Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 26(4): 4147-4151, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30613887

RESUMEN

Heavy metal contamination, one of the greatest global problems, not only endangers humans and animals but also negatively affects plants. New trends, the production and industrial applications of metals in nanoforms, lead to release of large amounts of nanoparticles into the environment. However, the influence of nanoparticles on living organisms is not well understood. Cadmium is a heavy metal not essential for plants, and to its phytotoxicity also contributes its chemical similarity to zinc. It has been recorded that zinc at low concentrations reduces the toxicity of cadmium, but our results with ZnO nanoparticles did not proved it. In contrast, ZnO nanoparticles significantly increased the negative effect of cadmium, which was reflected mainly in changes in the content of photosynthetic pigments.


Asunto(s)
Cadmio/toxicidad , Carex (Planta)/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Pigmentos Biológicos/metabolismo , Zinc/toxicidad , Animales , Carex (Planta)/fisiología , Fotosíntesis/efectos de los fármacos , Óxido de Zinc/toxicidad
2.
J Plant Physiol ; 229: 77-88, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30048907

RESUMEN

Salt stress is a major abiotic stress threatening plant growth and development throughout the world. In this study, we investigated the salt stress adaptation mechanism of Carex rigescens (Franch.) V. Krecz, a stress-tolerant turfgrass species with a wide distribution in northern China. Specifically, we analyzed the growth, physiology, and transcript expression patterns of two C. rigescens genotypes (Huanghua and Lvping No.1) exposed to salt stress. Results show that Huanghua demonstrated better growth performance, and higher turf quality (TQ), photochemical efficiency (Fv/Fm), relative water content (RWC), proline content, and lower relative electrolyte leakage (REL) during seven days of salt treatment compared to Lvping No.1, suggesting that Huanghua is more salt tolerant. Significant differences in reactive oxygen species (ROS), Malondialdehyde (MDA), melatonin, non-enzymatic antioxidants, lignin, and flavonoid content, as well as in antioxidant activity between Huanghua and Lvping No.1 after salt stress indicate the diverse regulation involved in salt stress adaptation in C. rigescens. These results, combined with those of the transcript expression pattern of involved genes, suggest that Huanghua is more active and efficient in ROS scavenging, Ca2+ binding, and its phytohormone response than Lvping No.1. Meanwhile, Lvping No.1 showed relatively higher phenylpropanoid synthesis, using flavonoid and lignin as supplements for the inadequate ROS-scavenging capacity and the development of vascular tissues, respectively. These performances illustrate the differences between the two genotypes in multifaceted and sophisticated actions contributing to the tolerance mechanism of salt stress in C. rigescens. In addition, the significantly higher content of melatonin and the rapid induction of Caffeic acid O-methyltransferase (COMT) highlight the role of melatonin in the salt stress response in Huanghua. The results of our study expand existing knowledge of the complexity of the salt stress response involving the antioxidant system, Ca2+ signaling, phytohormone response signaling, and phenylpropanoid pathways. It also provides a basis for further study of the underlying mechanism of salt tolerance in C. rigescens and other plant species.


Asunto(s)
Carex (Planta)/metabolismo , Carex (Planta)/efectos de los fármacos , Carex (Planta)/fisiología , Flavonoides/metabolismo , Lignina/metabolismo , Malondialdehído/metabolismo , Melatonina/metabolismo , Metiltransferasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tolerancia a la Sal , Cloruro de Sodio/farmacología
3.
New Phytol ; 215(4): 1438-1450, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28670743

RESUMEN

Root structures secreting carboxylates and phosphatases are thought to enhance a plant's phosphorus (P) acquisition. But do closely related species with and without such structures really differ in root exudation, P mobilization, or ecological niche? We investigated this by comparing 23 European Carex species with and without 'dauciform roots' (DRs). Plants grown in pots with sand were screened for DR formation, phosphatase activities, carboxylate exudation, and utilization of various organic and inorganic P compounds. Ecological niches were compared using ecological indicator values and nutrient concentrations of plant shoots in natural habitats. Species of subgenus Carex formed DRs, while species of subgenus Vignea did not. Species with DRs had higher root diesterase activity than species without DRs, exuded more citrate but less oxalate and less total carboxylates, and allocated less biomass to roots. Species with and without DRs showed similar growth responses to different forms of P and different amounts of P supplied; their natural habitats do not differ in soil fertility or degree of P limitation. Despite some differences in physiological function, DRs did not influence the P acquisition and nutritional niche of European Carex species, suggesting that species with and without DRs do not exhibit distinct P-acquisition strategies.


Asunto(s)
Carex (Planta)/metabolismo , Fósforo/metabolismo , Exudados de Plantas/metabolismo , Raíces de Plantas/metabolismo , Carácter Cuantitativo Heredable , Análisis de Varianza , Carex (Planta)/efectos de los fármacos , Carex (Planta)/genética , Ecosistema , Modelos Biológicos , Monoéster Fosfórico Hidrolasas/metabolismo , Fósforo/farmacología , Raíces de Plantas/efectos de los fármacos , Especificidad de la Especie
4.
Protein Pept Lett ; 23(5): 478-87, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27001405

RESUMEN

Pb hyper-accumulated Carex putuoshan was taken as experimental material and subjected to combined stress of Pb and Zn. The differential expression of proteins in their roots were analyzed by Proteomic Approach. The protein that was directly involved in the cellular defense under the Pb and Zn combined stress was separated, and expression of those genes was analyzed with Carex Evergold as control. The results were obtained by MALDI-TOF/MS analysis. After applying Pb and Zn combined stress, the expression of 9 protein spots (including 7 different proteins, 2 identical proteins, 1 unknown protein) in Carex putuoshan root was found to be significantly up-regulated. Five proteins were obtained from the 9 proteins related to carbohydrate metabolism, including malate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, frutose-1,6-bisphosphate aldolase, enolase, and 6- phosphogluconate dehydrogenase. Two proteins were related to protein biosynthesis, including isoflavone reductase and phytochelatin synthase (PCS). From these proteins, the most important protein is PCS, which is a key enzyme in the synthesis of phytochelatins (PCs) and plays an important role in chelation. It is directly involved in cellular defense under Pb and Zn stress. After Pb and Zn combined stress, the CpPCS in Carex putuoshan was cloned. The full length of cDNA is 1461 bps, and it encodes 486 amino acids with molecular weight of 53.86 kD and pI value of 6.12. Two typical phytochelatin synthase subfamily domains constitute CpPCS protein, which includes three adjacent Cys-Cys elements in the C-terminal region. Phylogenetic analysis of PCS proteins from different species showed that it had the closest relationship with the Oryza sativa and Triticum aestivum. Real-time quantitative PCR analysis indicated that CpPCS and CePCS (Carex Evergold) genes were expressed in the root. The CpPCS and CePCS genes were up-regulated by Pb and Zn treatments. The expression of CpPCS was higher than that of CePCS under the same condition. The study found that CpPCS expression was increased by Pb and Zn stress in the Carex putuoshan enrichment process of Pb, which lead to high expression of PCS protein. CpPCS improved the accumulation ability and resistance of Carex putuoshan to heavy metals with the expression level of glucose metabolism related proteins increasing after Pb and Zn stress.


Asunto(s)
Carex (Planta)/efectos de los fármacos , Plomo/toxicidad , Raíces de Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Zinc/toxicidad , Carex (Planta)/metabolismo , Modelos Moleculares , Proteínas de Plantas/análisis , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Conformación Proteica
5.
Int J Phytoremediation ; 15(6): 561-72, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23819297

RESUMEN

Engineered wetlands can be an integral part of a treatment strategy for remediating arsenic-contaminated wastewater, wherein, As is removed by adsorption to soil particles, chemical transformation, precipitation, or accumulation by plants. The remediation process could be optimized by choosing plant species that take up As throughout the seasonal growing period. This report details experiments that utilize wetland plant species native to Ohio (Carex stricta, Pycnanthemum virginianum, and Spartina pectinata) that exhibit seasonally related maximal growth rates, plus one hyperaccumulating fern (Pteris vittata) that was used to compare arsenic tolerance. All plants were irrigated with control or As-laden nutrient solutions (either 0, 1.5, or 25 mg As L(-1)) for 52 d. Biomass, nutrient content, and chlorophyll content were compared between plants treated and control plants (n = 5). At the higher concentration of arsenic (25 mg L(-1)), plant biomass, leaf area, and total chlorophyll were all lower than values in control plants. A tolerance index, based on total plant biomass at the end of the experiment, indicated C. stricta (0.99) and S. pectinata (0.84) were more tolerant than the other plant species when irrigated with 1.5 mg As L(-1). These plant species can be considered as candidates for engineered wetlands.


Asunto(s)
Arsénico/toxicidad , Carex (Planta)/efectos de los fármacos , Lamiaceae/efectos de los fármacos , Poaceae/efectos de los fármacos , Contaminantes del Suelo/toxicidad , Biodegradación Ambiental , Biomasa , Carex (Planta)/crecimiento & desarrollo , Carex (Planta)/metabolismo , Clorofila/metabolismo , Lamiaceae/crecimiento & desarrollo , Lamiaceae/metabolismo , Ohio , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Poaceae/crecimiento & desarrollo , Poaceae/metabolismo , Pteris/efectos de los fármacos , Pteris/crecimiento & desarrollo , Pteris/metabolismo , Suelo , Especificidad de la Especie , Humedales
6.
Ecol Appl ; 21(5): 1745-59, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21830715

RESUMEN

Tussock formation is a global phenomenon that enhances microtopography and increases biodiversity by adding structure to ecological communities, but little is known about tussock development in relation to environmental factors. To further efforts to restore wetland microtopography and associated functions, we investigated Carex stricta tussock size in relation to elevation (a proxy for water depth) at a range of sites in southern Wisconsin, USA, and tested the effect of five hydroperiods and N+P addition (15 g N/m2 + 0.37 g P/m2) on tussock formation during a three-year mesocosm experiment. Wet meadows dominated by C. stricta averaged 4.9 tussocks/m2, with a mean volume of 1160 cm3 and height of 15 cm. Within sites, taller tussocks occurred at lower elevations, suggesting a structural adaptation to anoxic conditions. In our mesocosm experiment, C. stricta accelerated tussock formation when inundated, and it increased overall productivity with N + P addition. Within two growing seasons, continuous inundation (+18 cm) in the mesocosms led to tussocks that were nearly as tall as in our field survey (mean height in mesocosms, 10 +/- 1.3 cm; maximum, 17 cm). Plants grown with constant low water (-18 cm) only formed short mounds (mean height = 2 +/- 0.4 cm). After three growing seasons, the volume of the largest tussocks (3274 +/- 376 cm3, grown with +18 cm water depth and N + P addition) was 12 times that of the smallest (275 +/- 38 cm3, grown with -18 cm water depth and no N + P). Though tussock composition varied among hydroperiods, tussocks were predominantly organic (74-94% of dry mass) and composed of leaf bases (46-59%), fine roots (10-31%), and duff (5-13%). Only the plants subjected to high water levels produced the vertically oriented rhizomes and ascending shoot bases that were prevalent in field-collected tussocks. Under continuous or periodic inundation, tussocks achieved similar heights and accumulated similar levels of organic matter (range: 163-394 g C/m2), and we conclude that these hydroperiods can accelerate tussock formation. Thus, C. stricta has high utility for restoring wetland microtopography and associated functions, including carbon accumulation.


Asunto(s)
Carex (Planta)/crecimiento & desarrollo , Ecosistema , Carbono/metabolismo , Carex (Planta)/efectos de los fármacos , Carex (Planta)/metabolismo , Nitrógeno/metabolismo , Nitrógeno/farmacología , Fósforo/metabolismo , Fósforo/farmacología , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/crecimiento & desarrollo , Factores de Tiempo , Agua , Wisconsin
7.
Environ Pollut ; 158(2): 559-65, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19744756

RESUMEN

Ozone and atmospheric nitrogen are co-occurring pollutants with adverse effects on natural grassland vegetation. Plants of the rhizomatous sedge Carex arenaria were exposed to four ozone regimes representing increasing background concentrations (background-peak): 10-30, 35-55, 60-80 and 85-105 ppb ozone at two nitrogen levels: 12 and 100 kg N ha(-1) yr(-1). Ozone increased the number and proportion of senesced leaves, but not overall leaf number. There was a clear nitrogen x ozone interaction with high nitrogen reducing proportional senescence in each treatment and increasing the ozone dose (AOT40) at which enhanced senescence occurred. Ozone reduced total biomass due to significant effects on root biomass. There were no interactive effects on shoot:root ratio. Rhizome tissue N content was increased by both nitrogen and ozone. Results suggest that nitrogen mediates above-ground impacts of ozone but not impacts on below-ground resource translocation. This may lead to complex interactive effects between the two pollutants on natural vegetation.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Carex (Planta)/efectos de los fármacos , Carex (Planta)/metabolismo , Nitrógeno/metabolismo , Ozono/metabolismo , Contaminantes Atmosféricos/toxicidad , Análisis de Varianza , Biomasa , Nitrógeno/análisis , Nitrógeno/toxicidad , Ozono/toxicidad , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo
8.
Chemosphere ; 65(10): 1772-7, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16765412

RESUMEN

Momoge wetland is an internationally important wetland not only because it is a habitat for many rare bird species but also because it is an internationally important stopover for some rare global migratory bird species. However the petroleum exploitation in wetland has brought about many environmental problems. One of the most severe problems is crude oil pollution, which has caused the dying-off Carex tato and imposes great threat on survival of rare birds. This work studied the factors that caused the dying off of Carex tato. The results showed that death of Carex tato was the result narcosis toxicity of alcohols, intermediate biodegradation products of crude oil, on the root tissue, and the fragmentization of cuticle of leaves by light components of crude oil volatized from soil surface. However, the mechanism involved was much more complex and three interactive factors including crude oil pollution of soil, long-term drought and poor permeability of soil were responsible for the dying-off of Carex tato grassland. The distribution of crude oil in soil profile was characterized with high concentrations at top silty layer and the layer below root zone and low or no crude oil at root zone layer. This distribution was relative to root system characteristics and rhizospheric biodegradation. In root zone, substantive oxygen could be transported to root zone through dense root system and well developed aerenchyma. The crude oil in root zone was easily biodegraded by aerobic rhizosphere microbes. However, some toxic intermediate products, such as some alcohols, was sealed in root zone due to poor permeability of the top soil layer and the deeper soil layer and they had lethal effects on root tissue. Above ground, low molecular components of crude oil in top soil layer was easily volatized into atmosphere during long-term drought. Some of the volatized components were adsorbed onto leaves. SEM analysis showed that these components destroyed the leaves by fragmentization of cuticle of leave. This study also shows that although wetland has natural attenuation of pollutants, natural attenuation of pollutants by natural wetland should not be overemphasized. This attenuation function may lose under some conditions such as long-term drought and poor soil texture.


Asunto(s)
Carex (Planta)/efectos de los fármacos , Petróleo/análisis , Petróleo/toxicidad , Contaminantes del Suelo/toxicidad , Carex (Planta)/fisiología , China , Desastres , Relación Dosis-Respuesta a Droga , Ecología , Microscopía Electrónica de Rastreo , Raíces de Plantas/ultraestructura , Contaminantes del Suelo/análisis , Humedales
9.
Environ Pollut ; 134(2): 343-51, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15589661

RESUMEN

Several wetland plant species appear to have constitutive metal tolerance. In previous studies, populations from contaminated and non-contaminated sites of the wetland plants Typha latifolia, Phragmites australis, Glyceria fluitans and Eriophorum angustifolium were found to be tolerant to high concentrations of metals. This study screened three other species of wetland plants: Alisma plantago-aquatica, Carex rostrata and Phalaris arundinacea for innate tolerance to zinc. The degree of tolerance was compared to known zinc-tolerant E. angustifolium and Festuca rubra Merlin. It was found that A. plantago-aquatica and P. arundinacea did not posses innate tolerance to zinc, but that C. rostrata was able to tolerate elevated levels of zinc, at levels comparable to those tolerated by E. angustifolium and F. rubra Merlin. The findings support the theory that some wetland angiosperm species tend to be tolerant to exposure to high levels of metals, regardless of their origin.


Asunto(s)
Alisma/efectos de los fármacos , Cyperaceae/química , Poaceae/química , Contaminantes del Suelo/toxicidad , Zinc/toxicidad , Alisma/química , Biomasa , Carex (Planta)/química , Carex (Planta)/efectos de los fármacos , Cyperaceae/efectos de los fármacos , Ecosistema , Festuca/química , Festuca/efectos de los fármacos , Phalaris/química , Phalaris/efectos de los fármacos , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Poaceae/efectos de los fármacos , Suelo/análisis , Contaminantes del Suelo/análisis , Zinc/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...