Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 285
Filtrar
1.
J Clin Invest ; 134(8)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38618958

RESUMEN

Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer primarily induced by Merkel cell polyomavirus, which is driven by the expression of the oncogenic T antigens (T-Ags). Blockade of the programmed cell death protein-1 (PD-1) pathway has shown remarkable response rates, but evidence for therapy-associated T-Ag-specific immune response and therapeutic strategies for the nonresponding fraction are both limited. We tracked T-Ag-reactive CD8+ T cells in peripheral blood of 26 MCC patients under anti-PD1 therapy, using DNA-barcoded pMHC multimers, displaying all peptides from the predicted HLA ligandome of the oncoproteins, covering 33 class I haplotypes. We observed a broad T cell recognition of T-Ags, including identification of 20 T-Ag-derived epitopes we believe to be novel. Broadening of the T-Ag recognition profile and increased T cell frequencies during therapy were strongly associated with clinical response and prolonged progression-free survival. T-Ag-specific T cells could be further boosted and expanded directly from peripheral blood using artificial antigen-presenting scaffolds, even in patients with no detectable T-Ag-specific T cells. These T cells provided strong tumor-rejection capacity while retaining a favorable phenotype for adoptive cell transfer. These findings demonstrate that T-Ag-specific T cells are associated with the clinical outcome to PD-1 blockade and that Ag-presenting scaffolds can be used to boost such responses.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Antígenos Virales de Tumores , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Receptor de Muerte Celular Programada 1/genética , Linfocitos T CD8-positivos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética
2.
Hum Cell ; 37(3): 729-738, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38504052

RESUMEN

Merkel cell carcinoma (MCC) is an aggressive skin cancer, with a propensity for early metastasis. Therefore, early diagnosis and the identification of novel targets become fundamental. The enzyme nicotinamide N-methyltransferase (NNMT) catalyzes the reaction of N-methylation of nicotinamide and other analogous compounds. Although NNMT overexpression was reported in many malignancies, the significance of its dysregulation in cancer cell phenotype was partly clarified. Several works demonstrated that NNMT promotes cancer cell proliferation, migration, and chemoresistance. In this study, we investigated the possible involvement of this enzyme in MCC. Preliminary immunohistochemical analyses were performed to evaluate NNMT expression in MCC tissue specimens. To explore the enzyme function in tumor cell metabolism, MCC cell lines have been transfected with plasmids encoding for short hairpin RNAs (shRNAs) targeting NNMT mRNA. Preliminary immunohistochemical analyses showed elevated NNMT expression in MCC tissue specimens. The effect of enzyme downregulation on cell proliferation, migration, and chemosensitivity was then evaluated through MTT, trypan blue, and wound healing assays. Data obtained clearly demonstrated that NNMT knockdown is associated with a decrease of cell proliferation, viability, and migration, as well as with enhanced sensitivity to treatment with chemotherapeutic drugs. Taken together, these results suggest that NNMT could represent an interesting MCC biomarker and a promising target for targeted anti-cancer therapy.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Nicotinamida N-Metiltransferasa/genética , Nicotinamida N-Metiltransferasa/metabolismo , Carcinoma de Células de Merkel/genética , Resistencia a Antineoplásicos/genética , Proliferación Celular/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , ARN Interferente Pequeño/genética
4.
Br J Dermatol ; 190(6): 876-884, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38261397

RESUMEN

BACKGROUND: Merkel cell carcinoma (MCC) is an aggressive malignant neuroendocrine tumour. There are two subsets of MCC, one related to Merkel cell polyomavirus (MCPyV) and the other to ultraviolet radiation (UVR). MCPyV-positive and MCPyV-negative MCCs have been considered to be different tumours, as the former harbour few DNA mutations and are not related to UVR, and the latter usually arise in sun-exposed areas and may be found in conjunction with other keratinocytic tumours, mostly squamous cell carcinomas. Two viral oncoproteins, large T antigen (LT; coded by MCPyV_gp3) and small T antigen (sT; coded by MCPyV_gp4), promote different carcinogenic pathways. OBJECTIVES: To determine which genes are differentially expressed in MCPyV-positive and MCPyV-negative MCC; to describe the mutational burden and the most frequently mutated genes in both MCC subtypes; and to identify the clinical and molecular factors that may be related to patient survival. METHODS: Ninety-two patients with a diagnosis of MCC were identified from the medical databases of participating centres. To study gene expression, a customized panel of 172 genes was developed. Gene expression profiling was performed with nCounter technology. For mutational studies, a customized panel of 26 genes was designed. Somatic single nucleotide variants (SNVs) were identified following the GATK Best Practices workflow for somatic mutations. RESULTS: The expression of LT enabled the series to be divided into two groups (LT positive, n = 55; LT negative, n = 37). Genes differentially expressed in LT-negative patients were related to epithelial differentiation, especially SOX9, or proliferation and the cell cycle (MYC, CDK6), among others. Congruently, LT displayed lower expression in SOX9-positive patients, and differentially expressed genes in SOX9-positive patients were related to epithelial/squamous differentiation. In LT-positive patients, the mean SNV frequency was 4.3; in LT-negative patients it was 10 (P = 0.03). On multivariate survival analysis, the expression of SNAI1 [hazard ratio (HR) 1.046, 95% confidence interval (CI) 1.007-1.086; P = 0.02] and CDK6 (HR 1.049, 95% CI 1.020-1.080; P = 0.001) were identified as risk factors. CONCLUSIONS: Tumours with weak LT expression tend to co-express genes related to squamous differentiation and the cell cycle, and to have a higher mutational burden. These findings are congruent with those of earlier studies.


Merkel cell carcinoma (MCC) is an aggressive form of skin tumour. There are two subtypes of MCC: one of them is related to a virus called Merkel cell polyomavirus (MCPyV); the other one is related to persistent exposure to sunlight. The aim of this research was to find differences between these subtypes in their molecular behaviour (the genes that are expressed and the mutations that may be found). To do this, we carried out two studies, one to investigate gene expression (the process cells use to convert the instructions in our DNA into a functional product such as a protein) and one to look at gene mutations (changes in the DNA sequence). We found that the tumours that were not related to MCPyV expressed genes related to epithelial differentiation (the process by which unspecialized cells gain features characteristics of epithelial cells, which, among other things, make up the outer surface of the body), which means that the origin of both MCC subtypes may be different. We also found that MCPyV-related tumours had fewer mutations. Our findings are important because they help us to understand the biology of the MCC subtypes and could help with the development of new treatments for people diagnosed with skin tumours.


Asunto(s)
Antígenos Virales de Tumores , Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Factor de Transcripción SOX9 , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Humanos , Carcinoma de Células de Merkel/virología , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Poliomavirus de Células de Merkel/genética , Poliomavirus de Células de Merkel/aislamiento & purificación , Neoplasias Cutáneas/virología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Masculino , Anciano , Femenino , Infecciones por Polyomavirus/genética , Infecciones por Polyomavirus/virología , Infecciones Tumorales por Virus/genética , Infecciones Tumorales por Virus/virología , Factor de Transcripción SOX9/genética , Antígenos Virales de Tumores/genética , Anciano de 80 o más Años , Persona de Mediana Edad , Mutación , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica
5.
Sci Adv ; 10(3): eadi2012, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38241371

RESUMEN

Merkel cell carcinoma (MCC) is a rare and aggressive skin cancer. Inhibitors targeting the programmed cell death 1 (PD-1) immune checkpoint have improved MCC patient outcomes by boosting antitumor T cell immunity. Here, we identify PD-1 as a growth-promoting receptor intrinsic to MCC cells. In human MCC lines and clinical tumors, RT-PCR-based sequencing, immunoblotting, flow cytometry, and immunofluorescence analyses demonstrated PD-1 gene and protein expression by MCC cells. MCC-PD-1 ligation enhanced, and its inhibition or silencing suppressed, in vitro proliferation and in vivo tumor xenograft growth. Consistently, MCC-PD-1 binding to PD-L1 or PD-L2 induced, while antibody-mediated PD-1 blockade inhibited, protumorigenic mTOR signaling, mitochondrial (mt) respiration, and ROS generation. Last, pharmacologic inhibition of mTOR or mtROS reversed MCC-PD-1:PD-L1-dependent proliferation and synergized with PD-1 checkpoint blockade in suppressing tumorigenesis. Our results identify an MCC-PD-1-mTOR-mtROS axis as a tumor growth-accelerating mechanism, the blockade of which might contribute to clinical response in patients with MCC.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Antígeno B7-H1 , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Receptor de Muerte Celular Programada 1 , Especies Reactivas de Oxígeno , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Serina-Treonina Quinasas TOR
6.
JAMA Dermatol ; 160(2): 172-178, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38170500

RESUMEN

Importance: Merkel cell carcinoma (MCC) is a rare, aggressive neuroendocrine skin cancer. Of the patients who develop MCC annually, only 4% are younger than 50 years. Objective: To identify genetic risk factors for early-onset MCC via genomic sequencing. Design, Setting, and Participants: The study represents a multicenter collaboration between the National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), the National Institute of Allergy and Infectious Diseases (NIAID), and the University of Washington. Participants with early-onset and later-onset MCC were prospectively enrolled in an institutional review board-approved study at the University of Washington between January 2003 and May 2019. Unrelated controls were enrolled in the NIAID Centralized Sequencing Program (CSP) between September 2017 and September 2021. Analysis was performed from September 2021 and March 2023. Early-onset MCC was defined as disease occurrence in individuals younger than 50 years. Later-onset MCC was defined as disease occurrence at age 50 years or older. Unrelated controls were evaluated by the NIAID CSP for reasons other than familial cancer syndromes, including immunological, neurological, and psychiatric disorders. Results: This case-control analysis included 1012 participants: 37 with early-onset MCC, 45 with later-onset MCC, and 930 unrelated controls. Among 37 patients with early-onset MCC, 7 (19%) had well-described variants in genes associated with cancer predisposition. Six patients had variants associated with hereditary cancer syndromes (ATM = 2, BRCA1 = 2, BRCA2 = 1, and TP53 = 1) and 1 patient had a variant associated with immunodeficiency and lymphoma (MAGT1). Compared with 930 unrelated controls, the early-onset MCC cohort was significantly enriched for cancer-predisposing pathogenic or likely pathogenic variants in these 5 genes (odds ratio, 30.35; 95% CI, 8.89-106.30; P < .001). No germline disease variants in these genes were identified in 45 patients with later-onset MCC. Additional variants in DNA repair genes were also identified among patients with MCC. Conclusions and Relevance: Because variants in certain DNA repair and cancer predisposition genes are associated with early-onset MCC, genetic counseling and testing should be considered for patients presenting at younger than 50 years.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Persona de Mediana Edad , Predisposición Genética a la Enfermedad , Carcinoma de Células de Merkel/epidemiología , Carcinoma de Células de Merkel/genética , Mutación de Línea Germinal , Neoplasias Cutáneas/epidemiología , Neoplasias Cutáneas/genética , Factores de Riesgo
7.
Clin Cancer Res ; 30(6): 1189-1199, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-37851052

RESUMEN

PURPOSE: Merkel cell carcinoma (MCC) is a highly immunogenic skin cancer. Although essentially all MCCs are antigenic through viral antigens or high tumor mutation burden, MCC has a response rate of only approximately 50% to PD-(L)1 blockade suggesting barriers to T-cell responses. Prior studies of MCC immunobiology have focused on CD8 T-cell infiltration and their exhaustion status, while the role of innate immunity, particularly myeloid cells, in MCC remains underexplored. EXPERIMENTAL DESIGN: We utilized single-cell transcriptomics from 9 patients with MCC and multiplex IHC staining of 54 patients' preimmunotherapy tumors, to identify myeloid cells and evaluate association with immunotherapy response. RESULTS: Single-cell transcriptomics identified tumor-associated macrophages (TAM) as the dominant myeloid component within MCC tumors. These TAMs express an immunosuppressive gene signature characteristic of monocytic myeloid-derived suppressor cells and importantly express several targetable immune checkpoint molecules, including PD-L1 and LILRB receptors, that are not present on tumor cells. Analysis of 54 preimmunotherapy tumor samples showed that a subset of TAMs (CD163+, CD14+, S100A8+) selectively infiltrated tumors that had significant CD8 T cells. Indeed, higher TAM prevalence was associated with resistance to PD-1 blockade. While spatial interactions between TAMs and CD8 T cells were not associated with response, myeloid transcriptomic data showed evidence for cytokine signaling and expression of LILRB receptors, suggesting potential immunosuppressive mechanisms. CONCLUSIONS: This study further characterizes TAMs in MCC tumors and provides insights into their possible immunosuppressive mechanism. TAMs may reduce the likelihood of treatment response in MCC by counteracting the benefit of CD8 T-cell infiltration. See related commentary by Silk and Davar, p. 1076.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/metabolismo , Receptor de Muerte Celular Programada 1 , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Linfocitos T CD8-positivos , Células Mieloides/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(51): e2316467120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079542

RESUMEN

Merkel cell polyomavirus (MCV or MCPyV) is an alphapolyomavirus causing human Merkel cell carcinoma and encodes four tumor (T) antigen proteins: large T (LT), small tumor (sT), 57 kT, and middle T (MT)/alternate LT open reading frame proteins. We show that MCV MT is generated as multiple isoforms through internal methionine translational initiation that insert into membrane lipid rafts. The membrane-localized MCV MT oligomerizes and promiscuously binds to lipid raft-associated Src family kinases (SFKs). MCV MT-SFK interaction is mediated by a Src homology (SH) 3 recognition motif as determined by surface plasmon resonance, coimmunoprecipitation, and bimolecular fluorescence complementation assays. SFK recruitment by MT leads to tyrosine phosphorylation at a SH2 recognition motif (pMTY114), allowing interaction with phospholipase C gamma 1 (PLCγ1). The secondary recruitment of PLCγ1 to the SFK-MT membrane complex promotes PLCγ1 tyrosine phosphorylation on Y783 and activates the NF-κB inflammatory signaling pathway. Mutations at either the MCV MT SH2 or SH3 recognition sites abrogate PLCγ1-dependent activation of NF-κB signaling and increase viral replication after MCV genome transfection into 293 cells. These findings reveal a conserved viral targeting of the SFK-PLCγ1 pathway by both MCV and murine polyomavirus (MuPyV) MT proteins. The molecular steps in how SFK-PLCγ1 activation is achieved, however, differ between these two viruses.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Ratones , Animales , Humanos , Antígenos Transformadores de Poliomavirus/metabolismo , Poliomavirus de Células de Merkel/metabolismo , FN-kappa B/metabolismo , Familia-src Quinasas/metabolismo , Fosfolipasa C gamma/metabolismo , Transducción de Señal , Antígenos Virales de Tumores/genética , Carcinoma de Células de Merkel/genética , Tirosina/metabolismo
10.
PLoS One ; 18(11): e0293922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37983224

RESUMEN

PURPOSE: Merkel cell carcinoma (MCC) is a neuroendocrine carcinoma originating in the skin. Studies are needed to determine the mechanisms of immune escape in patients with MCC, and malignant cell conditions that promote immune evasion. METHODS: We used Single-cell RNA sequencing (scRNA-seq) to determine cellular features associated with MCC disease trajectory. A longitudinal multi-omics study was performed using scRNA-seq data of peripheral blood harvested from four-time points. Six major cell types and fifteen cell subgroups were identified and confirmed their presence by expression of characteristic markers. The expression patterns and specific changes of different cells at different time points were investigated. Subsequently, bulk RNA data was used to validate key findings. RESULTS: The dynamic characteristics of the cells were identified during the critical period between benign improvement and acquisition of resistance. Combined with the results of the validation cohort, the resistance program expressed in the relapse stage is mainly associated with T cell exhaustion and immune cell crosstalk disorder. Coinciding with immune escape, we also identified a decrease non-classical monocytes and an expansion of classical monocytes with features of high inflammation and immune deficiency. CONCLUSION: Changes in cellular status, such as depletion of T cells and dysregulation of B cell proliferation and differentiation, may lead to drug resistance in MCC patients. Meanwhile, the widespread decreased antigen presentation ability and immune disorders caused by deletion of MHC class II gene expression should not be ignored.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Linfocitos T , Neoplasias Cutáneas/patología , Monocitos/patología , Inmunoterapia/métodos
11.
ACS Biomater Sci Eng ; 9(11): 6438-6450, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37797944

RESUMEN

Tumor immunotherapy is a promising anticancer strategy; however, tumor cells may employ resistance mechanisms, including downregulation of major histocompatibility complex (MHC) molecules to avoid immune recognition. Here, we investigate reprogramming nanoparticles (NPs) that deliver immunostimulatory genes to enhance immunotherapy and address defective antigen presentation in skin cancer in vitro and in vivo. We use a modular poly(beta-amino ester) (PBAE)-based NP to deliver DNA encoding 4-1BBL, IL-12, and IFNγ to reprogram human Merkel cell carcinoma (MCC) cells in vitro and mouse melanoma tumors in vivo to drive adaptive antitumor immune responses. Optimized NP formulations delivering 4-1BBL/IL-12 or 4-1BBL/IL-12/IFNγ DNA successfully transfect MCC and melanoma cells in vitro and in vivo, respectively, resulting in IFNγ-driven upregulation of MHC class I and II molecules on cancer cells. These NPs reprogram the tumor immune microenvironment (TIME) and elicit strong T-cell-driven immune responses, leading to cancer cell killing and T-cell proliferation in vitro and slowing tumor growth and improving survival rates in vivo. Based on expected changes to the tumor immune microenvironment, particularly the importance of IFNγ to the immune response and driving both T-cell function and exhaustion, next-generation NPs codelivering IFNγ were designed. These offered mixed benefits, exchanging improved polyfunctionality for increased T-cell exhaustion and demonstrating higher systemic toxicity in vivo. Further profiling of the immune response with these NPs provides insight into T-cell exhaustion and polyfunctionality induced by different formulations, providing a greater understanding of this immunotherapeutic strategy.


Asunto(s)
Carcinoma de Células de Merkel , Melanoma , Neoplasias Cutáneas , Animales , Ratones , Humanos , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/terapia , Melanoma/genética , Melanoma/terapia , ADN/uso terapéutico , Interleucina-12/uso terapéutico , Muerte Celular , Microambiente Tumoral/genética
12.
Pathol Res Pract ; 249: 154771, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37611429

RESUMEN

Merkel cell carcinoma (MCC) is an uncommon invasive form of skin cancer that typically manifests as a nodule on the face, head, or neck that is flesh-colored or bluish-red in appearance. Rapid growth and metastasis are hallmarks of MCC. MCC has the second-greatest mortality rate among skin cancers after melanoma. Despite the recent cascade of molecular investigations, no universal molecular signature has been identified as responsible for MCC's pathogenesis. The microRNAs (miRNAs) play a critical role in the post-transcriptional regulation of gene expression. Variations in the expression of these short, non-coding RNAs have been associated with various malignancies, including MCC. Although the incidence of MCC is very low, a significant amount of study has focused on the interaction of miRNAs in MCC. As such, the current survey is a speedy intensive route revealing the potential involvement of miRNAs in the pathogenesis of MCC beyond their association with survival in MCC.


Asunto(s)
Carcinoma de Células de Merkel , Melanoma , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , Carcinoma de Células de Merkel/genética , Transducción de Señal , Neoplasias Cutáneas/genética , Melanoma/genética
13.
Pathol Res Pract ; 249: 154763, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37595447

RESUMEN

Merkel cell carcinoma (MCC) is a rare, aggressive form of skin malignancy with a high recurrence commonly within two to three years of initial diagnosis. The incidence of MCC has nearly doubled in the past few decades. Options for diagnosing, assessing, and treating MCC are limited. MicroRNAs (miRNAs) are a class of small, non-coding RNA molecules that play an important role in controlling many different aspects of cell biology. Many miRNAs are aberrantly expressed in distinct types of cancer, with some serving as tumor suppressors and others as oncomiRs. Therefore, the future holds great promise for the utilization of miRNAs in enhancing diagnostic, prognostic, and therapeutic approaches for MCC. Accordingly, the goal of this article is to compile, summarize, and discuss the latest research on miRNAs in MCC, highlighting their potential clinical utility as diagnostic and prognostic biomarkers.


Asunto(s)
Carcinoma de Células de Merkel , MicroARNs , Neoplasias Cutáneas , Humanos , MicroARNs/genética , Carcinoma de Células de Merkel/diagnóstico , Carcinoma de Células de Merkel/genética , Pronóstico , Neoplasias Cutáneas/diagnóstico , Neoplasias Cutáneas/genética
14.
PLoS Pathog ; 19(8): e1011598, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37647312

RESUMEN

Merkel cell polyomavirus (MCPyV) is associated with approximately 80% of cases of Merkel cell carcinoma (MCC), an aggressive type of skin cancer. The incidence of MCC has tripled over the past twenty years, but there are currently very few effective targeted treatments. A better understanding of the MCPyV life cycle and its oncogenic mechanisms is needed to unveil novel strategies for the prevention and treatment of MCC. MCPyV infection and oncogenesis are reliant on the expression of the early viral oncoproteins, which drive the viral life cycle and MCPyV+ MCC tumor cell growth. To date, the molecular mechanisms regulating the transcription of the MCPyV oncogenes remain largely uncharacterized. In this study, we investigated how MCPyV early transcription is regulated to support viral infection and MCC tumorigenesis. Our studies established the roles of multiple cellular factors in the control of MCPyV gene expression. Inhibitor screening experiments revealed that the histone acetyltransferases p300 and CBP positively regulate MCPyV transcription. Their regulation of viral gene expression occurs through coactivation of the transcription factor NF-κB, which binds to the viral genome to drive MCPyV oncogene expression in a manner that is tightly controlled through a negative feedback loop. Furthermore, we discovered that small molecule inhibitors specifically targeting p300/CBP histone acetyltransferase activity are effective at blocking MCPyV tumor antigen expression and MCPyV+ MCC cell proliferation. Together, our work establishes key cellular factors regulating MCPyV transcription, providing the basis for understanding the largely unknown mechanisms governing MCPyV transcription that defines its infectious host cell tropism, viral life cycle, and oncogenic potential. Our studies also identify a novel therapeutic strategy against MCPyV+ MCC through specific blockage of MCPyV oncogene expression and MCC tumor growth.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Neoplasias Cutáneas , Humanos , Poliomavirus de Células de Merkel/genética , Carcinogénesis/genética , Oncogenes , Carcinoma de Células de Merkel/genética , Neoplasias Cutáneas/genética
15.
J Med Virol ; 95(7): e28949, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37436928

RESUMEN

Limited molecular knowledge of Merkel cell polyomavirus (MCPyV)-positive and -negative Merkel cell carcinoma (MCC) subsets (MCCP/MCCN) has prevented so far the identification of the MCC origin cell type and, therefore, the development of effective therapies. The retinoic gene signature was investigated in various MCCP, MCCN, and control fibroblast/epithelial cell lines to elucidate the heterogeneous nature of MCC. Hierarchical clustering and principal component analysis indicated that MCCP and MCCN cells were clusterizable from each other and control cells, according to their retinoic gene signature. MCCP versus MCCN differentially expressed genes (n = 43) were identified. Protein-protein interaction network indicated SOX2, ISL1, PAX6, FGF8, ASCL1, OLIG2, SHH, and GLI1 as upregulated hub genes and JAG1 and MYC as downregulated hub genes in MCCP compared to MCCN. Numerous MCCP-associated hub genes were DNA-binding/-transcription factors involved in neurological and Merkel cell development and stemness. Enrichment analyses indicated that MCCP versus MCCN differentially expressed genes predominantly encode for to DNA-binding/-transcription factors involved in development, stemness, invasiveness, and cancer. Our findings suggest the neuroendocrine origin of MCCP, by which neuronal precursor cells could undergo an MCPyV-driven transformation. These overarching results might open the way to novel retinoid-based MCC therapies.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/genética , Poliomavirus de Células de Merkel/genética , Factores de Transcripción/genética , ADN
16.
Cell Rep Med ; 4(7): 101101, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37421947

RESUMEN

Merkel cell carcinoma (MCC), a rare but aggressive skin cancer, remains a challenge in the era of precision medicine. Immune checkpoint inhibitors (ICIs), the only approved therapy for advanced MCC, are impeded by high primary and acquired resistance. Hence, we dissect transcriptomic heterogeneity at single-cell resolution in a panel of patient tumors, revealing phenotypic plasticity in a subset of treatment-naive MCC. The tumor cells in a "mesenchymal-like" state are endowed with an inflamed phenotype that portends a better ICI response. This observation is also validated in the largest whole transcriptomic dataset available from MCC patient tumors. In contrast, ICI-resistant tumors predominantly express neuroepithelial markers in a well-differentiated state with "immune-cold" landscape. Importantly, a subtle shift to "mesenchymal-like" state reverts copanlisib resistance in primary MCC cells, highlighting potential strategies in patient stratification for therapeutics to harness tumor cell plasticity, augment treatment efficacy, and avert resistance.


Asunto(s)
Carcinoma de Células de Merkel , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/patología , Transcriptoma/genética , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Inmunoterapia , Perfilación de la Expresión Génica
18.
Lab Invest ; 103(8): 100177, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37207705

RESUMEN

Two accepted possible pathways for Merkel cell carcinoma (MCC) pathogenesis include the clonal integration of the Merkel cell polyomavirus (MCPyV) into the neoplastic cells and by UV irradiation. We hypothesize that, in UV etiology, the expression of genes associated with epithelial-mesenchymal transition (EMT) would be higher in MCPyV-negative MCCs. We compared RNA expression in 16 MCPyV-negative with that in 14 MCPyV-positive MCCs in 30 patients using NanoString panel of 760 gene targets as an exploratory method. Subsequently, we confirmed the findings with a publicly available RNA sequencing data set. The NanoString method showed that 29 of 760 genes exhibited significant deregulation. Ten genes (CD44, COL6A3, COL11A1, CXCL8, INHBA, MMP1, NID2, SPP1, THBS1, and THY1) were part of the EMT pathway. The expression of CDH1/E-cadherin, a key EMT gene, and TWIST1, regulator gene of EMT, was higher in MCPyV-negative tumors. To further investigate the expression of EMT genes in MCPyV-negative MCCs, we analyzed publicly available RNA sequencing data of 111 primary MCCs. Differential expression and gene set enrichment analysis of 35 MCPyV-negative versus 76 MCPyV-positive MCCs demonstrated significantly higher expression of EMT-related genes and associated pathways such as Notch signaling, TGF-ß signaling, and Hedgehog signaling, and UV response pathway in MCPyV-negative MCCs. The significance of the EMT pathway in MCPyV-negative MCCs was confirmed independently by a coexpression module analysis. One of the modules (M3) was specifically activated in MCPyV-negative MCCs and showed significant enrichment for genes involved in EMT. A network analysis of module M3 revealed that CDH1/E-cadherin was among the most connected genes (hubs). E-cadherin and LEF1 immunostains demonstrated significantly more frequent expression in MCPvV-negative versus MCPyV-positive tumors (P < .0001). In summary, our study showed that the expression of EMT-associated genes is higher in MCPyV-negative MCC. Because EMT-related proteins can be targeted, the identification of EMT pathways in MCPyV-negative MCCs is of potential therapeutic relevance.


Asunto(s)
Carcinoma de Células de Merkel , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Infecciones Tumorales por Virus , Humanos , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/metabolismo , Carcinoma de Células de Merkel/patología , Neoplasias Cutáneas/metabolismo , Poliomavirus de Células de Merkel/genética , Infecciones Tumorales por Virus/complicaciones , Infecciones Tumorales por Virus/genética , Infecciones por Polyomavirus/complicaciones , Infecciones por Polyomavirus/genética , Transición Epitelial-Mesenquimal/genética , Proteínas Hedgehog , Cadherinas
19.
J Cancer Res Clin Oncol ; 149(11): 8267-8277, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37071208

RESUMEN

BACKGROUND: Class I selective histone deacetylase inhibitors (HDACi) have been previously demonstrated to not only increase major histocompatibility complex class I surface expression in Merkel cell carcinoma (MCC) cells by restoring the antigen processing and presentation machinery, but also exert anti-tumoral effect by inducing apoptosis. Both phenomena could be due to induction of type I interferons (IFN), as has been described for HDACi. However, the mechanism of IFN induction under HDACi is not fully understood because the expression of IFNs is regulated by both activating and inhibitory signaling pathways. Our own preliminary observations suggest that this may be caused by suppression of HES1. METHODS: The effect of the class I selective HDACi domatinostat and IFNα on cell viability and the apoptosis of MCPyV-positive (WaGa, MKL-1) and -negative (UM-MCC 34) MCC cell lines, as well as, primary fibroblasts were assessed by colorimetric methods or measuring mitochondrial membrane potential and intracellular caspase-3/7, respectively. Next, the impact of domatinostat on IFNA and HES1 mRNA expression was measured by RT-qPCR; intracellular IFNα production was detected by flow cytometry. To confirm that the expression of IFNα induced by HDACi was due to the suppression of HES1, it was silenced by RNA interference and then mRNA expression of IFNA and IFN-stimulated genes was assessed. RESULTS: Our studies show that the previously reported reduction in viability of MCC cell lines after inhibition of HDAC by domatinostat is accompanied by an increase in IFNα expression, both of mRNA and at the protein level. We confirmed that treatment of MCC cells with external IFNα inhibited their proliferation and induced apoptosis. Re-analysis of existing single-cell RNA sequencing data indicated that induction of IFNα by domatinostat occurs through repression of HES1, a transcriptional inhibitor of IFNA; this was confirmed by RT-qPCR. Finally, siRNA-mediated silencing of HES1 in the MCC cell line WaGa not only increased mRNA expression of IFNA and IFN-stimulated genes but also decreased cell viability. CONCLUSION: Our results demonstrate that the direct anti-tumor effect of HDACi domatinostat on MCC cells is at least in part mediated via decreased HES1 expression allowing the induction of IFNα, which in turn causes apoptosis.


Asunto(s)
Carcinoma de Células de Merkel , Interferón Tipo I , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Carcinoma de Células de Merkel/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , ARN Mensajero , Línea Celular Tumoral , Factor de Transcripción HES-1/genética
20.
Br J Dermatol ; 189(1): 103-113, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-36991156

RESUMEN

BACKGROUND: Merkel cell carcinoma (MCC) is an aggressive skin tumour with neuroendocrine differentiation. Immunotherapies are effective in the treatment of patients with advanced-stage MCC, but for patients whose tumours cannot be controlled by the immune system, alternative approaches are urgently needed. OBJECTIVES: To identify overexpressed oncogenes as potential drug targets for MCC. METHODS: NanoString platform, digital droplet polymerase chain reaction (ddPCR) and fluorescence in situ hybridization (FISH) assays were used to determine copy number variations (CNVs); BCL2L1 and PARP1 mRNA expression levels were determined by quantitative real-time polymerase chain reaction (qRT-PCR), B-cell lymphoma extra-large (Bcl-xL) and poly (ADP-ribose) polymerase 1 (PARP1) protein by immuno-blot. Specific Bcl-xL inhibitors and a PARP1 inhibitor were used alone or in combination to test their antitumour effect. RESULTS: Screening for CNVs in 13 classic Merkel cell polyomavirus (MCPyV)-positive and MCPyV-negative MCC cell lines revealed BCL2L1 gains and amplifications, confirmed by ddPCR in 10 cell lines. By ddPCR and FISH, we demonstrated that BCL2L1 gains are present in tumour tissue. BCL2L1 copy number gains were associated with increased Bcl-xL mRNA and protein expression. However, high Bcl-xL expression was not restricted to MCC cells harbouring a BCL2L1 gain/amplification, suggesting additional epigenetic means of regulation. The functional relevance of Bcl-xL in MCC cells was demonstrated by the fact that specific Bcl-xL inhibitors (A1331852 and WEHI-539) led to the induction of apoptosis. Owing to the strong expression and activation of PARP1 in MCC cell lines, we next tested the combination of Bcl-xL inhibitors with the PARP1 inhibitor olaparib, which showed synergistic antitumour effects. CONCLUSIONS: Bcl-xL, which is highly expressed in MCC, appears to be an attractive therapeutic target for the treatment of this tumour, especially as the effect of specific Bcl-xL inhibitors is synergistically enhanced by simultaneous PARP inhibition.


Asunto(s)
Carcinoma de Células de Merkel , Linfoma de Células B , Poliomavirus de Células de Merkel , Infecciones por Polyomavirus , Neoplasias Cutáneas , Humanos , Carcinoma de Células de Merkel/tratamiento farmacológico , Carcinoma de Células de Merkel/genética , Variaciones en el Número de Copia de ADN , Hibridación Fluorescente in Situ , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/diagnóstico , Reacción en Cadena en Tiempo Real de la Polimerasa , Linfoma de Células B/complicaciones , Poliomavirus de Células de Merkel/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...