Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.799
Filtrar
1.
Eur J Med Res ; 29(1): 293, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773551

RESUMEN

Artesunate (ART), an effective antimalarial semisynthetic derivative of artemisinin, exhibits antitumour properties, but the mechanism(s) involved remain elusive. In this study, we investigated the antitumour effects of ART on human oesophageal squamous cell carcinoma (ESCC) cell lines. Treatment of ESCC cell lines with ART resulted in the production of excessive reactive oxygen species (ROS) that induced DNA damage, reduced cell proliferation and inhibited clonogenicity via G1-S cell cycle arrest and/or apoptosis in vitro. The administration of ART to nude mice with ESCC cell xenografts inhibited tumour formation in vivo. However, the cytotoxicity of ART strongly differed among the ESCC cell lines tested. Transcriptomic profiling revealed that although the expression of large numbers of genes in ESCC cell lines was affected by ART treatment, these genes could be functionally clustered into pathways involved in regulating cell cycle progression, DNA metabolism and apoptosis. We revealed that p53 and Cdk4/6-p16-Rb cell cycle checkpoint controls were critical determinants required for mediating ART cytotoxicity in ESCC cell lines. Specifically, KYSE30 cells with p53Mut/p16Mut were the most sensitive to ART, KYSE150 and KYSE180 cells with p53Mut/p16Nor exhibited intermediate responses to ART, and Eca109 cells with p53Nor/p16Nor exhibited the most resistance to ATR. Consistently, perturbation of p53 expression using RNA interference (RNAi) and/or Cdk4/6 activity using the inhibitor palbociclib altered ART cytotoxicity in KYSE30 cells. Given that the p53 and Cdk4/6-cyclin D1-p16-Rb genes are commonly mutated in ESCC, our results potentially shed new light on neoadjuvant chemotherapy strategies for ESCC.


Asunto(s)
Apoptosis , Artesunato , Puntos de Control del Ciclo Celular , Proliferación Celular , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Artesunato/farmacología , Artesunato/uso terapéutico , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Animales , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas de Esófago/genética , Ratones , Línea Celular Tumoral , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Ratones Desnudos , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Daño del ADN/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Artemisininas/farmacología , Artemisininas/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos/farmacología
2.
Int J Med Sci ; 21(6): 1165-1175, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774756

RESUMEN

Oral cancer is the most heterogeneous cancer at clinical and histological levels. PI3K/AKT/mTOR pathway was identified as one of the most commonly modulated signals in oral cancer, which regulates major cellular and metabolic activity of the cell. Thus, various proteins of PI3K/AKT/mTOR pathway were used as therapeutic targets for oral cancer, to design more specific drugs with less off-target toxicity. This review sheds light on the regulation of PI3K/AKT/mTOR, and its role in controlling autophagy and associated apoptosis during the progression and metastasis of oral squamous type of malignancy (OSCC). In addition, we reviewed in detail the upstream activators and the downstream effectors of PI3K/AKT/mTOR signaling as potential therapeutic targets for oral cancer treatment.


Asunto(s)
Autofagia , Neoplasias de la Boca , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Autofagia/fisiología , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Apoptosis , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética
3.
JCI Insight ; 9(10)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775151

RESUMEN

Because cancer cells have a genetically unstable nature, they give rise to genetically different variant subclones inside a single tumor. Understanding cancer heterogeneity and subclone characteristics is crucial for developing more efficacious therapies. Oral squamous cell carcinoma (OSCC) is characterized by high heterogeneity and plasticity. On the other hand, CX3C motif ligand 1 (CX3CL1) is a double-faced chemokine with anti- and pro-tumor functions. Our study reported that CX3CL1 functioned differently in tumors with different cancer phenotypes, both in vivo and in vitro. Mouse OSCC 1 (MOC1) and MOC2 cells responded similarly to CX3CL1 in vitro. However, in vivo, CX3CL1 increased keratinization in indolent MOC1 cancer, while CX3CL1 promoted cervical lymphatic metastasis in aggressive MOC2 cancer. These outcomes were due to double-faced CX3CL1 effects on different immune microenvironments indolent and aggressive cancer created. Furthermore, we established that CX3CL1 promoted cancer metastasis via the lymphatic pathway by stimulating lymphangiogenesis and transendothelial migration of lymph-circulating tumor cells. CX3CL1 enrichment in lymphatic metastasis tissues was observed in aggressive murine and human cell lines. OSCC patient samples with CX3CL1 enrichment exhibited a strong correlation with lower overall survival rates and higher recurrence and distant metastasis rates. In conclusion, CX3CL1 is a pivotal factor that stimulates the metastasis of aggressive cancer subclones within the heterogeneous tumors to metastasize, and our study demonstrates the prognostic value of CX3CL1 enrichment in long-term monitoring in OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Quimiocina CX3CL1 , Linfangiogénesis , Metástasis Linfática , Neoplasias de la Boca , Quimiocina CX3CL1/metabolismo , Quimiocina CX3CL1/genética , Animales , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Ratones , Linfangiogénesis/genética , Humanos , Línea Celular Tumoral , Metástasis Linfática/patología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Femenino , Microambiente Tumoral/inmunología , Masculino
4.
BMC Cancer ; 24(1): 559, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38702644

RESUMEN

In contrast to the decreasing trends in developed countries, the incidence and mortality rates of cervical squamous cell carcinoma in China have increased significantly. The screening and identification of reliable biomarkers and candidate drug targets for cervical squamous cell carcinoma are urgently needed to improve the survival rate and quality of life of patients. In this study, we demonstrated that the expression of MUC1 was greater in neoplastic tissues than in non-neoplastic tissues of the cervix, and cervical squamous cell carcinoma patients with high MUC1 expression had significantly worse overall survival than did those with low MUC1 expression, indicating its potential for early diagnosis of cervical squamous cell carcinoma. Next, we explored the regulatory mechanism of MUC1 in cervical squamous cell carcinoma. MUC1 could upregulate ITGA2 and ITGA3 expression via ERK phosphorylation, promoting the proliferation and metastasis of cervical cancer cells. Further knockdown of ITGA2 and ITGA3 significantly inhibited the tumorigenesis of cervical cancer cells. Moreover, we designed a combination drug regimen comprising MUC1-siRNA and a novel ERK inhibitor in vivo and found that the combination of these drugs achieved better results in animals with xenografts than did MUC1 alone. Overall, we discovered a novel regulatory pathway, MUC1/ERK/ITGA2/3, in cervical squamous cell carcinoma that may serve as a potential biomarker and therapeutic target in the future.


MUC1 is overexpressed in cervical squamous cell carcinoma. MUC1 regulates ERK phosphorylation, and subsequently upregulates ITGA2 and ITGA3 expression to promote tumorigenesis in cervical squamous cell carcinoma. A combination drug regimen targeting MUC1 and ERK achieved better results compared than MUC1 alone.


Asunto(s)
Carcinoma de Células Escamosas , Proliferación Celular , Integrina alfa2 , Integrina alfa3 , Mucina-1 , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/tratamiento farmacológico , Femenino , Integrina alfa2/metabolismo , Integrina alfa2/genética , Animales , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Mucina-1/metabolismo , Mucina-1/genética , Ratones , Fosforilación , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ensayos Antitumor por Modelo de Xenoinjerto , Sistema de Señalización de MAP Quinasas , Ratones Desnudos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
5.
Int J Biol Sci ; 20(7): 2576-2591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38725862

RESUMEN

We showed that microtubule-associated tumor suppressor gene (MTUS1/ATIP) downregulation correlated with poor survival in head and neck squamous cell carcinoma (HNSCC) patients and that MTUS1/ATIP1 was the most abundant isoform in HNSCC tissue. However, the location and function of MTUS1/ATIP1 have remain unclear. In this study, we confirmed that MTUS1/ATIP1 inhibited proliferation, growth and metastasis in HNSCC in cell- and patient-derived xenograft models in vitro and in vivo. MTUS1/ATIP1 localized in the outer mitochondrial membrane, influence the morphology, movement and metabolism of mitochondria and stimulated oxidative stress in HNSCC cells by directly interacting with MFN2. MTUS1/ATIP1 activated ROS, recruiting Bax to mitochondria, facilitating cytochrome c release to the cytosol to activate caspase-3, and inducing GSDME-dependent pyroptotic death in HNSCC cells. Our findings showed that MTUS1/ATIP1 localized in the outer mitochondrial membrane in HNSCC cells and mediated anticancer effects through ROS-induced pyroptosis, which may provide a novel therapeutic strategy for HNSCC treatment.


Asunto(s)
Neoplasias de Cabeza y Cuello , Mitocondrias , Piroptosis , Especies Reactivas de Oxígeno , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/genética , Animales , Línea Celular Tumoral , Mitocondrias/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Ratones , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Ratones Desnudos , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Membranas Mitocondriales/metabolismo , Proliferación Celular
6.
BMC Cancer ; 24(1): 564, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711026

RESUMEN

BACKGROUND: 5-Fluorouracil (5FU) is a primary chemotherapeutic agent used to treat oral squamous cell carcinoma (OSCC). However, the development of drug resistance has significantly limited its clinical application. Therefore, there is an urgent need to determine the mechanisms underlying drug resistance and identify effective targets. In recent years, the Wingless and Int-1 (WNT) signaling pathway has been increasingly studied in cancer drug resistance; however, the role of WNT3, a ligand of the canonical WNT signaling pathway, in OSCC 5FU-resistance is not clear. This study delved into this potential connection. METHODS: 5FU-resistant cell lines were established by gradually elevating the drug concentration in the culture medium. Differential gene expressions between parental and resistant cells underwent RNA sequencing analysis, which was then substantiated via Real-time quantitative PCR (RT-qPCR) and western blot tests. The influence of the WNT signaling on OSCC chemoresistance was ascertained through WNT3 knockdown or overexpression. The WNT inhibitor methyl 3-benzoate (MSAB) was probed for its capacity to boost 5FU efficacy. RESULTS: In this study, the WNT/ß-catenin signaling pathway was notably activated in 5FU-resistant OSCC cell lines, which was confirmed through transcriptome sequencing analysis, RT-qPCR, and western blot verification. Additionally, the key ligand responsible for pathway activation, WNT3, was identified. By knocking down WNT3 in resistant cells or overexpressing WNT3 in parental cells, we found that WNT3 promoted 5FU-resistance in OSCC. In addition, the WNT inhibitor MSAB reversed 5FU-resistance in OSCC cells. CONCLUSIONS: These data underscored the activation of the WNT/ß-catenin signaling pathway in resistant cells and identified the promoting effect of WNT3 upregulation on 5FU-resistance in oral squamous carcinoma. This may provide a new therapeutic strategy for reversing 5FU-resistance in OSCC cells.


Asunto(s)
Resistencia a Antineoplásicos , Fluorouracilo , Neoplasias de la Boca , Vía de Señalización Wnt , Proteína Wnt3 , Humanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Resistencia a Antineoplásicos/genética , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Vía de Señalización Wnt/efectos de los fármacos , Línea Celular Tumoral , Proteína Wnt3/metabolismo , Proteína Wnt3/genética , beta Catenina/metabolismo , beta Catenina/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antimetabolitos Antineoplásicos/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
7.
BMC Cancer ; 24(1): 561, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711034

RESUMEN

Modulation of DNA damage repair in lung squamous cell carcinoma (LUSC) can result in the generation of neoantigens and heightened immunogenicity. Therefore, understanding DNA damage repair mechanisms holds significant clinical relevance for identifying targets for immunotherapy and devising therapeutic strategies. Our research has unveiled that the tumor suppressor zinc finger protein 750 (ZNF750) in LUSC binds to the promoter region of tenascin C (TNC), leading to reduced TNC expression. This modulation may impact the malignant behavior of tumor cells and is associated with patient prognosis. Additionally, single-cell RNA sequencing (scRNA-seq) of LUSC tissues has demonstrated an inverse correlation between ZNF750/TNC expression levels and immunogenicity. Manipulation of the ZNF750-TNC axis in vitro within LUSC cells has shown differential sensitivity to CD8+ cells, underscoring its pivotal role in regulating cellular immunogenicity. Further transcriptome sequencing analysis, DNA damage repair assay, and single-strand break analyses have revealed the involvement of the ZNF750-TNC axis in determining the preference for homologous recombination (HR) repair or non-homologous end joining (NHEJ) repair of DNA damage. with involvement of the Hippo/ERK signaling pathway. In summary, this study sheds light on the ZNF750-TNC axis's role in DNA damage repair regulation in LUSC, laying a groundwork for future translational research in immune cell therapy for LUSC.


Asunto(s)
Carcinoma de Células Escamosas , Daño del ADN , Neoplasias Pulmonares , Tenascina , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Tenascina/genética , Tenascina/metabolismo , Daño del ADN/inmunología , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regiones Promotoras Genéticas , Pronóstico , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo
8.
BMC Pulm Med ; 24(1): 227, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730287

RESUMEN

OBJECTIVES: 18F-fluorodeoxyglucose (FDG) PET/CT has been widely used for the differential diagnosis of cancer. Semi-quantitative standardized uptake value (SUV) is known to be affected by multiple factors and may make it difficult to differentiate between benign and malignant lesions. It is crucial to find reliable quantitative metabolic parameters to further support the diagnosis. This study aims to evaluate the value of the quantitative metabolic parameters derived from dynamic FDG PET/CT in the differential diagnosis of lung cancer and predicting epidermal growth factor receptor (EGFR) mutation status. METHODS: We included 147 patients with lung lesions to perform FDG PET/CT dynamic plus static imaging with informed consent. Based on the results of the postoperative pathology, the patients were divided into benign/malignant groups, adenocarcinoma (AC)/squamous carcinoma (SCC) groups, and EGFR-positive (EGFR+)/EGFR-negative (EGFR-) groups. Quantitative parameters including K1, k2, k3, and Ki of each lesion were obtained by applying the irreversible two-tissue compartmental modeling using an in-house Matlab software. The SUV analysis was performed based on conventional static scan data. Differences in each metabolic parameter among the group were analyzed. Wilcoxon rank-sum test, independent-samples T-test, and receiver-operating characteristic (ROC) analysis were performed to compare the diagnostic effects among the differentiated groups. P < 0.05 were considered statistically significant for all statistical tests. RESULTS: In the malignant group (N = 124), the SUVmax, k2, k3, and Ki were higher than the benign group (N = 23), and all had-better performance in the differential diagnosis (P < 0.05, respectively). In the AC group (N = 88), the SUVmax, k3, and Ki were lower than in the SCC group, and such differences were statistically significant (P < 0.05, respectively). For ROC analysis, Ki with cut-off value of 0.0250 ml/g/min has better diagnostic specificity than SUVmax (AUC = 0.999 vs. 0.70). In AC group, 48 patients further underwent EGFR testing. In the EGFR (+) group (N = 31), the average Ki (0.0279 ± 0.0153 ml/g/min) was lower than EGFR (-) group (N = 17, 0.0405 ± 0.0199 ml/g/min), and the difference was significant (P < 0.05). However, SUVmax and k3 did not show such a difference between EGFR (+) and EGFR (-) groups (P>0.05, respectively). For ROC analysis, the Ki had a cut-off value of 0.0350 ml/g/min when predicting EGFR status, with a sensitivity of 0.710, a specificity of 0.588, and an AUC of 0.674 [0.523-0.802]. CONCLUSION: Although both techniques were specific, Ki had a greater specificity than SUVmax when the cut-off value was set at 0.0250 ml/g/min for the differential diagnosis of lung cancer. At a cut-off value of 0.0350 ml/g/min, there was a 0.710 sensitivity for EGFR status prediction. If EGFR testing is not available for a patient, dynamic imaging could be a valuable non-invasive screening method.


Asunto(s)
Receptores ErbB , Fluorodesoxiglucosa F18 , Neoplasias Pulmonares , Mutación , Tomografía Computarizada por Tomografía de Emisión de Positrones , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/diagnóstico , Receptores ErbB/genética , Masculino , Diagnóstico Diferencial , Femenino , Persona de Mediana Edad , Anciano , Adulto , Radiofármacos , Curva ROC , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/diagnóstico por imagen , Anciano de 80 o más Años , Adenocarcinoma/genética , Adenocarcinoma/diagnóstico por imagen , Adenocarcinoma/patología , Estudios Retrospectivos
9.
Pathol Oncol Res ; 30: 1611593, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706776

RESUMEN

RICTOR gene, which encodes the scaffold protein of mTORC2, can be amplified in various tumor types, including squamous cell carcinoma (SCC) of the lung. RICTOR amplification can lead to hyperactivation of mTORC2 and may serve as a targetable genetic alteration, including in lung SCC patients with no PD-L1 expression who are not expected to benefit from immune checkpoint inhibitor therapy. This study aimed to compare RICTOR amplification detected by fluorescence in situ hybridization (FISH) with Rictor and PD-L1 protein expression detected by immunohistochemistry (IHC) in SCC of the lung. The study was complemented by analysis of the publicly available Lung Squamous Cell Carcinoma (TCGA, Firehose legacy) dataset. RICTOR amplification was observed in 20% of our cases and 16% of the lung SCC cases of the TCGA dataset. Rictor and PD-L1 expression was seen in 74% and 44% of the cases, respectively. Rictor IHC showed two staining patterns: membrane staining (16% of the cases) and cytoplasmic staining (58% of the cases). Rictor membrane staining predicted RICTOR amplification as detected by FISH with high specificity (95%) and sensitivity (70%). We did not find any correlation between RICTOR amplification and PD-L1 expression; RICTOR amplification was detected in 18% and 26% of PD-L1 positive and negative cases, respectively. The TCGA dataset analysis showed similar results; RICTOR copy number correlated with Rictor mRNA and protein expression but showed no association with PD-L1 mRNA and protein expression. In conclusion, the correlation between RICTOR amplification and Rictor membrane staining suggests that the latter can potentially be used as a surrogate marker to identify lung SCC cases with RICTOR amplification. Since a significant proportion of PD-L1 negative SCC cases harbor RICTOR amplification, analyzing PD-L1 negative tumors by RICTOR FISH or Rictor IHC can help select patients who may benefit from mTORC2 inhibitor therapy.


Asunto(s)
Antígeno B7-H1 , Biomarcadores de Tumor , Carcinoma de Células Escamosas , Amplificación de Genes , Neoplasias Pulmonares , Proteína Asociada al mTOR Insensible a la Rapamicina , Humanos , Proteína Asociada al mTOR Insensible a la Rapamicina/genética , Proteína Asociada al mTOR Insensible a la Rapamicina/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Femenino , Masculino , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Persona de Mediana Edad , Anciano , Hibridación Fluorescente in Situ/métodos , Pronóstico , Anciano de 80 o más Años
10.
PeerJ ; 12: e17338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708353

RESUMEN

Background: This study was performed to determine the biological processes in which NKX2-1 is involved and thus its role in the development of lung squamous cell carcinoma (LUSC) toward improving the prognosis and treatment of LUSC. Methods: Raw RNA sequencing (RNA-seq) data of LUSC from The Cancer Genome Atlas (TCGA) were used in bioinformatics analysis to characterize NKX2-1 expression levels in tumor and normal tissues. Survival analysis of Kaplan-Meier curve, the time-dependent receiver operating characteristic (ROC) curve, and a nomogram were used to analyze the prognosis value of NKX2-1 for LUSC in terms of overall survival (OS) and progression-free survival (PFS). Then, differentially expressed genes (DEGs) were identified, and Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA) were used to clarify the biological mechanisms potentially involved in the development of LUSC. Moreover, the correlation between the NKX2-1 expression level and tumor mutation burden (TMB), tumor microenvironment (TME), and immune cell infiltration revealed that NKX2-1 participates in the development of LUSC. Finally, we studied the effects of NKX2-1 on drug therapy. To validate the protein and gene expression levels of NKX2-1 in LUSC, we employed immunohistochemistry(IHC) datasets, The Gene Expression Omnibus (GEO) database, and qRT-PCR analysis. Results: NKX2-1 expression levels were significantly lower in LUSC than in normal lung tissue. It significantly differed in gender, stage and N classification. The survival analysis revealed that high expression of NKX2-1 had shorter OS and PFS in LUSC. The multivariate Cox regression hazard model showed the NKX2-1 expression as an independent prognostic factor. Then, the nomogram predicted LUSC prognosis. There are 51 upregulated DEGs and 49 downregulated DEGs in the NKX2-1 high-level groups. GO, KEGG and GSEA analysis revealed that DEGs were enriched in cell cycle and DNA replication.The TME results show that NKX2-1 expression was positively associated with mast cells resting, neutrophils, monocytes, T cells CD4 memory resting, and M2 macrophages but negatively associated with M1 macrophages. The TMB correlated negatively with NKX2-1 expression. The pharmacotherapy had great sensitivity in the NKX2-1 low-level group, the immunotherapy is no significant difference in the NKX2-1 low-level and high-level groups. The analysis of GEO data demonstrated concurrence with TCGA results. IHC revealed NKX2-1 protein expression in tumor tissues of both LUAD and LUSC. Meanwhile qRT-PCR analysis indicated a significantly lower NKX2-1 expression level in LUSC compared to LUAD. These qRT-PCR findings were consistent with co-expression analysis of NKX2-1. Conclusion: We conclude that NKX2-1 is a potential biomarker for prognosis and treatment LUSC. A new insights of NKX2-1 in LUSC is still needed further research.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Factor Nuclear Tiroideo 1 , Microambiente Tumoral , Humanos , Factor Nuclear Tiroideo 1/genética , Factor Nuclear Tiroideo 1/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Masculino , Femenino , Regulación Neoplásica de la Expresión Génica , Persona de Mediana Edad , Nomogramas , Estimación de Kaplan-Meier
12.
J Oral Pathol Med ; 53(5): 310-320, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693616

RESUMEN

BACKGROUND: Various antigen-presenting cells and tumor cells-expressing PD-L1 inhibits antitumor immune responses in the tumor microenvironment. Recently, numerous studies have shown that tumor cell intrinsic PD-L1 also plays important roles in tumor growth and progression. On the other hand, oral squamous cell carcinoma (OSCC) cells overexpress epidermal growth factor receptor (EGFR) and EGFR signal pathway exacerbates tumor progression. Therefore, this study assessed whether tumor-intrinsic PD-L1 facilitates malignant potential of OSCC cells through regulation of EGFR signaling. METHODS: Two OSCC cell lines, SAS and HSC-3, were transfected with PD-L1 and EGFR-specific small interfering RNA (siRNA). Influences of PD-L1 knockdown on malignant potentials of OSCC cells were examined by Cell Counting kit-8 assay, transwell assay, sphere formation assay, flow cytometry, and Western blot. Effects of PD-L1 and EGFR knockdown on each expression were examined by quantitative real-time PCR (qRT-PCR), Western blot, and flow cytometry. RESULTS: Transfection of an PD-L1-siRNA into OSCC cells decreased the abilities of proliferation, stemness, and mobility of these cells significantly. PD-L1 knockdown also decreased EGFR expression through the promotion of proteasome- and lysosome-mediated degradation and following activation of the EGFR/protekin kinase B (AKT) signal pathway. Meanwhile, EGFR knockdown did not influence PD-L1 expression in SAS and HSC-3 cells, but treatment with a recombinant human EGF induced its expression. Treatment with erlotinib and cetuximab suppressed rhEGF-induced PD-L1 expression and localization in the cellular membrane of both OSCC cells. CONCLUSION: OSCC cells-expressing PD-L1 induced by EGF stimulation may promote malignancy intrinsically via the activation of the EGFR/AKT signaling cascade.


Asunto(s)
Antígeno B7-H1 , Carcinoma de Células Escamosas , Receptores ErbB , Neoplasias de la Boca , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Humanos , Receptores ErbB/metabolismo , Antígeno B7-H1/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular
13.
Aging (Albany NY) ; 16(8): 6898-6920, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38709170

RESUMEN

BACKGROUND: Cervical squamous carcinoma (CESC) is the main subtype of cervical cancer. Unfortunately, there are presently no effective treatment options for advanced and recurrent CESC. Tertiary lymphoid structures (TLSs) are clusters of lymphoid cells that resemble secondary lymphoid organs; nevertheless, there is no summary of the clinical importance of TLS in CESC. METHODS: A large set of transcriptomic and single-cell RNA-sequencing (scRNA-seq) datasets were used to analyze the pattern of TLS and its immuno-correlations in CESC. Additionally, an independent in-house cohort was collected to validate the correlation between TLS and TME features. RESULTS: In the current study, we found that the presence of TLS could predict better prognosis in CESC and was correlated with the activation of immunological signaling pathways and enrichment of immune cell subpopulations. In addition, TLS was associated with reduced proliferation activity in tumor cells, indicating the negative correlation between TLS and the degree of malignancy. Last but not least, in two independent immunotherapy cohorts, tumors with the presence of TLS were more sensitive to immunotherapy. CONCLUSION: Overall, TLS is related to an inflamed TME and identified immune-hot tumors, which could be an indicator for the identification of immunological features in CESC.


Asunto(s)
Carcinoma de Células Escamosas , Estructuras Linfoides Terciarias , Neoplasias del Cuello Uterino , Humanos , Neoplasias del Cuello Uterino/inmunología , Neoplasias del Cuello Uterino/genética , Neoplasias del Cuello Uterino/patología , Femenino , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/patología , Pronóstico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Inmunoterapia , Transcriptoma
14.
J Transl Med ; 22(1): 477, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38764038

RESUMEN

BACKGROUND: Oral squamous cell carcinoma (OSCC) is a malignant tumor with a poor prognosis. Traditional treatments have limited effectiveness. Regulation of the immune response represents a promising new approach for OSCC treatment. B cells are among the most abundant immune cells in OSCC. However, the role of B cells in OSCC treatment has not been fully elucidated. METHODS: Single-cell RNA sequencing analysis of 13 tissues and 8 adjacent normal tissues from OSCC patients was performed to explore differences in B-cell gene expression between OSCC tissues and normal tissues. We further investigated the relationship between differentially expressed genes and the immune response to OSCC. We utilized tissue microarray data for 146 OSCC clinical samples and RNA sequencing data of 359 OSCC samples from The Cancer Genome Atlas (TCGA) to investigate the role of T-cell leukemia 1 A (TCL1A) in OSCC prognosis. Multiplex immunohistochemistry (mIHC) was employed to investigate the spatial distribution of TCL1A in OSCC tissues. We then investigated the effect of TCL1A on B-cell proliferation and trogocytosis. Finally, lentiviral transduction was performed to induce TCL1A overexpression in B lymphoblastoid cell lines (BLCLs) to verify the function of TCL1A. RESULTS: Our findings revealed that TCL1A was predominantly expressed in B cells and was associated with a better prognosis in OSCC patients. Additionally, we found that TCL1A-expressing B cells are located at the periphery of lymphatic follicles and are associated with tertiary lymphoid structures (TLS) formation in OSCC. Mechanistically, upregulation of TCL1A promoted the trogocytosis of B cells on dendritic cells by mediating the upregulation of CR2, thereby improving antigen-presenting ability. Moreover, the upregulation of TCL1A expression promoted the proliferation of B cells. CONCLUSION: This study revealed the role of B-cell TCL1A expression in TLS formation and its effect on OSCC prognosis. These findings highlight TCL1A as a novel target for OSCC immunotherapy.


Asunto(s)
Linfocitos B , Carcinoma de Células Escamosas , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca , Proteínas Proto-Oncogénicas , Estructuras Linfoides Terciarias , Humanos , Pronóstico , Neoplasias de la Boca/patología , Neoplasias de la Boca/genética , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/inmunología , Estructuras Linfoides Terciarias/patología , Estructuras Linfoides Terciarias/inmunología , Estructuras Linfoides Terciarias/metabolismo , Linfocitos B/metabolismo , Linfocitos B/inmunología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/metabolismo , Femenino , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Masculino , Persona de Mediana Edad , Línea Celular Tumoral , Proliferación Celular
15.
Skin Res Technol ; 30(5): e13737, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38769705

RESUMEN

BACKGROUND: Chronic inflammation has been shown to promote cancer progression. Rosacea is indeed a long-term inflammatory skin condition and had been reported to link with increased risk for several types of malignancies, but evidence for causality is lacking. OBJECTIVES: To systematically estimate the causal relationship between rosacea and several types of cancer, including cutaneous malignant melanoma (CMM), cutaneous squamous cell carcinoma (cSCC), basal cell carcinoma (BCC), actinic keratosis (AK), thyroid cancer, breast cancer, glioma and hepatic cancer, as well as explore the potential underlying pathogenesis. METHODS: We conducted a bidirectional two-sample Mendelian randomization study to probe the potential causal relationships between rosacea and several types of cancer. Instrumental variables were established using genome-wide significant single nucleotide polymorphisms associated with rosacea and cancers. The assessment of causality was carried out through multiple methods, and the robustness of the results was evaluated via sensitivity analyses. RESULTS: There was no significant indication of causal effects of rosacea on CMM (pivw = 0.71), cSCC (pivw = 0.45), BCC (pivw = 0.90), AK (pivw = 0.73), thyroid cancer (pivw = 0.59), glioma (pivw = 0.15), and hepatic cancer (pivw = 0.07), but the genetic risk of rosacea was associated with an increased susceptibility to human epidermal growth factor receptor (HER)-negative malignant neoplasm of breast (odds ratio [OR], 1.10; 95% confidence interval [CI], 1.02-1.18; pivw = 0.01). TANK (TRAF family member associated nuclear factor kappa B (NFKB) activator) was identified as a common protective gene for both rosacea (OR, 0.90; 95% CI, 0.82-0.99; pivw = 0.048) and HER-negative malignant neoplasm of the breast (OR, 0.86; 95% CI, 0.75-0.98; pivw = 0.032), which was primarily enriched in the negative regulation of NF-κB signal transduction and may contribute to the genetic links between rosacea and this subtype of breast cancer. CONCLUSIONS: Our findings provide suggestive evidence for causal links between rosacea and HER-negative malignant neoplasm of the breast risk.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Rosácea , Neoplasias Cutáneas , Humanos , Rosácea/genética , Neoplasias Cutáneas/genética , Femenino , Melanoma/genética , Carcinoma Basocelular/genética , Carcinoma de Células Escamosas/genética , Factores de Riesgo , Predisposición Genética a la Enfermedad/genética , Neoplasias de la Mama/genética , Queratosis Actínica/genética , Neoplasias de la Tiroides/genética , Glioma/genética , Neoplasias Hepáticas/genética , Masculino
16.
Zhongguo Fei Ai Za Zhi ; 27(4): 283-290, 2024 Apr 20.
Artículo en Chino | MEDLINE | ID: mdl-38769831

RESUMEN

Non-small cell lung cancer (NSCLC) is a prevalent tumour type in our country, with lung squamous carcinoma being a commonly observed NSCLC subtype besides lung adenocarcinoma. Epidermal growth factor receptor (EGFR) is a significant driver gene in lung cancer, and EGFR mutation frequency is considerably lower in lung squamous carcinoma in comparison to lung adenocarcinoma. Although targeted therapy against EGFR has demonstrated significant advancements in lung adenocarcinoma, while progress in lung squamous carcinoma has been relatively sluggish. This paper reviews recent studies on molecular targeted therapy for EGFR-mutated lung squamous carcinoma and summarises the efficacy of EGFR-tyrosine kinase inhibitors (TKIs) in treating squamous carcinoma of the lung, in order to provide a reference for treating patients with EGFR-mutated squamous carcinoma of the lung.
.


Asunto(s)
Carcinoma de Células Escamosas , Receptores ErbB , Neoplasias Pulmonares , Terapia Molecular Dirigida , Mutación , Inhibidores de Proteínas Quinasas , Humanos , Receptores ErbB/genética , Receptores ErbB/antagonistas & inhibidores , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética
17.
BMC Pulm Med ; 24(1): 242, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755605

RESUMEN

INTRODUCTION: Lung cancer is a common malignant tumor, and different types of immune cells may have different effects on the occurrence and development of lung cancer subtypes, including lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). However, the causal relationship between immune phenotype and lung cancer is still unclear. METHODS: This study utilized a comprehensive dataset containing 731 immune phenotypes from the European Bioinformatics Institute (EBI) to evaluate the potential causal relationship between immune phenotypes and LUSC and LUAD using the inverse variance weighted (IVW) method in Mendelian randomization (MR). Sensitivity analyses, including MR-Egger intercept, Cochran Q test, and others, were conducted for the robustness of the results. The study results were further validated through meta-analysis using data from the Transdisciplinary Research Into Cancer of the Lung (TRICL) data. Additionally, confounding factors were excluded to ensure the robustness of the findings. RESULTS: Among the final selection of 729 immune cell phenotypes, three immune phenotypes exhibited statistically significant effects with LUSC. CD28 expression on resting CD4 regulatory T cells (OR 1.0980, 95% CI: 1.0627-1.1344, p < 0.0001) and CD45RA + CD28- CD8 + T cell %T cell (OR 1.0011, 95% CI: 1.0007; 1.0015, p < 0.0001) were associated with increased susceptibility to LUSC. Conversely, CCR2 expression on monocytes (OR 0.9399, 95% CI: 0.9177-0.9625, p < 0.0001) was correlated with a decreased risk of LUSC. However, no significant causal relationships were established between any immune cell phenotypes and LUAD. CONCLUSION: This study demonstrates that specific immune cell types are associated with the risk of LUSC but not with LUAD. While these findings are derived solely from European populations, they still provide clues for a deeper understanding of the immunological mechanisms underlying lung cancer and may offer new directions for future therapeutic strategies and preventive measures.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Análisis de la Aleatorización Mendeliana , Fenotipo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/inmunología , Receptores CCR2/genética , Linfocitos T CD8-positivos/inmunología , Antígenos CD28/genética
18.
Mol Cancer ; 23(1): 104, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755637

RESUMEN

BACKGROUND: The faithful maintenance of DNA methylation homeostasis indispensably requires DNA methyltransferase 1 (DNMT1) in cancer progression. We previously identified DNMT1 as a potential candidate target for oral squamous cell carcinoma (OSCC). However, how the DNMT1- associated global DNA methylation is exploited to regulate OSCC remains unclear. METHODS: The shRNA-specific DNMT1 knockdown was employed to target DNMT1 on oral cancer cells in vitro, as was the use of DNMT1 inhibitors. A xenografted OSCC mouse model was established to determine the effect on tumor suppression. High-throughput microarrays of DNA methylation, bulk and single-cell RNA sequencing analysis, multiplex immunohistochemistry, functional sphere formation and protein immunoblotting were utilized to explore the molecular mechanism involved. Analysis of human samples revealed associations between DNMT1 expression, global DNA methylation and collaborative molecular signaling with oral malignant transformation. RESULTS: We investigated DNMT1 expression boosted steadily during oral malignant transformation in human samples, and its inhibition considerably minimized the tumorigenicity in vitro and in a xenografted OSCC model. DNMT1 overexpression was accompanied by the accumulation of cancer-specific DNA hypomethylation during oral carcinogenesis; conversely, DNMT1 knockdown caused atypically extensive genome-wide DNA hypomethylation in cancer cells and xenografted tumors. This novel DNMT1-remodeled DNA hypomethylation pattern hampered the dual activation of PI3K-AKT and CDK2-Rb and inactivated GSK3ß collaboratively. When treating OSCC mice, targeting DNMT1 achieved greater anticancer efficacy than the PI3K inhibitor, and reduced the toxicity of blood glucose changes caused by the PI3K inhibitor or combination of PI3K and CDK inhibitors as well as adverse insulin feedback. CONCLUSIONS: Targeting DNMT1 remodels a novel global DNA hypomethylation pattern to facilitate anticancer efficacy and minimize potential toxic effects via balanced signaling synergia. Our study suggests DNMT1 is a crucial gatekeeper regarding OSCC destiny and treatment outcome.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Neoplasias de la Boca , Humanos , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/antagonistas & inhibidores , Animales , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Ratones , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Transducción de Señal , Proliferación Celular
19.
Commun Biol ; 7(1): 567, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745046

RESUMEN

Lymph node metastasis, primarily caused by the migration of oral squamous cell carcinoma (OSCC) cells, stands as a crucial prognostic marker. We have previously demonstrated that EP4, a subtype of the prostaglandin E2 (PGE2) receptor, orchestrates OSCC cell migration via Ca2+ signaling. The exact mechanisms by which EP4 influences cell migration through Ca2+ signaling, however, is unclear. Our study aims to clarify how EP4 controls OSCC cell migration through this pathway. We find that activating EP4 with an agonist (ONO-AE1-473) increased intracellular Ca2+ levels and the migration of human oral cancer cells (HSC-3), but not human gingival fibroblasts (HGnF). Further RNA sequencing linked EP4 to calmodulin-like protein 6 (CALML6), whose role remains undefined in OSCC. Through protein-protein interaction network analysis, a strong connection is identified between CALML6 and calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), with EP4 activation also boosting mitochondrial function. Overexpressing EP4 in HSC-3 cells increases experimental lung metastasis in mice, whereas inhibiting CaMKK2 with STO-609 markedly lowers these metastases. This positions CaMKK2 as a potential new target for treating OSCC metastasis. Our findings highlight CALML6 as a pivotal regulator in EP4-driven mitochondrial respiration, affecting cell migration and metastasis via the CaMKK2 pathway.


Asunto(s)
Carcinoma de Células Escamosas , Movimiento Celular , Mitocondrias , Neoplasias de la Boca , Subtipo EP4 de Receptores de Prostaglandina E , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Mitocondrias/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP4 de Receptores de Prostaglandina E/genética , Animales , Ratones , Línea Celular Tumoral , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Calmodulina/metabolismo , Calmodulina/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
20.
Sci Adv ; 10(20): eadl3511, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38748808

RESUMEN

Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.


Asunto(s)
Carcinoma de Células Escamosas , Matriz Extracelular , Hidrogeles , Organoides , Neoplasias del Cuello Uterino , Humanos , Femenino , Organoides/metabolismo , Organoides/patología , Organoides/efectos de los fármacos , Matriz Extracelular/metabolismo , Hidrogeles/química , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/genética , Cuello del Útero/patología , Cuello del Útero/metabolismo , Microambiente Tumoral , Transducción de Señal , Animales , Proteómica/métodos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...