Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 596
Filtrar
1.
Georgian Med News ; (347): 34-37, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38609110

RESUMEN

Onco-pharmacogenesis or pharmaco-oncogenesis of skin cancer is a concept , which could also be considered as an "end product" of drug-mediated Nitrosogenesis or of the permissive regime for carcinogens to be (un)controlled released in drugs. Their controlled distribution remains until 2025 as a forced and non-alternative and there is no indication of any possibility to introduce a full elimination regime against the already mentioned carcinogenic availability. There are three main worrying facts that determine the need for these elimination regimes: 1) the clinicopathological correlations concerning the intake of a heterogeneous class of drugs and the subsequent development of relatively homogeneous tumours/ such as melanoma, 2) the recently proven mutagenic/ carcinogenic action of certain nitrosamines, but this time directly on human DNA, and 3) the fact that some of the nitrosamines are potent photocarcinogens that exert their genotoxic effects only after irradiation with UVA/ also recently proven/. In addition to the rhetoric mentioned above, there is also an overlap in mutational patterns between the genes previously generally accepted to affect melanomas - p53 / RAS oncogenes , with those identified as target genes, but being affected "mutationally", by certain nitrosamines. The processes of photocarcinogenesis, nitrosogenesis and oncopharmacogenesis of skin cancer are inextricably linked and should not be considered and analysed unilaterally or in a semi-invasive manner. Cataloguing the type of nitrosamines and their precise concentration on drug leaflets and prescription/official websites with permanent access to clinicians and end-users remains the only safe and effective weapon in the fight against (un)controlled contamination. The pharmaceutical industry and regulators remain the creators, the 'parents' of onco-pharmacogenesis, nitrosogenesis, and therefore the processes involved in the generation and progression of skin cancer. The impossibility of establishing elimination regimes for certain mutagens and/or carcinogens already proven to be present in medicines remains a mystery. In practice, end consumers find themselves in a state of enforced tolerance of certain genotoxic substances that are not even declared as available. Clinicians in the face of dermatologists/ dermatological surgeons remain the analysers and identifiers of these globalization processes. Once again, we present a patient who took the antiarrhythmic (nitroso-) drug propafenone and developed a relatively short-term nodular melanoma with a subsequent fatal outcome. We comment on the role of drug-mediated nitrosogenesis and its relationship to photocarcinogenesis and onco-pharmacogenesis.


Asunto(s)
Melanoma , Nitrosaminas , Neoplasias Cutáneas , Humanos , Melanoma/tratamiento farmacológico , Melanoma/etiología , Propafenona , Carcinogénesis/inducido químicamente , Transformación Celular Neoplásica , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/tratamiento farmacológico , Carcinógenos
2.
Georgian Med News ; (347): 136-141, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38609130

RESUMEN

Oncopharmacogenesis and Drug-Induced Skin cancer related Nitrosogenesis are newly introduced concepts in the medical literature that owe their genesis or presence to the carcinogens/ mutagens, also known as nitrosamines/NDSRIs, which are present in a heterogeneous class of drugs. The contribution to the origin of these 2 concepts is entirely due to 1) the functions and efficacy of FDA in terms of control and identification of these carcinogens, and 2) the establishment of clinicopathological correlations by the dermatologists, occurring during drug intake. According to recent FDA data, the concentration of NDMA in just one metformin tablet could be up to more than 5-fold increased. The intake of 3 to 6 tablets per day should result in a carcinogen intake that is 15 to 30 times elevated within the day and within the monomedication alone. It is these circumstances that paraphrase/ ˝betonate˝ concepts such as Onco-Pharmacogenesis and Drug-mediated Nitrosogenesis of skin cancer. Although not officially declared, these mutagens are present and have been in forced tolerance mode for the last 30-40 years. And after their intake, multiple cancers have been found to develop. The concomitant use of other nitrosamine-contaminated drugs such as losartan/hydrochlorothiazide, metoprolol and nefidipine should certainly not be surprising when it could also be associated with the development of exactly 16 keratinocytic tumours as in the case presented by us. Recent evidence in medical literature has linked the nitrosamine N-nitrosomorpholine (NMOR) with the direct development of its subsequent mutagenic action in rodents following irradiation with UVA. This fact leaves open the question of the potentially available photocarcinogenic action of the other nitrosamines in humans found in medicinal preparations. This is what necessitates a clarification of the concept of Photo-Nitroso-Carcinogenesis/ Oncogenesis in humans and its relationship to skin cancer. The overlap of the mutational patterns of some of the nitrosamine-induced mutations in target genes such as p53 and RAS oncogenes, with those of UV light-induced mutations - or practically the same ones mentioned above, suggest a possible significant role of the Drug-Induced Photo-Nitroso-Carcinogenesis of keratinocyte cancer in the context of Onco-Pharmacogenesis. Future analyses should focus on elucidating the photocarcinogenic effect of nitrosamines in drug preparations and differentiating Skin cancer Nitrosogenesis from ˝pure˝ Photo-Carcinogenesis and Nitroso-Photo-Carcinogenesis. The localization of the tumors in the area of the UV-exposed sites within the potential/actual contamination of the 4 preparations (simultaneously) in the described patient are indicative of a possible pathogenetic influence in the context of the already mentioned Nitroso-(Photo)carcinogenesis. Polycontamination of polymedication remains a so far unresolvable problem.


Asunto(s)
Nitrosaminas , Neoplasias Cutáneas , Humanos , Metoprolol , Nifedipino/efectos adversos , Losartán , Dermatólogos , Queratinocitos , Neoplasias Cutáneas/inducido químicamente , Carcinogénesis/inducido químicamente , Carcinógenos/toxicidad , Hidroclorotiazida/efectos adversos , Nitrosaminas/toxicidad , Mutágenos
3.
Toxicol Appl Pharmacol ; 486: 116935, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38648938

RESUMEN

Metal exposure is linked to numerous pathological outcomes including cancer, cardiovascular disease, and diabetes. Over the past decades, we have made significant progress in our understanding of how metals are linked to disease, but there is still much to learn. In October 2022, experts studying the consequences of metal exposures met in Montréal, Québec, to discuss recent advances and knowledge gaps for future research. Here, we present a summary of presentations and discussions had at the meeting.


Asunto(s)
Metales , Neoplasias , Humanos , Neoplasias/inducido químicamente , Animales , Metales/toxicidad , Carcinogénesis/inducido químicamente , Carcinogénesis/efectos de los fármacos
4.
Ecotoxicol Environ Saf ; 277: 116372, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38669875

RESUMEN

Environmental pollution, including air pollution, plastic contamination, and heavy metal exposure, is a pressing global issue. This crisis contributes significantly to pollution-related diseases and is a critical risk factor for chronic health conditions, including cancer. Mounting evidence underscores the pivotal role of N6-methyladenosine (m6A) as a crucial regulatory mechanism in pathological processes and cancer progression. Governed by m6A writers, erasers, and readers, m6A orchestrates alterations in target gene expression, consequently playing a vital role in a spectrum of RNA processes, covering mRNA processing, translation, degradation, splicing, nuclear export, and folding. Thus, there is a growing need to pinpoint specific m6A-regulated targets in environmental pollutant-induced carcinogenesis, an emerging area of research in cancer prevention. This review consolidates the understanding of m6A modification in environmental pollutant-induced tumorigenesis, explicitly examining its implications in lung, skin, and bladder cancer. We also investigate the biological mechanisms that underlie carcinogenesis originating from pollution. Specific m6A methylation pathways, such as the HIF1A/METTL3/IGF2BP3/BIRC5 network, METTL3/YTHDF1-mediated m6A modification of IL 24, METTL3/YTHDF2 dynamically catalyzed m6A modification of AKT1, METTL3-mediated m6A-modified oxidative stress, METTL16-mediated m6A modification, site-specific ATG13 methylation-mediated autophagy, and the role of m6A in up-regulating ribosome biogenesis, all come into play in this intricate process. Furthermore, we discuss the direction regarding the interplay between pollutants and RNA metabolism, particularly in immune response, providing new information on RNA modifications for future exploration.


Asunto(s)
Adenosina , Carcinogénesis , Contaminantes Ambientales , Adenosina/análogos & derivados , Carcinogénesis/inducido químicamente , Contaminantes Ambientales/toxicidad , Humanos , Metilación , Animales , ARN/genética , Metilación de ARN
5.
Environ Pollut ; 347: 123586, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38467368

RESUMEN

Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.


Asunto(s)
Arsénico , Neoplasias , Humanos , Arsénico/toxicidad , Factores de Transcripción/metabolismo , Epigénesis Genética , Carcinogénesis/inducido químicamente
6.
J Craniomaxillofac Surg ; 52(4): 413-419, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443188

RESUMEN

The aim of the study was to investigate the expression of EGFR and HER-2 oncogenes using an experimental two stage chemically induced carcinogenesis protocol on the dorsal skin in FVB/N mice. Forty female FVB/N mice 4 weeks old, were grouped into one control (n = 8) and two experimental groups (Group A: n = 16, Group B: n = 16) following a randomization process. Two-stage carcinogenesis protocol, was implicated, including an initial treatment with 97.4 nmol DMBA on their shaved dorsal skin and subsequent treatments of 32.4 nmol TPA applications after 13 weeks for Group A and after 20 weeks for Group B. The control group C, received no treatment. Skin was examined weekly for tumor development. Post-experiment, animals were euthanized for tissue analysis. The histological status of the skin lesions in the experimental groups corresponded well with tumour advancement (from dysplasia to poorly-differentiated carcinoma). Tumour sections were evaluated histologically and immunohistochemically. EGFR expression was found significantly higher in precancerous and malignant tumours (p = 042 and p = 008 respectively), while tended to be higher in benign tumours (p = 079), compared to normal histology. Moreover, mean percentage of EGFR positive expression in malignant tumours was significantly higher than in benign tumours (p < 001). HER-2 expression was found significantly higher in precancerous and malignant tumours (p = 042 and p = 015 respectively), while tended to be higher in benign tumours (p = 085), compared to normal histology. Furthermore, mean percentage of HER-2 positive expression in malignant tumours was significantly higher than in benign tumours (p = 005). The study demonstrated that in FVB/N mice subjected to a two-stage chemically induced carcinogenesis protocol, there was a significant increase in the expression of EGFR and HER-2 oncogenes in precancerous and malignant skin lesions compared to normal tissue. This suggests a potentially early role of these oncogenes in the progression of skin tumours in this model.


Asunto(s)
Lesiones Precancerosas , Neoplasias Cutáneas , Ratones , Animales , Femenino , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Oncogenes , Modelos Teóricos , Receptores ErbB/genética
7.
Carcinogenesis ; 45(5): 288-299, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466106

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental carcinogens accountable to developing skin cancers. Recently, we reported that exposure to benzo[a]pyrene (B[a]P), a common PAH, causes epigenetic and metabolic alterations in the initiation, promotion and progression of non-melanoma skin cancer (NMSC). As a follow-up investigation, this study examines how dietary triterpenoid ursolic acid (UA) regulates B[a]P-driven epigenetic and metabolic pathways in SKH-1 hairless mice. Our results show UA intercepts against B[a]P-induced tumorigenesis at different stages of NMSC. Epigenomic cytosines followed by guanine residues (CpG) methyl-seq data showed UA diminished B[a]P-mediated differentially methylated regions (DMRs) profiles. Transcriptomic RNA-seq revealed UA revoked B[a]P-induced differentially expressed genes (DEGs) of skin cancer-related genes, such as leucine-rich repeat LGI family member 2 (Lgi2) and kallikrein-related peptidase 13 (Klk13), indicating UA plays a vital role in B[a]P-mediated gene regulation and its potential consequences in NMSC interception. Association analysis of DEGs and DMRs found that the mRNA expression of KLK13 gene was correlated with the promoter CpG methylation status in the early-stage comparison group, indicating UA could regulate the KLK13 by modulating its promoter methylation at an early stage of NMSC. The metabolomic study showed UA alters B[a]P-regulated cancer-associated metabolisms like thiamin metabolism, ascorbate and aldarate metabolism during the initiation phase; pyruvate, citrate and thiamin metabolism during the promotion phase; and beta-alanine and pathothenate coenzyme A (CoA) biosynthesis during the late progression phase. Taken together, UA reverses B[a]P-driven epigenetic, transcriptomic and metabolic reprogramming, potentially contributing to the overall cancer interception against B[a]P-mediated NMSC.


Asunto(s)
Benzo(a)pireno , Metilación de ADN , Epigénesis Genética , Ratones Pelados , Neoplasias Cutáneas , Triterpenos , Ácido Ursólico , Animales , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/metabolismo , Benzo(a)pireno/toxicidad , Triterpenos/farmacología , Ratones , Epigénesis Genética/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Carcinógenos Ambientales/toxicidad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/inducido químicamente
8.
Toxicol Appl Pharmacol ; 485: 116889, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479592

RESUMEN

Hexavalent chromium [Cr(VI)] is considered a major environmental health concern and lung carcinogen. However, the exact mechanism by which Cr(VI) causes lung cancer in humans remains unclear. Since several reports have demonstrated a role for inflammation in Cr(VI) toxicity, the present study aimed to apply transcriptomics to examine the global mRNA expression in human lung fibroblasts after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 µg/cm2 zinc chromate, with a particular emphasis on inflammatory pathways. The results showed Cr(VI) affected the expression of multiple genes and these effects varied according to Cr(VI) concentration and exposure time. Bioinformatic analysis of RNA-Seq data based on the Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaCore databases revealed multiple inflammatory pathways were affected by Cr(VI) treatment. qRT-PCR data corroborated RNA-Seq findings. This study showed for the first time that Cr(VI) regulates key inflammatory pathways in human lung fibroblasts, providing novel insights into the mechanisms by which Cr(VI) causes lung cancer.


Asunto(s)
Cromo , Fibroblastos , Pulmón , Transcriptoma , Humanos , Cromo/toxicidad , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/metabolismo , Cromatos/toxicidad , Compuestos de Zinc/farmacología , Compuestos de Zinc/toxicidad , Línea Celular , Carcinogénesis/efectos de los fármacos , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Transducción de Señal/efectos de los fármacos
9.
Environ Pollut ; 347: 123565, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38373625

RESUMEN

Arsenic is a well-known human carcinogen whose environmental exposure via drinking water, food, and air impacts millions of people across the globe. Various mechanisms of arsenic carcinogenesis have been identified, ranging from damage caused by excessive production of free radicals and epigenetic alterations to the generation of cancer stem cells. A growing body of evidence supports the critical involvement of the endoplasmic stress-activated unfolded protein response (UPR) in promoting as well as suppressing cancer development/progression. Various in vitro and in vivo models have also demonstrated that arsenic induces the UPR via activation of the PERK, IRE1α, and ATF6 proteins. In this review, we discuss the mechanisms of arsenic-induced endoplasmic reticulum stress and the role of each UPR pathway in the various cancer types with a focus on the epigenetic regulation and function of the ATF6 protein. The importance of UPR in arsenic carcinogenesis and cancer stem cells is a relatively new area of research that requires additional investigations via various omics-based and computational tools. These approaches will provide interesting insights into the mechanisms of arsenic-induced cancers for prospective target identification and development of novel anti-cancer therapies.


Asunto(s)
Arsénico , Neoplasias , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Epigénesis Genética , Estrés del Retículo Endoplásmico , Carcinogénesis/inducido químicamente
10.
Nanotoxicology ; 18(1): 69-86, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38420937

RESUMEN

In the lung, carcinogenesis is a multi-stage process that includes initiation by a genotoxic agent, promotion that expands the population of cells with damaged DNA to form a tumor, and progression from benign to malignant neoplasms. We have previously shown that Mitsui-7, a long and rigid multi-walled carbon nanotube (MWCNT), promotes pulmonary carcinogenesis in a mouse model. To investigate the potential exposure threshold and dose-response for tumor promotion by this MWCNT, 3-methylcholanthrene (MC) initiated (10 µg/g, i.p., once) or vehicle (corn oil) treated B6C3F1 mice were exposed by inhalation to filtered air or MWCNT (5 mg/m3) for 5 h/day for 0, 2, 5, or 10 days and were followed for 17 months post-exposure for evidence of lung tumors. Pulmonary neoplasia incidence in MC-initiated mice significantly increased with each MWCNT exposure duration. Exposure to either MC or MWCNT alone did not affect pulmonary neoplasia incidence compared with vehicle controls. Lung tumor multiplicity in MC-initiated mice also significantly increased with each MWCNT exposure duration. Thus, a significantly higher lung tumor multiplicity was observed after a 10-day MWCNT exposure than following a 2-day exposure. Both bronchioloalveolar adenoma and bronchioloalveolar adenocarcinoma multiplicity in MC-initiated mice were significantly increased following 5- and 10-day MWCNT exposure, while a 2-day MWCNT exposure in MC-initiated mice significantly increased the multiplicity of adenomas but not adenocarcinomas. In this study, even the lowest MWCNT exposure promoted lung tumors in MC-initiated mice. Our findings indicate that exposure to this MWCNT strongly promotes pulmonary carcinogenesis.


Asunto(s)
Neoplasias Pulmonares , Pulmón , Ratones , Animales , Pulmón/patología , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/patología , Ratones Endogámicos , Transformación Celular Neoplásica , Carcinogénesis/inducido químicamente , Carcinogénesis/patología , Exposición por Inhalación , Ratones Endogámicos C57BL
11.
Toxicol Sci ; 198(2): 221-232, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38310363

RESUMEN

Increasing environmental genotoxic chemicals have been shown to induce epigenetic alterations. However, the interaction between genetics and epigenetics in chemical carcinogenesis is still not fully understood. Here, we constructed an in vitro human lung carcinogenesis model (16HBE-T) by treating human bronchial epithelial cells with a typical significant carcinogen benzo(a)pyrene (BaP). We identified a novel circular RNA, circ0087385, which was overexpressed in 16HBE-T and human lung cancer cell lines, as well as in lung cancer tissues and serum exosomes from lung cancer patients. The upregulated circ0087385 after exposure to BaP promoted DNA damage in the early stage of chemical carcinogenesis and affected the cell cycle, proliferation, and apoptosis of the malignantly transformed cells. Overexpression of circ0087385 enhanced the expression of cytochrome P450 1A1 (CYP1A1), which is crucial for metabolically activating BaP. Interfering with circ0087385 or CYP1A1 reduced the levels of ultimate carcinogen benzo(a)pyrene diol epoxide (BPDE) and BPDE-DNA adducts. Interfering with CYP1A1 partially reversed the DNA damage induced by high expression of circ0087385, as well as decreased the level of BPDE and BPDE-DNA adducts. These findings provide novel insights into the interaction between epigenetics and genetics in chemical carcinogenesis which are crucial for understanding the epigenetic and genetic toxicity of chemicals.


Asunto(s)
Citocromo P-450 CYP1A1 , Neoplasias Pulmonares , Humanos , Citocromo P-450 CYP1A1/metabolismo , Aductos de ADN , 7,8-Dihidro-7,8-dihidroxibenzo(a)pireno 9,10-óxido/toxicidad , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Benzo(a)pireno/toxicidad , Daño del ADN , Carcinógenos/toxicidad , Carcinogénesis/inducido químicamente , Carcinogénesis/genética
12.
Methods Mol Biol ; 2769: 15-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315386

RESUMEN

Diethylnitrosamine (DEN) is a chemical hepatocarcinogenic agent that triggers a large array of oncogenic mutations after a single injection. Initiated hepatocytes subsequently undergo clonal expansion within a proliferative environment, rendering the DEN model a comprehensive carcinogen. In rodent studies, DEN finds extensive utility in experimental liver cancer research, mimicking several aspects of human hepatocellular carcinoma (HCC), including angiogenesis, metabolic reprogramming, immune exhaustion, and the ability to metastasize. Beyond the wealth of scientific insights gleaned from this model, the objective of this chapter is to review morphological, genomic, and immunological characteristics associated to DEN-induced HCC. Furthermore, this chapter provides a detailed procedural guide to effectively induce hepatocarcinogenesis in mice through a single intraperitoneal injection of DEN.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Humanos , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Dietilnitrosamina/toxicidad , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Hepatocitos/patología , Ratones Endogámicos C57BL
13.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396649

RESUMEN

The dysregulation of the phosphatidylinositol-3-kinase (PI3K) pathway can lead to uncontrolled cellular growth and tumorigenesis. Targeting PI3K and its downstream substrates has been shown to be effective in preclinical studies and phase III trials with the approval of several PI3K pathway inhibitors by the Food and Drug Administration (FDA) over the past decade. However, the limited clinical efficacy of these inhibitors, intolerable toxicities, and acquired resistances limit the clinical application of PI3K inhibitors. This review discusses the PI3K signaling pathway, alterations in the PI3K pathway causing carcinogenesis, current and novel PI3K pathway inhibitors, adverse effects, resistance mechanisms, challenging issues, and future directions of PI3K pathway inhibitors.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Terapia Molecular Dirigida , Proteínas Proto-Oncogénicas c-akt/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/inducido químicamente , Inhibidores de Proteínas Quinasas/efectos adversos , Carcinogénesis/inducido químicamente , Fosfatidilinositoles/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
14.
Sci Total Environ ; 913: 169752, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38163601

RESUMEN

As the representative item of environmental chemical carcinogen, MNNG was closely associated with the onset of Gastric cancer (GC), while the underlying mechanisms remain largely unknown. Here, we comprehensively analyzed the potential clinical significance of METTL3 in multiple GC patient cohorts. Additionally, we demonstrated that long-term exposure to MNNG elevated METTL3 and EMT marker expression by in vitro and in vivo models. Furthermore, the depletion of METTL3 impacted the proliferation, migration, invasion, and tumorigenesis of MNNG malignant transformation cells and GC cells. By me-RIP sequencing, we identified a panel of vital miRNAs potentially regulated by METTL3 that aberrantly expressed in MNNG-induced GC cells. Mechanistically, we showed that METTL3 meditated miR-1184/TRPM2 axis by regulating the process of miRNA-118. Our results provide novel insights into critical epigenetic molecular events vital to MNNG-induced gastric carcinogenesis. These findings suggest the potential therapeutic targets of METTL3 for GC treatment.


Asunto(s)
Adenina/análogos & derivados , MicroARNs , Neoplasias Gástricas , Humanos , Metilnitronitrosoguanidina , Línea Celular Tumoral , MicroARNs/metabolismo , Carcinogénesis/inducido químicamente , Neoplasias Gástricas/inducido químicamente , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Transición Epitelial-Mesenquimal , Metiltransferasas
15.
Part Fibre Toxicol ; 21(1): 3, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38297314

RESUMEN

BACKGROUND: Malignant mesothelioma is an aggressive cancer that often originates in the pleural and peritoneal mesothelium. Exposure to asbestos is a frequent cause. However, studies in rodents have shown that certain multiwalled carbon nanotubes (MWCNTs) can also induce malignant mesothelioma. The exact mechanisms are still unclear. To gain further insights into molecular pathways leading to carcinogenesis, we analyzed tumors in Wistar rats induced by intraperitoneal application of MWCNTs and amosite asbestos. Using transcriptomic and epigenetic approaches, we compared the tumors by inducer (MWCNTs or amosite asbestos) or by tumor type (sarcomatoid, epithelioid, or biphasic). RESULTS: Genome-wide transcriptome datasets, whether grouped by inducer or tumor type, showed a high number of significant differentially expressed genes (DEGs) relative to control peritoneal tissues. Bioinformatic evaluations using Ingenuity Pathway Analysis (IPA) revealed that while the transcriptome datasets shared commonalities, they also showed differences in DEGs, regulated canonical pathways, and affected molecular functions. In all datasets, among highly- scoring predicted canonical pathways were Phagosome Formation, IL8 Signaling, Integrin Signaling, RAC Signaling, and TREM1 Signaling. Top-scoring activated molecular functions included cell movement, invasion of cells, migration of cells, cell transformation, and metastasis. Notably, we found many genes associated with malignant mesothelioma in humans, which showed similar expression changes in the rat tumor transcriptome datasets. Furthermore, RT-qPCR revealed downregulation of Hrasls, Nr4a1, Fgfr4, and Ret or upregulation of Rnd3 and Gadd45b in all or most of the 36 tumors analyzed. Bisulfite sequencing of Hrasls, Nr4a1, Fgfr4, and Ret revealed heterogeneity in DNA methylation of promoter regions. However, higher methylation percentages were observed in some tumors compared to control tissues. Lastly, global 5mC DNA, m6A RNA and 5mC RNA methylation levels were also higher in tumors than in control tissues. CONCLUSIONS: Our findings may help better understand how exposure to MWCNTs can lead to carcinogenesis. This information is valuable for risk assessment and in the development of safe-by-design strategies.


Asunto(s)
Amianto , Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Nanotubos de Carbono , Humanos , Ratas , Animales , Mesotelioma Maligno/complicaciones , Mesotelioma Maligno/genética , Asbesto Amosita/toxicidad , Nanotubos de Carbono/toxicidad , Mesotelioma/inducido químicamente , Mesotelioma/genética , Transcriptoma , Ratas Wistar , Amianto/toxicidad , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Metilación de ADN , Epigénesis Genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Proteinas GADD45 , Antígenos de Diferenciación/toxicidad
16.
Environ Pollut ; 345: 123426, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38295934

RESUMEN

Nicotine, a naturally occurring tobacco alkaloid responsible for tobacco addiction, has long been considered non-carcinogenic. However, emerging evidence suggests that nicotine may possess carcinogenic properties in mice and could be a potential carcinogen in humans. This review aims to summarize the potential molecular mechanisms underlying nicotine-induced carcinogenesis, with a specific focus on epigenetic regulation and the activation of nicotinic acetylcholine receptors (nAChRs) in addition to genotoxicity and excess reactive oxygen species (ROS). Additionally, we explore a novel hypothesis regarding nicotine's carcinogenicity involving the downregulation of stem-loop binding protein (SLBP), a critical regulator of canonical histone mRNA, and the polyadenylation of canonical histone mRNA. By shedding light on these mechanisms, this review underscores the need for further research to elucidate the carcinogenic potential of nicotine and its implications for human health.


Asunto(s)
Nicotina , Receptores Nicotínicos , Humanos , Ratones , Animales , Nicotina/toxicidad , Histonas/metabolismo , Epigénesis Genética , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Carcinogénesis/inducido químicamente , Transducción de Señal , ARN Mensajero/metabolismo
17.
Int J Cancer ; 154(6): 1097-1110, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38095490

RESUMEN

Gastrointestinal bacteria are known to have an impact on local and systemic immunity, and consequently either promote or suppress cancer development. Following the notion that perinatal bacterial exposure might confer immune system competency for life, we investigated whether early-life administration of cholera-toxin (CT), a protein exotoxin of the small intestine pathogenic bacterium Vibrio cholerae, may shape local and systemic immunity to impart a protective effect against tumor development in epithelia distantly located from the gut. For that, newborn mice were orally treated with low non-pathogenic doses of CT and later challenged with the carcinogen 7,12-dimethylbenzanthracene (DMBA), known to cause mainly mammary, but also skin, lung and stomach cancer. Our results revealed that CT suppressed the overall incidence and multiplicity of tumors, with varying efficiencies among cancer types, and promoted survival. Harvesting mouse tissues at an earlier time-point (105 instead of 294 days), showed that CT does not prevent preneoplastic lesions per se but it rather hinders their evolution into tumors. CT pretreatment universally increased apoptosis in the cancer-prone mammary, lung and nonglandular stomach, and altered the expression of several cancer-related molecules. Moreover, CT had a long-term effect on immune system cells and factors, the most prominent being the systemic neutrophil decrease. Finally, CT treatment significantly affected gut bacterial flora composition, leading among others to a major shift from Clostridia to Bacilli class abundance. Overall, these results support the notion that early-life CT consumption is able to affect host's immune, microbiome and gene expression profiles toward the prevention of cancer.


Asunto(s)
Neoplasias , Vibrio cholerae , Animales , Ratones , Toxina del Cólera , Destete , Carcinogénesis/inducido químicamente
18.
J Biochem Mol Toxicol ; 38(1): e23553, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37840363

RESUMEN

In this study, we investigated the chemopreventive efficacy of usnic acid (UA), an effective secondary metabolite component of lichens, against 7,12-dimethylbenz[a]anthracene (DMBA)-induced oral squamous cell carcinoma (OSCC) in the hamster model. Initially, the buccal pouch carcinogenesis was induced by administering 0.5% DMBA to the HBP (hamster buccal pouch) region about three times a week until the 10th week. Then, UA was orally treated with different concentrations (25, 50, 100 mg/kg b.wt) on alternative days of DMBA exposure, and the experimental process ended in the 16th week. After animal experimentation, we observed 100% tumor incidence with well-differentiated OSCC, dysplasia, and hyperplasia lesions in the DMBA-induced HBP region. Furthermore, the UA treatment of DMBA-induced hamster effectively inhibited tumor growth. In addition, UA upregulated antioxidant levels, interfered with the elevated lipid peroxidation by-product of thiobarbituric acid reactive substances, and changed the activities of the liver detoxification enzyme (Phase I and II) in DMBA-induced hamsters. Furthermore, immunohistochemical staining of inflammatory markers (iNOS and COX-2) and proliferative cell markers (cyclin-D1 and PCNA) were upregulated in the buccal pouch part of hamster animals induced with DMBA. Notably, the oral administration of UA significantly suppressed these markers during DMBA-induced hamsters. Collectively, our findings revealed that UA exhibits antioxidant, anti-inflammatory, antitumor, and apoptosis-inducing characteristics, demonstrating UA's protective properties against DMBA-induced HBP carcinogenesis.


Asunto(s)
Benzofuranos , Carcinoma de Células Escamosas , Neoplasias de la Boca , Cricetinae , Animales , Masculino , Mesocricetus , Antioxidantes/metabolismo , 9,10-Dimetil-1,2-benzantraceno/toxicidad , Carcinoma de Células Escamosas/inducido químicamente , Neoplasias de la Boca/inducido químicamente , Neoplasias de la Boca/prevención & control , Neoplasias de la Boca/patología , Carcinogénesis/inducido químicamente , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Estrés Oxidativo , Proliferación Celular , Antracenos , Carcinógenos/toxicidad
19.
J Hazard Mater ; 465: 133329, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38142659

RESUMEN

N6-methyladenosine (m6A), a high-profile RNA epigenetic modification, responds to oxidative stress and temporal-specifically mediates arsenic carcinogenesis. However, how m6A affects aberrant redox homeostasis required for arsenic carcinogenesis is poorly understood. Here, we established arsenic-carcinogenic models of different stages, including As-treated, As-transformed, and As-tumorigenic cell models. We found that arsenic-induced reactive oxygen species (ROS) elevated m6A levels, thus triggering m6A-dependent antioxidant defenses. During arsenic-induced cell transformation, METTL3-upregulated m6A on the mRNAs of SOD1, SOD2, CAT, TXN, and GPX1 promoted the mRNA translation and protein expressions of these antioxidant enzymes by increasing YTHDF1-mediated mRNA stability. Meanwhile, FTO-downregulated m6A on PRDX5 mRNA increased PRDX5 translation and expression by reducing YTHDF2-mediated mRNA decay. After upregulated antioxidant defenses balanced with high levels of ROS induced by arsenic, the m6A balance formed in mRNAs of six key antioxidant enzymes (SOD1, SOD2, CAT, TXN, GPX1, and PRDX5) and promoted high expressions of these antioxidant enzymes to maintain aberrant redox homeostasis. METTL3 inhibitor STM2457, FTO inhibitor FB23-2, or YTHDF1 knockdown disturbed the aberrant redox homeostasis by breaking the m6A balance, causing cell death in arsenic-induced tumors. Our results demonstrated that m6A promotes the formation and maintenance of aberrant redox homeostasis required for arsenic carcinogenesis by time-dependently orchestrating the adaptive expressions of six key m6A-targeted antioxidant enzymes. This study advances our understanding of arsenic carcinogenicity from the novel aspect of m6A-dependent adaptation to arsenic-induced oxidative stress.


Asunto(s)
Adenosina/análogos & derivados , Antioxidantes , Arsénico , Humanos , Antioxidantes/metabolismo , Arsénico/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1/metabolismo , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Carcinogénesis/metabolismo , Oxidación-Reducción , Homeostasis , Metiltransferasas/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
20.
Rev Bras Ginecol Obstet ; 45(12): e818-e824, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38141603

RESUMEN

Cervical cancer (CC) is caused by persistent infection of human papillomavirus of high oncogenic risk (hr-HPV); however, several cofactors are important in its carcinogenesis, such as smoking, multiparity, and prolonged use of oral hormonal contraceptives (COCs). Worldwide, 16% of women use COCs, whereas in Brazil this rate is of ∼ 30%. The safety and adverse effects of COCs are widely discussed in the literature, including the increase in carcinogenic risk. Due to the existence of several drugs, combinations, and dosages of COCs, it is hard to have uniform information in epidemiological studies. Our objective was to perform a narrative review on the role of COCs use in the carcinogenesis of cervical cancer. Several populational studies have suggested an increase in the incidence of cervical cancer for those who have used COCs for > 5 years, but other available studies reach controversial and contradictory results regarding the action of COCs in the development of CC.


O câncer cervical (CC) é causado pela infecção persistente pelo papilomavírus humano de alto risco oncogênico (hr-HPV); entretanto, vários cofatores são importantes na sua carcinogênese, como tabagismo, multiparidade e uso prolongado de contraceptivos hormonais orais (COCs). No mundo, 16% das mulheres usam AOCs, enquanto no Brasil essa taxa é de ∼ 30%. A segurança e os efeitos adversos dos COCs são amplamente discutidos na literatura, incluindo o aumento do risco carcinogênico. Devido à existência de várias drogas, combinações e dosagens de COCs, é difícil ter informações uniformes em estudos epidemiológicos. Nosso objetivo foi realizar uma revisão narrativa sobre o papel do uso de COCs na carcinogênese do câncer cervical. Vários estudos populacionais têm sugerido aumento da incidência de câncer de colo uterino para aquelas que usam COCs há mais de 5 anos, mas outros estudos disponíveis chegam a resultados controversos e contraditórios quanto à ação dos COCs no desenvolvimento do CCU.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/inducido químicamente , Neoplasias del Cuello Uterino/epidemiología , Anticonceptivos Orales Combinados/efectos adversos , Factores de Riesgo , Fumar/efectos adversos , Carcinogénesis/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...