Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 458
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724987

RESUMEN

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , Dinaminas , Células Endoteliales , Ratones Endogámicos C57BL , Transducción de Señal , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/etiología , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/enzimología , Células Endoteliales/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ferroptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Células Cultivadas , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/enzimología , Ratones , Procesamiento Proteico-Postraduccional , Circulación Coronaria , Péptidos y Proteínas de Señalización Intracelular
2.
Clin Epigenetics ; 16(1): 52, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581056

RESUMEN

Diabetic cardiomyopathy (DCM) is a critical complication that poses a significant threat to the health of patients with diabetes. The intricate pathological mechanisms of DCM cause diastolic dysfunction, followed by impaired systolic function in the late stages. Accumulating researches have revealed the association between DCM and various epigenetic regulatory mechanisms, including DNA methylation, histone modifications, non-coding RNAs, and other epigenetic molecules. Recently, a profound understanding of epigenetics in the pathophysiology of DCM has been broadened owing to advanced high-throughput technologies, which assist in developing potential therapeutic strategies. In this review, we briefly introduce the epigenetics regulation and update the relevant progress in DCM. We propose the role of epigenetic factors and non-coding RNAs (ncRNAs) as potential biomarkers and drugs in DCM diagnosis and treatment, providing a new perspective and understanding of epigenomics in DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Humanos , Cardiomiopatías Diabéticas/genética , Metilación de ADN , Epigenómica , Epigénesis Genética , Código de Histonas , Diabetes Mellitus/genética
3.
Stem Cell Res Ther ; 15(1): 120, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659015

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious health-threatening complication of diabetes mellitus characterized by myocardial fibrosis and abnormal cardiac function. Human umbilical cord mesenchymal stromal cells (hUC-MSCs) are a potential therapeutic tool for DCM and myocardial fibrosis via mechanisms such as the regulation of microRNA (miRNA) expression and inflammation. It remains unclear, however, whether hUC-MSC therapy has beneficial effects on cardiac function following different durations of diabetes and which mechanistic aspects of DCM are modulated by hUC-MSC administration at different stages of its development. This study aimed to investigate the therapeutic effects of intravenous administration of hUC-MSCs on DCM following different durations of hyperglycemia in an experimental male model of diabetes and to determine the effects on expression of candidate miRNAs, target mRNA and inflammatory mediators. METHODS: A male mouse model of diabetes was induced by multiple low-dose streptozotocin injections. The effects on severity of DCM of intravenous injections of hUC-MSCs and saline two weeks previously were compared at 10 and 18 weeks after diabetes induction. At both time-points, biochemical assays, echocardiography, histopathology, polymerase chain reaction (PCR), immunohistochemistry and enzyme-linked immunosorbent assays (ELISA) were used to analyze blood glucose, body weight, cardiac structure and function, degree of myocardial fibrosis and expression of fibrosis-related mRNA, miRNA and inflammatory mediators. RESULTS: Saline-treated diabetic male mice had impaired cardiac function and increased cardiac fibrosis after 10 and 18 weeks of diabetes. At both time-points, cardiac dysfunction and fibrosis were improved in hUC-MSC-treated mice. Pro-fibrotic indicators (α-SMA, collagen I, collagen III, Smad3, Smad4) were reduced and anti-fibrotic mediators (FGF-1, miRNA-133a) were increased in hearts of diabetic animals receiving hUC-MSCs compared to saline. Increased blood levels of pro-inflammatory cytokines (IL-6, TNF, IL-1ß) and increased cardiac expression of IL-6 were also observed in saline-treated mice and were reduced by hUC-MSCs at both time-points, but to a lesser degree at 18 weeks. CONCLUSION: Intravenous injection of hUC-MSCs ameliorated key functional and structural features of DCM in male mice with diabetes of shorter and longer duration. Mechanistically, these effects were associated with restoration of intra-myocardial expression of miRNA-133a and its target mRNA COL1AI as well as suppression of systemic and localized inflammatory mediators.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Fibrosis , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , MicroARNs , Miocardio , Cordón Umbilical , Animales , Humanos , Masculino , Ratones , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatías Diabéticas/terapia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Fibrosis/terapia , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Miocardio/metabolismo , Miocardio/patología , Cordón Umbilical/citología , Cordón Umbilical/metabolismo
4.
Cardiovasc Diabetol ; 23(1): 139, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664790

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) poses a growing health threat, elevating heart failure risk in diabetic individuals. Understanding DCM is crucial, with fibroblasts and endothelial cells playing pivotal roles in driving myocardial fibrosis and contributing to cardiac dysfunction. Advances in Multimodal single-cell profiling, such as scRNA-seq and scATAC-seq, provide deeper insights into DCM's unique cell states and molecular landscape for targeted therapeutic interventions. METHODS: Single-cell RNA and ATAC data from 10x Multiome libraries were processed using Cell Ranger ARC v2.0.1. Gene expression and ATAC data underwent Seurat and Signac filtration. Differential gene expression and accessible chromatin regions were identified. Transcription factor activity was estimated with chromVAR, and Cis-coaccessibility networks were calculated using Cicero. Coaccessibility connections were compared to the GeneHancer database. Gene Ontology analysis, biological process scoring, cell-cell communication analysis, and gene-motif correlation was performed to reveal intricate molecular changes. Immunofluorescent staining utilized various antibodies on paraffin-embedded tissues to verify the findings. RESULTS: This study integrated scRNA-seq and scATAC-seq data obtained from hearts of WT and DCM mice, elucidating molecular changes at the single-cell level throughout the diabetic cardiomyopathy progression. Robust and accurate clustering analysis of the integrated data revealed altered cell proportions, showcasing decreased endothelial cells and macrophages, coupled with increased fibroblasts and myocardial cells in the DCM group, indicating enhanced fibrosis and endothelial damage. Chromatin accessibility analysis unveiled unique patterns in cell types, with heightened transcriptional activity in myocardial cells. Subpopulation analysis highlighted distinct changes in cardiomyocytes and fibroblasts, emphasizing pathways related to fatty acid metabolism and cardiac contraction. Fibroblast-centered communication analysis identified interactions with endothelial cells, implicating VEGF receptors. Endothelial cell subpopulations exhibited altered gene expressions, emphasizing contraction and growth-related pathways. Candidate regulators, including Tcf21, Arnt, Stat5a, and Stat5b, were identified, suggesting their pivotal roles in DCM development. Immunofluorescence staining validated marker genes of cell subpopulations, confirming PDK4, PPARγ and Tpm1 as markers for metabolic pattern-altered cardiomyocytes, activated fibroblasts and endothelial cells with compromised proliferation. CONCLUSION: Our integrated scRNA-seq and scATAC-seq analysis unveils intricate cell states and molecular alterations in diabetic cardiomyopathy. Identified cell type-specific changes, transcription factors, and marker genes offer valuable insights. The study sheds light on potential therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , Análisis de la Célula Individual , Transcriptoma , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/fisiopatología , Animales , Perfilación de la Expresión Génica , Cromatina/metabolismo , Cromatina/genética , Ratones Endogámicos C57BL , Redes Reguladoras de Genes , Ensamble y Desensamble de Cromatina , Modelos Animales de Enfermedad , Masculino , RNA-Seq , Regulación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Ratones , Células Endoteliales/metabolismo , Células Endoteliales/patología
5.
Free Radic Biol Med ; 218: 149-165, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38570171

RESUMEN

Proper protein degradation is required for cellular protein homeostasis and organ function. Particularly, in post-mitotic cells, such as cardiomyocytes, unbalanced proteolysis due to inflammatory stimuli and oxidative stress contributes to organ dysfunction. To ensure appropriate protein turnover, eukaryotic cells exert two main degradation systems, the ubiquitin-proteasome-system and the autophagy-lysosome-pathway. It has been shown that proteasome activity affects the development of cardiac dysfunction differently, depending on the type of heart failure. Studies analyzing the inducible subtype of the proteasome, the immunoproteasome (i20S), demonstrated that the i20S plays a double role in diseased hearts. While i20S subunits are increased in cardiac hypertrophy, atrial fibrillation and partly in myocarditis, the opposite applies to diabetic cardiomyopathy and ischemia/reperfusion injury. In addition, the i20S appears to play a role in autophagy modulation depending on heart failure phenotype. This review summarizes the current literature on the i20S in different heart failure phenotypes, emphasizing the two faces of i20S in injured hearts. A selection of established i20S inhibitors is introduced and signaling pathways linking the i20S to autophagy are highlighted. Mapping the interplay of the i20S and autophagy in different types of heart failure offers potential approaches for developing treatment strategies against heart failure.


Asunto(s)
Autofagia , Insuficiencia Cardíaca , Complejo de la Endopetidasa Proteasomal , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/inmunología , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Fenotipo , Transducción de Señal , Proteolisis , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Miocarditis/patología , Miocarditis/metabolismo , Miocarditis/inmunología , Miocarditis/genética , Cardiomegalia/patología , Cardiomegalia/metabolismo , Cardiomegalia/genética
6.
Pathol Res Pract ; 256: 155225, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442448

RESUMEN

Diabetic cardiomyopathy, a multifaceted complication of diabetes mellitus, remains a major challenge in clinical management due to its intricate pathophysiology. Emerging evidence underscores the pivotal role of autophagy dysregulation in the progression of diabetic cardiomyopathy, providing a novel avenue for therapeutic intervention. Noncoding RNAs (ncRNAs), a diverse class of regulatory molecules, have recently emerged as promising candidates for targeted therapeutic strategies. The exploration of various classes of ncRNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs) reveal their intricate regulatory networks in modulating autophagy and influencing the pathophysiological processes associated with diabetic cardiomyopathy. The nuanced understanding of the molecular mechanisms underlying ncRNA-mediated autophagic regulation offers a rationale for the development of precise and effective therapeutic interventions. Harnessing the regulatory potential of ncRNAs presents a promising frontier for the development of targeted and personalized therapeutic strategies, aiming to ameliorate the burden of diabetic cardiomyopathy in affected individuals. As research in this field advances, the identification and validation of specific ncRNA targets hold immense potential for the translation of these findings into clinically viable interventions, ultimately improving outcomes for patients with diabetic cardiomyopathy. This review encapsulates the current understanding of the intricate interplay between autophagy and diabetic cardiomyopathy, with a focus on the potential of ncRNAs as therapeutic targets.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , MicroARNs , ARN Largo no Codificante , Humanos , Cardiomiopatías Diabéticas/genética , ARN no Traducido/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Autofagia/genética
7.
PLoS One ; 19(3): e0297848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38547044

RESUMEN

Diabetic cardiomyopathy (DCM) is a major factor in the development of heart failure. Mitochondria play a crucial role in regulating insulin resistance, oxidative stress, and inflammation, which affect the progression of DCM. Regular exercise can induce altered non-coding RNA (ncRNA) expression, which subsequently affects gene expression and protein function. The mechanism of exercise-induced mitochondrial-related non-coding RNA network in the regulation of DCM remains unclear. This study seeks to construct an innovative exercise-induced mitochondrial-related ncRNA network. Bioinformatic analysis of RNA sequencing data from an exercise rat model identified 144 differentially expressed long non-coding RNA (lncRNA) with cutoff criteria of p< 0.05 and fold change ≥1.0. GSE6880 and GSE4745 were the differentially expressed mRNAs from the left ventricle of DCM rat that downloaded from the GEO database. Combined with the differentially expressed mRNA and MitoCarta 3.0 dataset, the mitochondrial located gene Pdk4 was identified as a target gene. The miRNA prediction analysis using miRanda and TargetScan confirmed that 5 miRNAs have potential to interact with the 144 lncRNA. The novel lncRNA-miRNA-Pdk4 network was constructed for the first time. According to the functional protein association network, the newly created exercise-induced ncRNA network may serve as a promising diagnostic marker and therapeutic target, providing a fresh perspective to understand the molecular mechanism of different exercise types for the prevention and treatment of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , MicroARNs , ARN Largo no Codificante , Ratas , Animales , Cardiomiopatías Diabéticas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Redes Reguladoras de Genes
8.
Int J Med Sci ; 21(4): 612-622, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464828

RESUMEN

Diabetic cardiomyopathy (DC) is a pathophysiologic condition caused by diabetes mellitus (DM) in the absence of coronary artery disease, valvular heart disease, and hypertension that can lead to heart failure (HF), manifesting itself in the early stages with left ventricular hypertrophy and diastolic dysfunction, with marked HF and decreased systolic function in the later stages. There is still a lack of direct evidence to prove the exact existence of DC. Ferroptosis is a novel form of cell death characterized by reactive oxygen species (ROS) accumulation and lipid peroxidation. Several cell and animal studies have shown that ferroptosis is closely related to DC progression. This review systematically summarizes the related pathogenic mechanisms of ferroptosis in DC, including the reduction of cardiac RDH10 induced ferroptosis in DC cardiomyocytes which mediated by retinol metabolism disorders; CD36 overexpression caused lipid deposition and decreased GPX4 expression in DC cardiomyocytes, leading to the development of ferroptosis; Nrf2 mediated iron overload and lipid peroxidation in DC cardiomyocytes and promoted ferroptosis; lncRNA-ZFAS1 as a ceRNA, combined with miR-150-5p to inhibit CCND2 expression in DC cardiomyocytes, thereby triggering ferroptosis.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ferroptosis , Insuficiencia Cardíaca , Animales , Cardiomiopatías Diabéticas/genética , Ferroptosis/genética , Muerte Celular , Miocitos Cardíacos , Especies Reactivas de Oxígeno , Diabetes Mellitus/genética
9.
Theranostics ; 14(5): 2246-2264, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505620

RESUMEN

Aim: Adipose tissue (AT) dysfunction that occurs in both obesity and lipodystrophy is associated with the development of cardiomyopathy. However, it is unclear how dysfunctional AT induces cardiomyopathy due to limited animal models available. We have identified vacuolar H+-ATPase subunit Vod1, encoded by Atp6v0d1, as a master regulator of adipogenesis, and adipose-specific deletion of Atp6v0d1 (Atp6v0d1AKO) in mice caused generalized lipodystrophy and spontaneous cardiomyopathy. Using this unique animal model, we explore the mechanism(s) underlying lipodystrophy-related cardiomyopathy. Methods and Results: Atp6v0d1AKO mice developed cardiac hypertrophy at 12 weeks, and progressed to heart failure at 28 weeks. The Atp6v0d1AKO mouse hearts exhibited excessive lipid accumulation and altered lipid and glucose metabolism, which are typical for obesity- and diabetes-related cardiomyopathy. The Atp6v0d1AKO mice developed cardiac insulin resistance evidenced by decreased IRS-1/2 expression in hearts. Meanwhile, the expression of forkhead box O1 (FoxO1), a transcription factor which plays critical roles in regulating cardiac lipid and glucose metabolism, was increased. RNA-seq data and molecular biological assays demonstrated reduced expression of myocardin, a transcription coactivator, in Atp6v0d1AKO mouse hearts. RNA interference (RNAi), luciferase reporter and ChIP-qPCR assays revealed the critical role of myocardin in regulating IRS-1 transcription through the CArG-like element in IRS-1 promoter. Reducing IRS-1 expression with RNAi increased FoxO1 expression, while increasing IRS-1 expression reversed myocardin downregulation-induced FoxO1 upregulation in cardiomyocytes. In vivo, restoring myocardin expression specifically in Atp6v0d1AKO cardiomyocytes increased IRS-1, but decreased FoxO1 expression. As a result, the abnormal expressions of metabolic genes in Atp6v0d1AKO hearts were reversed, and cardiac dysfunctions were ameliorated. Myocardin expression was also reduced in high fat diet-induced diabetic cardiomyopathy and palmitic acid-treated cardiomyocytes. Moreover, increasing systemic insulin resistance with rosiglitazone restored cardiac myocardin expression and improved cardiac functions in Atp6v0d1AKO mice. Conclusion: Atp6v0d1AKO mice are a novel animal model for studying lipodystrophy- or metabolic dysfunction-related cardiomyopathy. Moreover, myocardin serves as a key regulator of cardiac insulin sensitivity and metabolic homeostasis, highlighting myocardin as a potential therapeutic target for treating lipodystrophy- and diabetes-related cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas , Insuficiencia Cardíaca , Resistencia a la Insulina , Lipodistrofia , Proteínas Nucleares , Transactivadores , ATPasas de Translocación de Protón Vacuolares , Animales , Ratones , Cardiomiopatías Diabéticas/genética , Modelos Animales de Enfermedad , Glucosa/metabolismo , Resistencia a la Insulina/genética , Lípidos , Obesidad/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo
10.
J Cell Mol Med ; 28(7): e18158, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38494853

RESUMEN

The increasing attention towards diabetic cardiomyopathy as a distinctive complication of diabetes mellitus has highlighted the need for standardized diagnostic criteria and targeted treatment approaches in clinical practice. Ongoing research is gradually unravelling the pathogenesis of diabetic cardiomyopathy, with a particular emphasis on investigating various post-translational modifications. These modifications dynamically regulate protein function in response to changes in the internal and external environment, and their disturbance of homeostasis holds significant relevance for the development of chronic ailments. This review provides a comprehensive overview of the common post-translational modifications involved in the initiation and progression of diabetic cardiomyopathy, including O-GlcNAcylation, phosphorylation, methylation, acetylation and ubiquitination. Additionally, the review discusses drug development strategies for targeting key post-translational modification targets, such as agonists, inhibitors and PROTAC (proteolysis targeting chimaera) technology that targets E3 ubiquitin ligases.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Humanos , Cardiomiopatías Diabéticas/genética , Procesamiento Proteico-Postraduccional , Ubiquitinación , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo
11.
Front Endocrinol (Lausanne) ; 15: 1185062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469146

RESUMEN

Background: Diabetic cardiomyopathy (DCM) lacks specific and sensitive biomarkers, and its diagnosis remains a challenge. Therefore, there is an urgent need to develop useful biomarkers to help diagnose and evaluate the prognosis of DCM. This study aims to find specific diagnostic markers for diabetic cardiomyopathy. Methods: Two datasets (GSE106180 and GSE161827) from the GEO database were integrated to identify differentially expressed genes (DEGs) between control and type 2 diabetic cardiomyopathy. We assessed the infiltration of immune cells and used weighted coexpression network analysis (WGCNA) to construct the gene coexpression network. Then we performed a clustering analysis. Finally, a diagnostic model was built by the least absolute shrinkage and selection operator (LASSO). Results: A total of 3066 DEGs in the GSE106180 and GSE161827 datasets. There were differences in immune cell infiltration. According to gene significance (GS) > 0.2 and module membership (MM) > 0.8, 41 yellow Module genes and 1474 turquoise Module genes were selected. Hub genes were mainly related to the "proteasomal protein catabolic process", "mitochondrial matrix" and "protein processing in endoplasmic reticulum" pathways. LASSO was used to construct a diagnostic model composed of OXCT1, CACNA2D2, BCL7B, EGLN3, GABARAP, and ACADSB and verified it in the GSE163060 and GSE175988 datasets with AUCs of 0.9333 (95% CI: 0.7801-1) and 0.96 (95% CI: 0.8861-1), respectively. H9C2 cells were verified, and the results were similar to the bioinformatics analysis. Conclusion: We constructed a diagnostic model of DCM, and OXCT1, CACNA2D2, BCL7B, EGLN3, GABARAP, and ACADSB were potential biomarkers, which may provide new insights for improving the ability of early diagnosis and treatment of diabetic cardiomyopathy.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Humanos , Cardiomiopatías Diabéticas/diagnóstico , Cardiomiopatías Diabéticas/genética , Biomarcadores , Área Bajo la Curva , Análisis por Conglomerados , Biología Computacional , Factores de Transcripción
12.
BMC Genomics ; 25(1): 312, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532337

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is becoming a very well-known clinical entity and leads to increased heart failure in diabetic patients. Long non-coding RNAs (LncRNAs) play an important role in the pathogenesis of DCM. In the present study, the expression profiles of lncRNAs and mRNAs were illuminated in myocardium from DCM mice, with purpose of exploring probable pathological processes of DCM involved by differentially expressed genes in order to provide a new direction for the future researches of DCM. RESULTS: The results showed that a total of 93 differentially expressed lncRNA transcripts and 881 mRNA transcripts were aberrantly expressed in db/db mice compared with the controls. The top 6 differentially expressed lncRNAs like up-regulated Hmga1b, Gm8909, Gm50252 and down-regulated Msantd4, 4933413J09Rik, Gm41414 have not yet been reported in DCM. The lncRNAs-mRNAs co-expression network analysis showed that LncRNA 2610507I01Rik, 2310015A16Rik, Gm10503, A930015D03Rik and Gm48483 were the most relevant to differentially expressed mRNAs. CONCLUSION: Our results showed that db/db DCM mice exist differentially expressed lncRNAs and mRNAs in hearts. These differentially expressed lncRNAs may be involved in the pathological process of cardiomyocyte apoptosis and fibrosis in DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/genética , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Perfilación de la Expresión Génica/métodos , Miocardio/metabolismo , Biología Computacional , ARN Mensajero/genética , Redes Reguladoras de Genes , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología
13.
Cell Biochem Funct ; 42(2): e3968, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38439590

RESUMEN

Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic ß cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Nefropatías Diabéticas , MicroARNs , Humanos , Piroptosis , Cardiomiopatías Diabéticas/genética , Nefropatías Diabéticas/genética , ARN no Traducido/genética , MicroARNs/genética , Diabetes Mellitus/genética
14.
J Cell Physiol ; 239(2): e31149, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38308838

RESUMEN

Metabolic disorders and oxidative stress are the main causes of diabetic cardiomyopathy. Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts a powerful antioxidant effect and prevents the progression of diabetic cardiomyopathy. However, the mechanism of its cardiac protection and direct action on cardiomyocytes are not well understood. Here, we investigated in a cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) the direct effect of Nrf2 on cardiomyocytes in DCM and its mechanism. In this study, cardiomyocyte-restricted Nrf2 transgenic mice (Nrf2-TG) were used to directly observe whether cardiomyocyte-specific overexpression of Nrf2 can prevent diabetic cardiomyopathy and correct glucose and lipid metabolism disorders in the heart. Compared to wild-type mice, Nrf2-TG mice showed resistance to diabetic cardiomyopathy in a streptozotocin-induced type 1 diabetes mouse model. This was primarily manifested as improved echocardiography results as well as reduced myocardial fibrosis, cardiac inflammation, and oxidative stress. These results showed that Nrf2 can directly act on cardiomyocytes to exert a cardioprotective role. Mechanistically, the cardioprotective effects of Nrf2 depend on its antioxidation activity, partially through improving glucose and lipid metabolism by directly targeting lipid metabolic pathway of AMPK/Sirt1/PGC-1α activation via upstream genes of sestrin2 and LKB1, and indirectly enabling AKT/GSK-3ß/HK-Ⅱ activity via AMPK mediated p70S6K inhibition.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratones , Animales , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/metabolismo , Antioxidantes/farmacología , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Glucosa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Metabolismo de los Lípidos/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Transducción de Señal , Diabetes Mellitus Experimental/metabolismo , Miocitos Cardíacos/metabolismo , Estrés Oxidativo , Ratones Transgénicos
15.
Int J Biol Sci ; 20(2): 585-605, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169591

RESUMEN

Sirtuin 5 (SIRT5), localized in the mitochondria, has been identified as a protein desuccinylase and demalonylase in the mitochondria since the depletion of SIRT5 boosted the global succinylation and malonylation of mitochondrial proteins. We investigated the role of SIRT5 in diabetic cardiomyopathy (DCM) and identified the mechanism regarding lysine demalonylation in this process. Wild-type and SIRT5 knockout mice were induced with DCM, and primary cardiomyocytes and cardiac fibroblasts extracted from wild-type and SIRT5 knockout mice were subjected to high glucose (HG). SIRT5 deficiency exacerbated myocardial injury in DCM mice, aggravated HG-induced oxidative stress and mitochondrial dysfunction in cardiomyocytes, and intensified cardiomyocyte senescence, pyroptosis, and DNA damage. DCM-induced SIRT5 loss diminished glutathione S-transferase P (GSTP1) protein stability, represented by significantly increased lysine malonylation (Mal-Lys) modification of GSTP1. SIRT5 overexpression alleviated DCM-related myocardial injury, which was reversed by GSTP1 knockdown. Reduced SIRT5 transcription in DCM resulted from the downregulation of SPI1. SPI1 promoted the transcription of SIRT5, thereby ameliorating DCM-associated myocardial injury. However, SIRT5 deletion resulted in a significant reversal of the protective effect of SPI1. These observations suggest that SPI1 activates SIRT5 transcriptionally to mediate GSTP1 Mal-Lys modification and protein stability, thus ameliorating DCM-associated myocardial injury.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Sirtuinas , Animales , Ratones , Cardiomiopatías Diabéticas/genética , Glutatión Transferasa , Lisina/metabolismo , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Piroptosis , Sirtuinas/genética , Sirtuinas/metabolismo
16.
Pharmacol Res ; 200: 107057, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218357

RESUMEN

Mitochondria-associated ferroptosis exacerbates cardiac microvascular dysfunction in diabetic cardiomyopathy (DCM). Nicorandil, an ATP-sensitive K+ channel opener, protects against endothelial dysfunction, mitochondrial dysfunction, and DCM; however, its effects on ferroptosis and mitophagy remain unexplored. The present study aimed to assess the beneficial effects of nicorandil against endothelial ferroptosis in DCM and the underlying mechanisms. Cardiac microvascular perfusion was assessed using a lectin perfusion assay, while mitophagy was assessed via mt-Keima transfection and transmission electron microscopy. Ferroptosis was examined using mRNA sequencing, fluorescence staining, and western blotting. The mitochondrial localization of Parkin, ACSL4, and AMPK was determined via immunofluorescence staining. Following long-term diabetes, nicorandil treatment improved cardiac function and remodeling by alleviating cardiac microvascular injuries, as evidenced by the improved microvascular perfusion and structural integrity. mRNA-sequencing and biochemical analyses showed that ferroptosis occurred and Pink1/Parkin-dependent mitophagy was suppressed in cardiac microvascular endothelial cells after diabetes. Nicorandil treatment suppressed mitochondria-associated ferroptosis by promoting the Pink1/Parkin-dependent mitophagy. Moreover, nicorandil treatment increased the phosphorylation level of AMPKα1 and promoted its mitochondrial translocation, which further inhibited the mitochondrial translocation of ACSL4 via mitophagy and ultimately suppressed mitochondria-associated ferroptosis. Importantly, overexpression of mitochondria-localized AMPKα1 (mitoAα1) shared similar benefits with nicorandil on mitophagy, ferroptosis and cardiovascular protection against diabetic injury. In conclusion, the present study demonstrated the therapeutic effects of nicorandil against cardiac microvascular ferroptosis in DCM and revealed that the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway mediates mitochondria-associated ferroptosis and the development of cardiac microvascular dysfunction.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ferroptosis , Humanos , Cardiomiopatías Diabéticas/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Nicorandil/farmacología , Nicorandil/uso terapéutico , Nicorandil/metabolismo , Células Endoteliales/metabolismo , Mitocondrias/metabolismo , Transducción de Señal , Miocitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , ARN Mensajero/metabolismo , Diabetes Mellitus/metabolismo
17.
Sci Rep ; 14(1): 230, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38168477

RESUMEN

Advanced diabetic cardiomyopathy (DCM) patients are often accompanied by severe peripheral artery disease. For patients with DCM combined with diabetic foot ulcer (DFU), there are currently no good therapeutic targets and drugs. Here, we investigated the underlying network of molecular actions associated with the occurrence of these two complications. The datasets were downloaded from the Gene Expression Omnibus (GEO) database. We performed enrichment and protein-protein interaction analyses, and screened for hub genes. Construct transcription factors (TFs) and microRNAs regulatory networks for validated hub genes. Finally, drug prediction and molecular docking verification were performed. We identified 299 common differentially expressed genes (DEGs), many of which were involved in inflammation and lipid metabolism. 6 DEGs were identified as hub genes (PPARG, JUN, SLC2A1, CD4, SCARB1 and SERPINE1). These 6 hub genes were associated with inflammation and immune response. We identified 31 common TFs and 2 key miRNAs closely related to hub genes. Interestingly, our study suggested that fenofibrate, a lipid-lowering medication, holds promise as a potential treatment for DCM combined with DFU due to its stable binding to the identified hub genes. Here, we revealed a network involves a common target for DCM and DFU. Understanding these networks and hub genes is pivotal for advancing our comprehension of the multifaceted complications of diabetes and facilitating the development of future therapeutic interventions.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Pie Diabético , MicroARNs , Humanos , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Pie Diabético/tratamiento farmacológico , Pie Diabético/genética , Simulación del Acoplamiento Molecular , MicroARNs/genética , Biología Computacional , Inflamación/genética , Redes Reguladoras de Genes , Perfilación de la Expresión Génica
18.
J Diabetes ; 16(1): e13471, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37735821

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is one of the serious complications of the accumulated cardiovascular system in the long course of diabetes. To date, there is no effective treatment available for DCM. Circular RNA (circRNA) is a novel r2egulatory RNA that participates in a variety of cardiac pathological processes. However, the regulatory role of circular RNA MAP3K5 (circMAP3K5) in DCM is largely unclear. METHODS AND RESULTS: Microarray analysis of DCM rats' heart circular RNAs was performed and the highly species-conserved circRNA mitogen-activated protein kinase kinase kinase 5 (circMAP3K5) was identified, which participates in DCM processes. High glucose-provoked cardiotoxicity leads to the up-regulation of circMAP3K5, which mechanistically contributes to cardiomyocyte cell death. Also, in high glucose-induced H9c2 cardiomyocytes, the level of apoptosis was significantly increased, as well as the expression of circMAP3K5. In contrast, the depletion of circMAP3K5 could reduce high glucose-induced apoptosis in cardiomyocytes. In terms of mechanism, circMAP3K5 acts as a miR-22-3p sponge and miR-22-3p directly target death-associated protein kinase 2 (DAPK2) in H9c2 cardiomyocytes, where in circMAP3K5 upregulates DAPK2 expression by targeting miR-22-3p. Moreover, we also found that miR-22-3p inhibitor and pcDNA DAPK2 could antagonize the protective effects brought by the depletion of circMAP3K5. CONCLUSION: CircMAP3K5 is a highly conserved noncoding RNA that is upregulated during DCM process. We concluded that circMAP3K5 promotes high glucose-induced cardiomyocyte apoptosis by regulating the miR-22-3p/DAPK2 axis. The results of this study highlight a novel and translationally important circMAP3K5-based therapeutic approach for DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , MicroARNs , Animales , Ratas , Apoptosis/genética , Proteínas Quinasas Asociadas a Muerte Celular/genética , Proteínas Quinasas Asociadas a Muerte Celular/metabolismo , Diabetes Mellitus/patología , Cardiomiopatías Diabéticas/genética , Glucosa/farmacología , Glucosa/metabolismo , MicroARNs/genética , Miocitos Cardíacos/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , ARN Circular/farmacología , MAP Quinasa Quinasa Quinasa 5/metabolismo
19.
Am J Physiol Cell Physiol ; 326(2): C331-C347, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38047307

RESUMEN

Diabetic cardiomyopathy (dCM) is a major complication of diabetes; however, specific treatments for dCM are currently lacking. RTA 408, a semisynthetic triterpenoid, has shown therapeutic potential against various diseases by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. We established in vitro and in vivo models using high glucose toxicity and db/db mice, respectively, to simulate dCM. Our results demonstrated that RTA 408 activated Nrf2 and alleviated various dCM-related cardiac dysfunctions, both in vivo and in vitro. Additionally, it was found that silencing the Nrf2 gene eliminated the cardioprotective effect of RTA 408. RTA 408 ameliorated oxidative stress in dCM mice and high glucose-exposed H9C2 cells by activating Nrf2, inhibiting mitochondrial fission, exerting anti-inflammatory effects through the Nrf2/NF-κB axis, and ultimately suppressing apoptosis, thereby providing cardiac protection against dCM. These findings provide valuable insights for potential dCM treatments.NEW & NOTEWORTHY We demonstrated first that the nuclear factor erythroid 2-related factor 2 (Nrf2) activator RTA 408 has a protective effect against diabetic cardiomyopathy. We found that RTA 408 could stimulate the nuclear entry of Nrf2 protein, regulate the mitochondrial fission-fusion balance, and redistribute p65, which significantly alleviated the oxidative stress level in cardiomyocytes, thereby reducing apoptosis and inflammation, and protecting the systolic and diastolic functions of the heart.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Triterpenos , Ratones , Animales , FN-kappa B/genética , Cardiomiopatías Diabéticas/tratamiento farmacológico , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Dinámicas Mitocondriales , Estrés Oxidativo , Inflamación/metabolismo , Triterpenos/metabolismo , Triterpenos/farmacología , Triterpenos/uso terapéutico , Miocitos Cardíacos/metabolismo , Glucosa/metabolismo , Diabetes Mellitus/metabolismo
20.
Free Radic Biol Med ; 210: 352-366, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056575

RESUMEN

BACKGROUND: Recent investigations have proposed a potential causal association between the occurrence of ferroptosis, nuclear factor kappa B (NF-κB) and ubiquitin-specific protease 24 (USP24). Nevertheless, the mechanism of USP24 and NF-κB regulation of ferroptosis in the context of diabetic cardiomyopathy (DCM) remain unclear. METHODS: In this study, a high-fat diet and a streptozotocin-induced mouse DCM model were established, and high glucose and palmitic acid treatment of H9c2 cells and neonatal mouse primary cardiomyocytes (NMPCs) was used as an in vitro DCM models. Utilizing both the in vivo and in vitro DCM models, we assessed of USP24, NF-κB, and ferroptosis levels, and explored the relationship among them. RESULTS: In in vivo and in vitro DCM models, increased expression of USP24, NF-κB, phosphorylated NF-κB (p-NF-κB) and fatty acid-CoA ligase 4 (FACL4) were detected, along with accumulated iron, as well as reduced ferritin heavy chain 1 (FTH1), solute carrier family 7 member 11 (SLC7A11) and antioxidant capacity. Knockdown of USP24 resulted in a reduction of NF-κB levels, while knockdown of NF-κB did not lead to a decrease in USP24 expression. Moreover, in H9c2 cells, knockdown of USP24 and NF-κB separately resulted in reduced levels of FACL4, increased levels of SLC7A11 and FTH1, as well as improved antioxidant capacity and cell viability. In shUSP24 knockdown H9c2 cells, administration of phorbol 12-myristate 13-acetate (PMA) activated NF-κB, subsequently reversing the previously observed effect caused by USP24 knockdown. CONCLUSIONS: These findings show that USP24 upregulates NF-κB to promote ferroptosis in DCM.


Asunto(s)
Diabetes Mellitus , Cardiomiopatías Diabéticas , Ferroptosis , Animales , Ratones , Antioxidantes , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Ferroptosis/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...