados , Neoplasias Cutáneas , Triterpenos , Ácido Ursólico , Animales , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Benzo(a)pireno/toxicidad , Triterpenos/farmacología , Ratones , Epigénesis Genética/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Carcinógenos Ambientales/toxicidad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inducido químicamente
2.
Artículo en Inglés | MEDLINE | ID: mdl-38230947

RESUMEN

Hexavalent chromium (Cr(VI)) is a well-known occupational and environmental human carcinogen. The cellular effect of Cr(VI) is complex and often nonspecific due to its ability to modulate multiple cellular targets. The toxicity of Cr(VI) is strongly linked to the generation of reactive oxygen species (ROS) during its reduction process. ROS can cause oxidation of cellular macromolecules, such as proteins, lipids, and DNA, thereby altering their functions. A major genotoxic effect of Cr(VI) that contributes to carcinogenesis is the formation of DNA adducts, which can lead to DNA damage. Modulations of cellular signaling pathways and epigenetics may also contribute to the carcinogenic effects of Cr(VI). Cr(VI) has a major impact on many aspects of mitochondrial biology, including oxidative phosphorylation, mitophagy, and mitochondrial biogenesis. These effects have the potential to alter the trajectory of Cr(VI)-induced carcinogenic process. This perspective article summarizes current understandings of the effect of Cr(VI) on mitochondria and discusses the future directions of research in this area, particularly with regard to carcinogenesis.


Asunto(s)
Carcinogénesis , Cromo , Mitocondrias , Cromo/toxicidad , Mitocondrias/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Carcinógenos/toxicidad , Daño del ADN , Animales , Carcinógenos Ambientales/toxicidad
3.
Artículo en Inglés | MEDLINE | ID: mdl-38052482

RESUMEN

The transition from a single, initiated cell to a full-blown malignant tumor involves significant genomic evolution. Exposure to carcinogens-whether directly mutagenic or not-can drive progression toward malignancy, as can stochastic acquisition of cancer-promoting genetic events. Mouse models using both carcinogens and germline genetic manipulations have enabled precise inquiry into the evolutionary dynamics that take place as a tumor progresses from benign to malignant to metastatic stages. Tumor progression is characterized by changes in somatic point mutations and copy-number alterations, even though any single tumor can itself have a high or low burden of genomic alterations. Further, lineage-tracing, single-cell analyses and CRISPR barcoding have revealed the distinct clonal dynamics within benign and malignant tumors. Application of these tools in a range of mouse models can shed unique light on the patterns of clonal evolution that take place in both mouse and human tumors.


Asunto(s)
Carcinógenos Ambientales , Humanos , Animales , Ratones , Procesos Neoplásicos , Genómica , Mutación , Evolución Clonal , Modelos Animales de Enfermedad
4.
Biosensors (Basel) ; 13(11)2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37998127

RESUMEN

Over recent decades, synthetic macrocyclic compounds have attracted interest from the scientific community due to their ability to selectively and reversibly form complexes with a huge variety of guest moieties. These molecules have been studied within a wide range of sensing and other fields. Within this review, we will give an overview of the most common synthetic macrocyclic compounds including cyclodextrins, calixarenes, calixresorcinarenes, pillarenes and cucurbiturils. These species all display the ability to form a wide range of complexes. This makes these compounds suitable in the field of cancer detection since they can bind to either cancer cell surfaces or indeed to marker compounds for a wide variety of cancers. The formation of such complexes allows sensitive and selective detection and quantification of such guests. Many of these compounds also show potential for the detection and encapsulation of environmental carcinogens. Furthermore, many anti-cancer drugs, although effective in in vitro tests, are not suitable for use directly for cancer treatment due to low solubility, inherent instability in in vivo environments or an inability to be adsorbed by or transported to the required sites for treatment. The reversible encapsulation of these species in a macrocyclic compound can greatly improve their solubility, stability and transport to required sites where they can be released for maximum therapeutic effect. Within this review, we intend to present the use of these species both in cancer sensing and treatment. The various macrocyclic compound families will be described, along with brief descriptions of their synthesis and properties, with an outline of their use in cancer detection and usage as therapeutic agents. Their use in the sensing of environmental carcinogens as well as their potential utilisation in the clean-up of some of these species will also be discussed.


Asunto(s)
Carcinógenos Ambientales , Ciclodextrinas , Compuestos Macrocíclicos , Neoplasias , Receptores Artificiales , Humanos , Detección Precoz del Cáncer , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico
5.
Environ Pollut ; 339: 122731, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37839680

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), in particular benzo [a]pyrene (BaP), have been identified as carcinogenic components of tobacco smoke. In mammals, the toxicological response to BaP-diol-epoxide is driven by cytochrome P450 (CYP1A1), a pathway which is absent in Caenorhabditis elegans. In contrast, in worms prominently the CYP-35 enzyme family seems to be induced after BaP exposure. In C. elegans, BaP exposure reduces the accumulation of lysosomal neutral lipids in a dose dependent manner and the deletion of cyp-35A2 results in a significant elevation of neutral lipid metabolism. A cyp-35A2:mCherry;unc-47:GFP dual-labelled reporter strain facilitated the identification of three potential upstream regulators that drive BaP metabolism in worms, namely elt-2, nhr-49 and fos-1. This newly described reporter line is a powerful resource for future large-scale RNAi regarding toxicology and lipid metabolism screens.


Asunto(s)
Proteínas de Caenorhabditis elegans , Carcinógenos Ambientales , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Caenorhabditis elegans/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Citocromo P-450 CYP1A1/metabolismo , Lípidos , Mamíferos/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores
6.
Carcinogenesis ; 44(5): 436-449, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37100755

RESUMEN

Non-melanoma skin cancer (NMSC) is the most common cancer in the world. Environmental exposure to carcinogens is one of the major causes of NMSC initiation and progression. In the current study, we utilized a two-stage skin carcinogenesis mouse model generated by sequential exposure to cancer-initiating agent benzo[a]pyrene (BaP) and promoting agent 12-O-tetradecanoylphorbol-13-acetate (TPA), to study epigenetic, transcriptomic and metabolic changes at different stages during the development of NMSC. BaP/TPA caused significant alterations in DNA methylation and gene expression profiles in skin carcinogenesis, as evidenced by DNA-seq and RNA-seq analysis. Correlation analysis between differentially expressed genes and differentially methylated regions found that the mRNA expression of oncogenes leucine rich repeat LGI family member 2 (Lgi2), kallikrein-related peptidase 13 (Klk13) and SRY-Box transcription factor (Sox5) are correlated with the promoter CpG methylation status, indicating BaP/TPA regulates these oncogenes through regulating their promoter methylation at different stages of NMSC. Pathway analysis identified that the modulation of macrophage-stimulating protein-recepteur d'origine nantais and high-mobility group box 1 signaling pathways, superpathway of melatonin degradation, melatonin degradation 1, sirtuin signaling and actin cytoskeleton signaling pathways are associated with the development of NMSC. The metabolomic study showed BaP/TPA regulated cancer-associated metabolisms like pyrimidine and amino acid metabolisms/metabolites and epigenetic-associated metabolites, such as S-adenosylmethionine, methionine and 5-methylcytosine, indicating a critical role in carcinogen-mediated metabolic reprogramming and its consequences on cancer development. Altogether, this study provides novel insights integrating methylomic, transcriptomic and metabolic-signaling pathways that could benefit future skin cancer treatment and interception studies.


Asunto(s)
Carcinógenos Ambientales , Melatonina , Neoplasias Cutáneas , Ratones , Animales , Benzo(a)pireno/toxicidad , Benzo(a)pireno/metabolismo , Carcinogénesis/genética , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Acetato de Tetradecanoilforbol , Epigénesis Genética
8.
Environ Res ; 230: 114582, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965799

RESUMEN

The current paradigm of carcinogenesis as a cellular evolutionary process driven by mutations of a few critical driver genes has immediate logical implications for the epidemiology of cancer. These include the impact of age on cancer risk, the role played by inherited tumor predisposition syndromes, and the interaction of genetics and environmental exposures on cancer risk. In this paper, we explore the following logical epidemiological consequences of carcinogenesis as a clonal process of mutation accumulation, with special emphasis on asbestos-related cancers, specifically malignant mesothelioma:1 All cancers, including mesothelioma, can and do occur spontaneously, i.e., in the absence of exposure to any environmental carcinogens. 2. Age is an important determinant of cancer risk, with or without exposure to environmental carcinogens. 3. Genetic tumor predisposition syndromes, such as the BAP1 syndrome, increase enormously the risk of cancer even in the absence of exposure to environmental carcinogens. We illustrate these concepts by applying a multistage clonal expansion model to U.S. Surveillance, Epidemiology, and End Results cancer registry data for pleural and peritoneal malignant mesotheliomas in 1975-2018.


Asunto(s)
Amianto , Carcinógenos Ambientales , Neoplasias Pulmonares , Mesotelioma Maligno , Humanos , Mesotelioma Maligno/complicaciones , Incidencia , Carcinógenos Ambientales/toxicidad , Síndrome , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/epidemiología , Predisposición Genética a la Enfermedad , Amianto/toxicidad , Carcinogénesis/inducido químicamente , Carcinogénesis/genética
9.
Environ Res ; 230: 115047, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36965808

RESUMEN

Alterations in complex cellular phenotype each typically involve multistep activation of an ultrasensitive molecular switch (e.g., to adaptively initiate an apoptosis, inflammasome, Nrf2-ARE anti-oxidant, or heat-shock activation pathway) that triggers expression of a suite of target genes while efficiently limiting false-positive switching from a baseline state. Such switches exhibit nonlinear signal-activation relationships. In contrast, a linear no-threshold (LNT) dose-response relationship is expected for damage that accumulates in proportion to dose, as hypothesized for increased risk of cancer in relation to genotoxic dose according to the multistage somatic mutation/clonal-expansion theory of cancer, e.g., as represented in the Moolgavkar-Venzon-Knudsen (MVK) cancer model by a doubly stochastic nonhomogeneous Poisson process. Mesothelioma and lung cancer induced by exposure to carcinogenic (e.g., certain asbestos) fibers in humans and experimental animals are thought to involve modes of action driven by mutations, cytotoxicity-associated inflammation, or both, rendering ambiguous expectations concerning the nature of model-implied shape of the low-dose response for above-background increase in risk of incurring these endpoints. A recent Inflammation Somatic Mutation (ISM) theory of cancer posits instead that tissue-damage-associated inflammation that epigenetically recruits, activates and orchestrates stem cells to engage in tissue repair does not merely promote cancer, but rather is a requisite co-initiator (acting together with as few as two somatic mutations) of the most efficient pathway to any type of cancer in any reparable tissue (Dose-Response 2019; 17(2):1-12). This theory is reviewed, implications of this theory are discussed in relation to mesothelioma and lung cancer associated with chronic asbestos inhalation, one of the two types of ISM-required mutations is here hypothesized to block or impede inflammation resolution (e.g., by doing so for GPCR-mediated signal transduction by one or more endogenous autacoid specialized pro-resolving mediators or SPMs), and supporting evidence for this hypothesis is discussed.


Asunto(s)
Amianto , Carcinógenos Ambientales , Neoplasias Pulmonares , Mesotelioma , Animales , Humanos , Amianto/toxicidad , Mesotelioma/inducido químicamente , Mesotelioma/genética , Inflamación/inducido químicamente , Inflamación/metabolismo , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Carcinógenos Ambientales/toxicidad , Mutación
10.
Artículo en Inglés | MEDLINE | ID: mdl-36673690

RESUMEN

Asbestos (all forms, including chrysotile, crocidolite, amosite, tremolite, actinolite, and anthophyllite) is carcinogenic to humans and causally associated with mesothelioma and cancer of the lung, larynx, and ovary. It is one of the carcinogens most diffuse in the world, in workplaces, but also in the environment and is responsible for a very high global cancer burden. A large number of countries, mostly with high-income economies, has banned the use of asbestos which, however, is still widespread in low- and middle-income countries. It remains, thus, one of the most common occupational and environmental carcinogens worldwide. Italy issued an asbestos ban in 1992, following the dramatic observation of a large increase in mortality from mesothelioma and other asbestos-related diseases in exposed workers and also in subjects with non-occupational exposure. A mesothelioma registry was also organized and still monitors the occurrence of mesothelioma cases, conducting a case-by-case evaluation of asbestos exposure. In this report, we describe two Italian communities, Casale Monferrato and Broni, that faced an epidemic of mesothelioma resulting from the production of asbestos cement and the diffuse environmental exposure; we present the activity and results of the Italian mesothelioma registry (ReNaM), describe the risk-communication activities at the local and national level with a focus on international cooperation and also describe the interaction between mesothelioma registration and medical services specialized in mesothelioma diagnosis and treatment in an area at high risk of mesothelioma. Finally, we assess the potential application of the solutions and methods already developed in Italy in a city in Colombia with high mesothelioma incidence associated with the production of asbestos-cement materials and the presence of diffuse environmental asbestos pollution.


Asunto(s)
Amianto , Carcinógenos Ambientales , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Femenino , Humanos , Neoplasias Pulmonares/epidemiología , Amianto/toxicidad , Mesotelioma/epidemiología , Mesotelioma/etiología , Sistema de Registros , Italia/epidemiología
11.
Artículo en Inglés | MEDLINE | ID: mdl-36673796

RESUMEN

Cancer is one of the longest-known human diseases, yet only in recent times have we begun to perceive that the percentage of neoplasms caused by environmental factors, lifestyle and chemicals, is likely underestimated. The first medical reports associating cancer with pollutants like tars appeared by the early 20th century, but despite initial evidence relating oncogenesis and chromosomal alterations, only after the structure of DNA had been elucidated in the 1950s have genetic disorders been fully perceived as cause. This led to a growing interest in genotoxic and mutagenic pollutants. Even though we are now familiar with a range of environmental carcinogens spanning between aromatic hydrocarbons and asbestos to radionuclides and forms of carbon nanomaterials, establishing causal networks between pollutants and cancer remains cumbersome. In most part, this is due to the complexity of toxicant matrices, unknown modes-of-action of chemicals or their mixtures, the widening array of novel pollutants plus difficulties in subtracting background effects from true aetiology of disease. Recent advances in analytical chemistry, high-throughput toxicology, next-generation sequencing, computational biology and databases that allocate whole normal and cancer genomes, all indicate that we are on the verge of a new age of research into mechanistic 'oncotoxicology', but how can it impact risk assessment and prevention?


Asunto(s)
Carcinógenos Ambientales , Contaminantes Ambientales , Neoplasias , Humanos , Carcinógenos/toxicidad , Mutágenos/toxicidad , Neoplasias/inducido químicamente , Neoplasias/genética , Contaminantes Ambientales/toxicidad , Carcinógenos Ambientales/toxicidad , Causalidad
12.
J Mol Evol ; 91(2): 133-155, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36693985

RESUMEN

Cancer, a disease due to uncontrolled cell proliferation is as ancient as multicellular organisms. A 255-million-years-old fossilized forerunner mammal gorgonopsian is probably the oldest evidence of cancer, to date. Cancer seems to have evolved by adapting to the microenvironment occupied by immune sentinel, modulating the cellular behavior from cytotoxic to regulatory, acquiring resistance to chemotherapy and surviving hypoxia. The interaction of genes with environmental carcinogens is central to cancer onset, seen as a spectrum of cancer susceptibility among human population. Cancer occurs in life forms other than human also, although their exposure to environmental carcinogens can be different. Role of genetic etiology in cancer in multiple species can be interesting with regard to not only cancer susceptibility, but also genetic conservation and adaptation in speciation. The widely used model organisms for cancer research are mouse and rat which are short-lived and reproduce rapidly. Research in these cancer prone animal models has been valuable as these have led to cancer therapy. However, another rewarding area of cancer research can be the cancer-resistant animal species. The Peto's paradox and G-value paradox are evident when natural cancer resistance is observed in large mammals, like elephant and whale, small rodents viz. Naked Mole Rat and Blind Mole Rat, and Bat. The cancer resistance remains to be explored in other small or large and long-living animals like giraffe, camel, rhinoceros, water buffalo, Indian bison, Shire horse, polar bear, manatee, elephant seal, walrus, hippopotamus, turtle and tortoise, sloth, and squirrel. Indeed, understanding the molecular mechanisms of avoiding neoplastic transformation across various life forms can be potentially having translational value for human cancer management. Adapted and Modified from (Hanahan and Weinberg 2011).


Asunto(s)
Carcinógenos Ambientales , Neoplasias , Humanos , Caballos , Animales , Ratones , Neoplasias/genética , Inmunidad Innata , Ratas Topo , Mamíferos , Microambiente Tumoral
13.
J Hazard Mater ; 441: 129826, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084456

RESUMEN

Metastasis includes tumor invasion and migration and underlies over 90% of cancer mortality. The metastatic effects of environmental carcinogens raised serious health concerns. However, the underlying mechanisms remained poorly studied. In the present study, an in vivo RasV12/lgl-/- model of the fruitfly, Drosophila melanogaster, with an 8-day exposure was employed to explore the metastatic effects of 3,3',4,4',5-pentachlorobiphenyl (PCB126), perfluorooctanoic acid (PFOA) and cadmium chloride (CdCl2). At 1.0 mg/L, PCB126, PFOA, and CdCl2 significantly increased tumor invasion rates by 1.32-, 1.33-, and 1.29-fold of the control, respectively. They also decreased the larval body weight and locomotion behavior. Moreover, they commonly disturbed the expression levels of target genes in MAPK and UPR pathways, and their metastatic effects were significantly abolished by the addition of p38 inhibitor (SB203580), JNK inhibitor (SP600125) and IRE1 inhibitor (KIRA6). Notably, the addition of the IRE inhibitor significantly influenced sna/E-cad pathway which is essential in both p38 and JNK regulations. The results demonstrated an essential role of sna/E-cad in connecting the effects of carcinogens on UPR and MAPK regulations and the resultant metastasis.


Asunto(s)
Carcinógenos Ambientales , Neoplasias , Animales , Cloruro de Cadmio , Caprilatos , Drosophila , Drosophila melanogaster , Fluorocarburos , Proteínas Serina-Treonina Quinasas , Transducción de Señal
14.
Ecotoxicol Environ Saf ; 244: 114071, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113270

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is an environment-relevant malignancy with a high mortality. Nitrosamines, a class of nitrogen-containing environmental carcinogens, are widely suggested as a risk factor for ESCC. However, how nitrosamines affect metabolic regulation to promote ESCC tumorigenesis is largely unknown. In this study, the transition trajectory of serum metabolism in the course of ESCC induced by N-nitrosomethylbenzylamine (NMBA) in rats was depicted by an untargeted metabolomic analysis, and the potential molecular mechanisms were revealed. The results showed that the metabolic alteration in rats was slight at the basal cell hyperplasia (BCH) stage, while it became apparent when the esophageal lesion developed into dysplasia (DYS) or more serious conditions. Moreover, serum metabolism of severe dysplasia (S-DYS) showed more similar characteristics to that of carcinoma in situ (CIS) and invasive cancer (IC). Aberrant nicotinate (NA) and nicotinamide (NAM) metabolism, tryptophan (TRP) metabolism, and sphingolipid metabolism could be the key players favoring the malignant transformation of esophageal epithelium induced by NMBA. More particularly, NA and NAM metabolism in the precancerous stages and TRP metabolism in the cancerous stages were demonstrated to replenish NAD+ in different patterns. Furthermore, both the IDO1-KYN-AHR axis mediated by TRP metabolism and the SPHK1-S1P-S1PR1 axis by sphingolipid metabolism provided an impetus to create the pro-inflammatory yet immune-suppressive microenvironment to facilitate the esophageal tumorigenesis and progression. Together, these suggested that NMBA exerted its carcinogenicity via more than one pathway, which may act together to produce combination effects. Targeting these pathways may open up the possibility to attenuate NMBA-induced esophageal carcinogenesis. However, the interconnection between different metabolic pathways needs to be specified further. And the integrative and multi-level systematic research will be conducive to fully understanding the mechanisms of NMBA-induced ESCC.


Asunto(s)
Carcinógenos Ambientales , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Niacina , Nitrosaminas , Animales , Carcinógenos/toxicidad , Transformación Celular Neoplásica , Dimetilnitrosamina/análogos & derivados , Neoplasias Esofágicas/inducido químicamente , Carcinoma de Células Escamosas de Esófago/inducido químicamente , Metaboloma , NAD , Niacina/toxicidad , Niacinamida/toxicidad , Nitrógeno/toxicidad , Nitrosaminas/toxicidad , Ratas , Esfingolípidos , Triptófano/toxicidad , Microambiente Tumoral
15.
Toxicol Appl Pharmacol ; 454: 116244, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36116561

RESUMEN

Stress contributes to the development of many human diseases, including cancer. Based on the source of stress, it can be divided into external stress, such as environmental carcinogens, chemicals, and radiation, and internal stress, like endoplasmic reticulum (ER) stress, hypoxia, and oxidative stress. Nuclear Protein 1 (NUPR1, p8 or Com-1) is a small, highly basic transcriptional regulator that participates in regulating a variety of cellular processes including DNA repair, ER stress, oxidative stress response, cell cycle, autophagy, apoptosis, ferroptosis and chromatin remodeling. A large number of studies have reported that NUPR1 expression can be stimulated rapidly in response to various stresses. Thus, NUPR1 is also known as a stress-response gene. Since the role of NUPR1 in breast cancer was identified in 1999, an increasing number of studies sought to reveal its function in cancer. High expression of NUPR1 has been identified in oral squamous cell carcinoma, breast cancer, lung cancer, multiple myeloma, liver cancer and renal cancer. In this review, we summarize current studies of NUPR1 in response to multiple external stressors and internal stressors, and its role in mediating stressors to cause different cell signaling responses. In addition, this review discusses the function of NUPR1 in carcinogenesis, tumorigenesis, metastasis, and cancer therapy. Thus, this review gives a comprehensive insight into the role of NUPR1 in mediating signals from stress to different cell responses, and this process plays a role in the development of cancer.


Asunto(s)
Neoplasias de la Mama , Carcinógenos Ambientales , Carcinoma de Células Escamosas , Neoplasias de la Boca , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias de la Mama/genética , Femenino , Humanos , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares
16.
Toxicol Appl Pharmacol ; 454: 116246, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36116563

RESUMEN

Myricetin is a flavonoid widely-distributed in foods with many beneficial health effects, which has been marketed in health products. Formaldehyde is an environmental carcinogen which can enhance the Warburg effect through the induction of human hypoxia-inducible factor 1 subunit alpha (HIF-1α), the primary regulator of cellular glycolysis. HIF-1α was verified as an important target in lung and ovarian tumors, which was also identified as a receptor for myricetin via molecular docking. The reinforced HIF-1α signaling, the Warburg effect and T cell suppression induced by 50 µM formaldehyde in both A549 and Caov-3 cells were dose-dependently attenuated by myricetin from 20 to 100 µM, and the attenuative effects were diminished by the stabilization of HIF-1α with deferoxamine. Exposure to 2.0 mg/m3 formaldehyde also stimulated tumor growth and elevated HIF-1α expression in tumor tissues of A549 xenograft mice, which were also alleviated by oral administration of 100 mg/kg myricetin. These results demonstrated that myricetin alleviated formaldehyde-enhanced Warburg effect in tumor cells through HIF-1α inhibition, which could be further developed as a therapeutic or complementary agent for formaldehyde-induced carcinogenesis.


Asunto(s)
Carcinógenos Ambientales , Animales , Línea Celular Tumoral , Deferoxamina , Flavonoides/farmacología , Flavonoides/uso terapéutico , Formaldehído/toxicidad , Humanos , Factor 1 Inducible por Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia , Ratones , Simulación del Acoplamiento Molecular
17.
BMC Pulm Med ; 22(1): 318, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35986275

RESUMEN

BACKGROUND: The risk of developing lung cancer is increased in smokers, patients with chronic obstructive pulmonary disease, individuals exposed to environmental carcinogens, and those with a history of lung cancer. Automobile exhaust fumes containing carcinogens are a risk factor for lung cancer. However, we go through life unaware of the fact that automobile exhaust is the cause of cancer. Especially, in lung cancer patient, it is important to search out pre-existing risk factors and advice to avoid them, and monitor carefully for recurrence after treatment. CASE PRESENTATION: This is the first report of a case with triple lung cancers with different histologic types at different sites, observed in a 76-year-old parking attendant. The first adenocarcinoma and the second squamous cell carcinoma were treated with stereotactic radiosurgery because the patient did not want to undergo surgery. Although the patient stopped intermittent smoking after the diagnosis, he continued working as a parking attendant in the parking lot. After 29 months from the first treatment, the patient developed a third new small cell lung cancer; he was being treated with chemoradiation. CONCLUSIONS: New mass after treatment of lung cancer might be a multiple primary lung cancer rather than metastasis. Thus, precision evaluation is important. This paper highlights the risk factors for lung cancer that are easily overlooked but should not be dismissed, and the necessity of discussion with patients for the surveillance after lung cancer treatment. We should look over carefully the environmental carcinogens already exposed, and counsel to avoid pre-existing lung cancer risk factors at work or residence in patients with lung cancer.


Asunto(s)
Adenocarcinoma , Carcinógenos Ambientales , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Adenocarcinoma/patología , Anciano , Carcinoma de Células Escamosas/patología , Humanos , Neoplasias Pulmonares/patología , Masculino , Emisiones de Vehículos
18.
Artículo en Inglés | MEDLINE | ID: mdl-35742488

RESUMEN

The Human Biomonitoring (HBM) Commission at the German Environment Agency holds the opinion that for environmental carcinogens for which no exposure levels can be assumed and are harmless to health, health-based guidance values corresponding to the classical definition of the HBM-I or HBM-II value cannot be established. Therefore, only reference values have been derived so far for genotoxic carcinogens from exposure data of the general population or subpopulations. The concept presented here opens up the possibility of performing health risk assessments of carcinogenic substances in human biomonitoring, and thus goes decisively beyond the purely descriptive statistical reference value concept. Using the presented method, quantitative dose descriptors of internal exposure can be derived from those of external exposure, provided that sufficient toxicokinetic information is available. Dose descriptors of internal exposure then allow the simple estimate of additional lifetime cancer risks for measured biomarker concentrations or, conversely, of equivalent concentrations for selected risks, such as those considered as tolerable for the general population. HBM data of chronic exposures to genotoxic carcinogens can thus be used to assess the additional lifetime cancer risk referring to the general population and to justify and prioritize risk management measures.


Asunto(s)
Carcinógenos Ambientales , Contaminantes Ambientales , Monitoreo Biológico , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/toxicidad , Humanos , Valores de Referencia , Medición de Riesgo/métodos
19.
Ecotoxicol Environ Saf ; 241: 113724, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660381

RESUMEN

Hexavalent chromium [Cr(VI)], one common environmental contaminant, has long been recognized as a carcinogen associated with several malignancies, such as lung cancer, but little information was available about the effects of its low-dose environmental exposure in prostate cancer. Our previous study has shown that low-dose Cr(VI) exposure could promote prostate cancer(PCa) cell growth in vitro and in vivo. In the present study, we furthermore found that low-dose Cr(VI) exposure could induce DNA demethylation in PCa cells. Based on our transcriptome sequencing data and DNA methylation database, we further identified MAGEB2 as a potential effector target that contributed to tumor-promoting effect of low-dose Cr(VI) exposure in PCa. In addition, we demonstrated that MAGEB2 was upregulated in PCa and its knockdown restrained PCa cell proliferation and tumor growth in vitro and in vivo. Moreover, Co-IP and point mutation experiments confirmed that MAGEB2 could bind to the NH2-terminal NTD domain of AR through the F-box in the MAGE homology domain, and then activated AR through up-regulating its downstream targets PSA and NX3.1. Together, low-dose Cr(VI) exposure can induce DNA demethylation in prostate cancer cells, and promote cell proliferation via activating MAGEB2-AR signaling pathway. Thus, inhibition of MAGEB2-AR signaling is a novel and promising strategy to reverse low-dose Cr(VI) exposure-induced prostate tumor progression, also as effective adjuvant therapy for AR signaling-dependent PCa.


Asunto(s)
Antígenos de Neoplasias , Carcinógenos Ambientales , Proteínas de Neoplasias , Neoplasias de la Próstata , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Carcinógenos Ambientales/toxicidad , Proliferación Celular/efectos de los fármacos , Cromo/toxicidad , Humanos , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Mutat Res Rev Mutat Res ; 789: 108408, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35690411

RESUMEN

Epigenetic alterations, such as changes in DNA methylation, histones/chromatin structure, nucleosome positioning, and expression of non-coding RNAs, are recognized among key characteristics of carcinogens; they may occur independently or concomitantly with genotoxic effects. While data on genotoxicity are collected through standardized guideline tests, data collected on epigenetic effects is far less uniform. In 2016, we conducted a systematic review of published studies of genotoxic carcinogens that reported epigenetic endpoints to better understand the evidence for epigenetic alterations of human carcinogens, and the potential association with genotoxic endpoints. Since then, the number of studies of epigenetic effects of chemicals has nearly doubled. This review stands as an update on epigenetic alterations induced by occupational and environmental human carcinogens that were previously and recently classified as Group 1 by the International Agency for Research on Cancer. We found that the evidence of epigenetic effects remains uneven across agents. Studies of DNA methylation are most abundant, while reports concerning effects on non-coding RNA have increased over the past 5 years. By contrast, mechanistic toxicology studies of histone modifications and chromatin state alterations remain few. We found that most publications of epigenetic effects of carcinogens were studies in exposed humans or human cells. Studies in rodents represent the second most common species used for epigenetic studies in toxicology, in vivo exposures being the most predominant. Future studies should incorporate dose- and time-dependent study designs and also investigate the persistence of effects following cessation of exposure, considering the dynamic nature of most epigenetic alterations.


Asunto(s)
Carcinógenos Ambientales , Epigenómica , Carcinógenos/toxicidad , Cromatina , Daño del ADN , Epigénesis Genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...