Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Clin Transl Med ; 13(5): e1260, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37151195

RESUMEN

BACKGROUND: During the tumourigenesis and development of colorectal cancer (CRC), the inactivation of tumour suppressor genes is closely involved, although detailed molecular mechanisms remain elusive. Accumulating studies, including ours, have demonstrated that basic leucine zipper transcription factor ATF (activating transcription factor)-like 2 (BATF2) is a capable tumour suppressor that localises in the nucleus. However, its different subcellular localisation, potential functions and underlying mechanisms are unclear. METHODS: The translocation of BATF2 and its clinical relevance were detected using CRC samples, cell lines and xenograft nude mice. Candidate BATF2-binding proteins were screened using co-immunoprecipitation, quantitative label-free liquid chromatography-tandem mass spectrometry proteomic analysis, Western blotting and immunofluorescence. Recombinant plasmids, point mutations and siRNAs were applied to clarify the binding sites between BATF2 and chromosome region maintenance 1 (CRM1). RESULTS: The present study found that BATF2 was mainly localised in the cytoplasm, rather than nucleus, of CRC cells in vitro and in vivo, while cytoplasmic BATF2 expression was inversely correlated with the prognosis of CRC patients. Furthermore, we identified the nuclear export and subsequent ubiquitin-mediated degradation of BATF2 in CRC cells. Mechanistically, a functional nuclear export sequence (any amino acid) was characterised in BATF2 protein, through which BATF2 bound to CRM1 and translocated out of nucleus, ultimately enhancing CRC growth via inducing activator protein 1 (AP-1)/cyclin D1/phosphorylated retinoblastoma protein (pRb) signalling pathway. Additionally, nuclear export of BATF2 can be retarded by the mutation of NES in BATF2 or the knockdown of CRM1, whereas CRM1 expression was negatively associated with nuclear BATF2 expression and the prognosis of CRC patients. CONCLUSION: These findings revealed the biological effects and underlying mechanisms of cytoplasmic localisation of BATF2. Furthermore, suppressing nuclear export of BATF2 via mutating its NES region or inhibiting CRM1 expression may serve as a promising therapeutic strategy against CRC.


Asunto(s)
Neoplasias Colorrectales , Carioferinas , Animales , Humanos , Ratones , Transporte Activo de Núcleo Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/patología , Carioferinas/genética , Carioferinas/química , Carioferinas/metabolismo , Ratones Desnudos , Proteómica , Proteína Exportina 1
2.
Proc Natl Acad Sci U S A ; 119(38): e2207177119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36103578

RESUMEN

IMPORTIN-4, the primary nuclear import receptor of core histones H3 and H4, binds the H3-H4 dimer and histone chaperone ASF1 prior to nuclear import. However, how H3-H3-ASF1 is recognized for transport cannot be explained by available crystal structures of IMPORTIN-4-histone tail peptide complexes. Our 3.5-Å IMPORTIN-4-H3-H4-ASF1 cryoelectron microscopy structure reveals the full nuclear import complex and shows a binding mode different from suggested by previous structures. The N-terminal half of IMPORTIN-4 clamps the globular H3-H4 domain and H3 αN helix, while its C-terminal half binds the H3 N-terminal tail weakly; tail contribution to binding energy is negligible. ASF1 binds H3-H4 without contacting IMPORTIN-4. Together, ASF1 and IMPORTIN-4 shield nucleosomal H3-H4 surfaces to chaperone and import it into the nucleus where RanGTP binds IMPORTIN-4, causing large conformational changes to release H3-H4-ASF1. This work explains how full-length H3-H4 binds IMPORTIN-4 in the cytoplasm and how it is released in the nucleus.


Asunto(s)
Chaperonas de Histonas , Histonas , Carioferinas , Proteínas de Transporte de Membrana , Chaperonas Moleculares , Proteínas de Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Chaperonas de Histonas/química , Histonas/química , Humanos , Carioferinas/química , Proteínas de Transporte de Membrana/química , Chaperonas Moleculares/química , Conformación Proteica , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química
3.
Biochemistry (Mosc) ; 87(Suppl 1): S178-S70, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35501995

RESUMEN

Nucleocytoplasmic transport of macromolecules is tightly regulated in eukaryotic cells. XPO1 is a transport factor responsible for the nuclear export of several hundred protein and RNA substrates. Elevated levels of XPO1 and recurrent mutations have been reported in multiple cancers and linked to advanced disease stage and poor survival. In recent years, several novel small-molecule inhibitors of XPO1 were developed and extensively tested in preclinical cancer models and eventually in clinical trials. In this brief review, we summarize the functions of XPO1, its role in cancer, and the latest results of clinical trials of XPO1 inhibitors.


Asunto(s)
Carioferinas , Neoplasias , Transporte Activo de Núcleo Celular , Humanos , Carioferinas/química , Carioferinas/genética , Carioferinas/metabolismo , Mutación , Neoplasias/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/genética
4.
Methods Mol Biol ; 2502: 245-256, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412243

RESUMEN

CRM1 recognizes hundreds to thousands of protein cargoes by binding to the eight to fifteen residue-long nuclear export signals (NESs) within their polypeptide chains. Various assays to measure the binding affinity of NESs for CRM1 have been developed. CRM1 binds to NESs with a wide range of binding affinities, with dissociation constants that span from low nanomolar to tens of micromolar. An optimized binding affinity assay with improved throughput was recently developed to measure binding affinities of NES peptides for CRM1 in the presence of excess RanGTP. The assay can measure affinities, with multiple replicates, for up to seven different NES peptides per screening plate. Here, we present a protocol for the purification of the necessary proteins and for measuring CRM1-NES binding affinities.


Asunto(s)
Carioferinas , Señales de Exportación Nuclear , Receptores Citoplasmáticos y Nucleares , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Carioferinas/química , Carioferinas/metabolismo , Péptidos/metabolismo , Unión Proteica , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
5.
Methods Mol Biol ; 2502: 285-297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35412246

RESUMEN

The Karyopherin protein CRM1 or XPO1 is the major nuclear export receptor that regulates nuclear exit of thousands of macromolecules in the cell. CRM1 recognizes protein cargoes by binding to their 8-15 residue-long nuclear export signals (NESs). A ternary CRM1-Ran-RanBP1 complex engineered to be suitable for crystallization has enabled structure determination by X-ray crystallography of CRM1 bound to many NES peptides and small-molecule inhibitors. Here, we present a protocol for the purification of the individual proteins, formation of the ternary CRM1-Ran-RanBP1 complex and crystallization of this complex for X-ray crystallography.


Asunto(s)
Cristalografía por Rayos X , Carioferinas , Señales de Exportación Nuclear , Receptores Citoplasmáticos y Nucleares , Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Cristalización/métodos , Cristalografía por Rayos X/métodos , Carioferinas/química , Carioferinas/metabolismo , Unión Proteica , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína Exportina 1
6.
J Virol ; 96(3): e0127321, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34757845

RESUMEN

After receptor-mediated endocytosis and endosomal escape, adenoviral capsids can travel via microtubule organizing centers to the nuclear envelope. Upon capsid disassembly, viral genome import into nuclei of interphase cells then occurs through nuclear pore complexes, involving the nucleoporins Nup214 and Nup358. Import also requires the activity of the classic nuclear export receptor CRM1, as it is blocked by the selective inhibitor leptomycin B. We have now used artificially enucleated as well as mitotic cells to analyze the role of an intact nucleus in different steps of the viral life cycle. In enucleated U2OS cells, viral capsids traveled to the microtubule organizing center, whereas their removal from this complex was blocked, suggesting that this step required nuclear factors. In mitotic cells, on the other hand, CRM1 promoted capsid disassembly and genome release, suggesting a role of this protein that does not require intact nuclear envelopes or nuclear pore complexes and is distinct from its function as a nuclear export receptor. Similar to enucleation, inhibition of CRM1 by leptomycin B also leads to an arrest of adenoviral capsids at the microtubule organizing center. In a small-scale screen using leptomycin B-resistant versions of CRM1, we identified a mutant, CRM1 W142A P143A, that is compromised with respect to adenoviral capsid disassembly in both interphase and mitotic cells. Strikingly, this mutant is capable of exporting cargo proteins out of the nucleus of living cells or digitonin-permeabilized cells, pointing to a role of the mutated region that is not directly linked to nuclear export. IMPORTANCE A role of nucleoporins and of soluble transport factors in adenoviral genome import into the nucleus of infected cells in interphase has previously been established. The nuclear export receptor CRM1 promotes genome import, but its precise function is not known. Using enucleated and mitotic cells, we showed that CRM1 does not simply function by exporting a crucial factor out of the nucleus that would then trigger capsid disassembly and genome import. Instead, CRM1 has an export-independent role, a notion that is also supported by a mutant, CRM1 W142A P143A, which is export competent but deficient in viral capsid disassembly, in both interphase and mitotic cells.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Infecciones por Adenoviridae/virología , Adenoviridae/fisiología , Cápside/metabolismo , Interacciones Huésped-Patógeno , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Adenoviridae/efectos de los fármacos , Línea Celular , Genoma Viral , Humanos , Carioferinas/antagonistas & inhibidores , Carioferinas/química , Carioferinas/genética , Microtúbulos/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Relación Estructura-Actividad , Replicación Viral , Proteína Exportina 1
7.
Biol Chem ; 402(11): 1427-1440, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34472763

RESUMEN

Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.


Asunto(s)
Glicosaminoglicanos/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Carioferinas/metabolismo , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Cultivadas , Cromatografía Liquida , Glicosaminoglicanos/química , Serina Peptidasa A1 que Requiere Temperaturas Altas/química , Serina Peptidasa A1 que Requiere Temperaturas Altas/aislamiento & purificación , Humanos , Carioferinas/química , Carioferinas/aislamiento & purificación , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/química , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/aislamiento & purificación , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/aislamiento & purificación , Espectrometría de Masas en Tándem , Proteína Exportina 1
8.
Int J Nanomedicine ; 16: 2833-2847, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33883894

RESUMEN

INTRODUCTION: Peptides can be rationally designed as non-covalent inhibitors for molecularly targeted therapy. However, it remains challenging to efficiently deliver the peptides into the targeted cells, which often severely affects their therapeutic efficiency. METHODS: Herein, we created a novel non-covalent peptide inhibitor against nuclear export factor CRM1 by a structure-guided drug design method and targetedly delivered the peptide into cancer cells by a nanoparticle-mediated gene expression system for use as a cancer therapy. RESULTS: The nuclear export signal (NES)-optimized CRM1 peptide inhibitor colocalized with CRM1 to the nuclear envelope and inhibited nuclear export in cancer cell lines in vitro. The crystal structures of the inhibitors complexed with CRM1 were solved. In contrast to the covalent inhibitors, the peptides were similarly effective against cells harboring the CRM1 C528S mutation. Moreover, a plasmid encoding the peptides was delivered by a iRGD-modified nanoparticle to efficiently target and transfect the cancer cells in vivo after intravenous administration. The peptides could be selectively expressed in the tumor, resulting in the efficient inhibition of subcutaneous melanoma xenografts without obvious systemic toxicity. DISCUSSION: This work provides an effective strategy to design peptide-based molecularly targeted therapeutics, which could lead to the development of future targeted therapy.


Asunto(s)
Espacio Intracelular/metabolismo , Carioferinas/antagonistas & inhibidores , Melanoma Experimental/tratamiento farmacológico , Nanopartículas/química , Péptidos/farmacología , Péptidos/uso terapéutico , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Células A549 , Transporte Activo de Núcleo Celular/efectos de los fármacos , Secuencia de Aminoácidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Técnicas de Transferencia de Gen , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Carioferinas/química , Carioferinas/metabolismo , Melanoma Experimental/patología , Proteínas Mutantes/metabolismo , Mutación/genética , Nanopartículas/ultraestructura , Señales de Exportación Nuclear , Péptidos/química , Unión Proteica/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas no Estructurales Virales/química , Proteína Exportina 1
9.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 3): 70-78, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33682791

RESUMEN

CRM1 is a nuclear export receptor that has been intensively targeted over the last decade for the development of antitumor and antiviral drugs. Structural analysis of several inhibitor compounds bound to CRM1 revealed that their mechanism of action relies on the covalent modification of a critical cysteine residue (Cys528 in the human receptor) located in the nuclear export signal-binding cleft. This study presents the crystal structure of human CRM1, covalently modified by 2-mercaptoethanol on Cys528, in complex with RanGTP at 2.58 Šresolution. The results demonstrate that buffer components can interfere with the characterization of cysteine-dependent inhibitor compounds.


Asunto(s)
Cisteína/química , Carioferinas/química , Carioferinas/metabolismo , Mercaptoetanol/química , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteína de Unión al GTP ran/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Señales de Exportación Nuclear , Proteína de Unión al GTP ran/química , Proteína Exportina 1
10.
Nat Commun ; 12(1): 1505, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686072

RESUMEN

Survivin's dual function as apoptosis inhibitor and regulator of cell proliferation is mediated via its interaction with the export receptor CRM1. This protein-protein interaction represents an attractive target in cancer research and therapy. Here, we report a sophisticated strategy addressing Survivin's nuclear export signal (NES), the binding site of CRM1, with advanced supramolecular tweezers for lysine and arginine. These were covalently connected to small peptides resembling the natural, self-complementary dimer interface which largely overlaps with the NES. Several biochemical methods demonstrated sequence-selective NES recognition and interference with the critical receptor interaction. These data were strongly supported by molecular dynamics simulations and multiscale computational studies. Rational design of lysine tweezers equipped with a peptidic recognition element thus allowed to address a previously unapproachable protein surface area. As an experimental proof-of-principle for specific transport signal interference, this concept should be transferable to any protein epitope with a flanking well-accessible lysine.


Asunto(s)
Carioferinas/química , Carioferinas/metabolismo , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Survivin/química , Survivin/metabolismo , Sitios de Unión , Proliferación Celular , Humanos , Proteínas Inhibidoras de la Apoptosis/metabolismo , Modelos Moleculares , Señales de Exportación Nuclear , Unión Proteica , Conformación Proteica , Proteína Exportina 1
11.
Biochim Biophys Acta Gen Subj ; 1865(5): 129851, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33482249

RESUMEN

BACKGROUND: Nuclear translocation of large proteins is mediated through specific protein carriers, collectively named karyopherins (importins, exportins and adaptor proteins). Cargo proteins are recognized by importins through specific motifs, known as nuclear localization signals (NLS). However, only the NLS recognized by importin α and transportin (M9 NLS) have been identified so far METHODS: An unsupervised in silico approach was used, followed by experimental validation. RESULTS: We identified the sequence EKRKI(E/R)(K/L/R/S/T) as an NLS signal for importin 7 recognition. This sequence was validated in the breast cancer cell line T47D, which expresses importin 7. Finally, we verified that importin 7-mediated nuclear protein transport is affected by cargo protein phosphorylation. CONCLUSIONS: The NLS sequence for importin 7 was identified and we propose this approach as an identification method of novel specific NLS sequences for ß-karyopherin family members. GENERAL SIGNIFICANCE: Elucidating the complex relationships of the nuclear transporters and their cargo proteins may help in laying the foundation for the development of novel therapeutics, targeting specific importins, with an immediate translational impact.


Asunto(s)
Carioferinas/metabolismo , Señales de Localización Nuclear , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Femenino , Humanos , Carioferinas/química , Modelos Moleculares , Fosforilación , Receptores Citoplasmáticos y Nucleares/química
12.
Proteins ; 89(4): 416-426, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33244830

RESUMEN

To greatly expand the druggable genome, fast and accurate predictions of cryptic sites for small molecules binding in target proteins are in high demand. In this study, we have developed a fast and simple conformational sampling scheme guided by normal modes solved from the coarse-grained elastic models followed by atomistic backbone refinement and side-chain repacking. Despite the observations of complex and diverse conformational changes associated with ligand binding, we found that simply sampling along each of the lowest 30 modes is near optimal for adequately restructuring cryptic sites so they can be detected by existing pocket finding programs like fpocket and concavity. We further trained machine-learning protocols to optimize the combination of the sampling-enhanced pocket scores with other dynamic and conservation scores, which only slightly improved the performance. As assessed based on a training set of 84 known cryptic sites and a test set of 14 proteins, our method achieved high accuracy of prediction (with area under the receiver operating characteristic curve >0.8) comparable to the CryptoSite server. Compared with CryptoSite and other methods based on extensive molecular dynamics simulation, our method is much faster (1-2 hours for an average-size protein) and simpler (using only pocket scores), so it is suitable for high-throughput processing of large datasets of protein structures at the genome scale.


Asunto(s)
Sitios de Unión , Biología Computacional/métodos , Ligandos , Aprendizaje Automático , Algoritmos , Antígenos CD/química , Antígenos de Neoplasias/química , Área Bajo la Curva , Proteasas 3C de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/química , Elasticidad , Hepacivirus , Humanos , Interleucina-2/química , Carioferinas/química , Modelos Estadísticos , Simulación de Dinámica Molecular , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Curva ROC , Receptores Citoplasmáticos y Nucleares/química , Análisis de Regresión , Reproducibilidad de los Resultados , SARS-CoV-2 , Proteína Exportina 1
13.
Biochem Soc Trans ; 48(6): 2753-2767, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33300986

RESUMEN

The transport of histones from the cytoplasm to the nucleus of the cell, through the nuclear membrane, is a cellular process that regulates the supply of new histones in the nucleus and is key for DNA replication and transcription. Nuclear import of histones is mediated by proteins of the karyopherin family of nuclear transport receptors. Karyopherins recognize their cargos through linear motifs known as nuclear localization/export sequences or through folded domains in the cargos. Karyopherins interact with nucleoporins, proteins that form the nuclear pore complex, to promote the translocation of their cargos into the nucleus. When binding to histones, karyopherins not only function as nuclear import receptors but also as chaperones, protecting histones from non-specific interactions in the cytoplasm, in the nuclear pore and possibly in the nucleus. Studies have also suggested that karyopherins might participate in histones deposition into nucleosomes. In this review we describe structural and biochemical studies from the last two decades on how karyopherins recognize and transport the core histone proteins H3, H4, H2A and H2B and the linker histone H1 from the cytoplasm to the nucleus, which karyopherin is the major nuclear import receptor for each of these histones, the oligomeric state of histones during nuclear import and the roles of post-translational modifications, histone-chaperones and RanGTP in regulating these nuclear import pathways.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Histonas/metabolismo , Carioferinas/química , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/metabolismo , GTP Fosfohidrolasas/química , Histonas/química , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Cell Cycle ; 19(22): 2982-2995, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33017560

RESUMEN

The proper segregation of basic elements such as the compartmentalization of the genome and the shuttling of macromolecules between the nucleus and the cytoplasm is a crucial mechanism for homeostasis maintenance in eukaryotic cells. XPO1 (Exportin 1) is the major nuclear export receptor and is required for the export of proteins and RNAs out of the nucleus. STK38 (also known as NDR1) is a Hippo pathway serine/threonine kinase with multifarious functions in normal and cancer cells. In this review, we summarize the history of the discovery of the nucleo/cytoplasmic shuttling of proteins and focus on the major actor of nuclear export: XPO1. After describing the molecular events required for XPO1-mediated nuclear export of proteins, we introduce the Hippo pathway STK38 kinase, synthetize its regulation mechanisms as well as its biological functions in both normal and cancer cells, and finally its intersection with XPO1 biology. We discuss the recently identified mechanism of XPO1 activation by phosphorylation of XPO1_S1055 by STK38 and contextualize this finding according to the biological functions previously reported for both XPO1 and STK38, including the second identity of STK38 as an autophagy regulator. Finally, we phrase this newly identified activation mechanism into the general nuclear export machinery and examine the possible outcomes of nuclear export inhibition in cancer treatment.


Asunto(s)
Núcleo Celular/metabolismo , Vía de Señalización Hippo/metabolismo , Carioferinas/metabolismo , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Transporte Activo de Núcleo Celular , Autofagia , Citoplasma/metabolismo , Humanos , Carioferinas/antagonistas & inhibidores , Carioferinas/química , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Fosforilación , Unión Proteica , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/química , Secuencias Repetidas en Tándem , Proteína Exportina 1
15.
J Med Chem ; 63(14): 7545-7558, 2020 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585100

RESUMEN

The receptor CRM1 is responsible for the nuclear export of many tumor-suppressor proteins and viral ribonucleoproteins. This renders CRM1 an interesting target for therapeutic intervention in diverse cancer types and viral diseases. Structural studies of Saccharomyces cerevisiae CRM1 (ScCRM1) complexes with inhibitors defined the molecular basis for CRM1 inhibition. Nevertheless, no structural information is available for inhibitors bound to human CRM1 (HsCRM1). Here, we present the structure of the natural inhibitor Leptomycin B bound to the HsCRM1-RanGTP complex. Despite high sequence conservation and structural similarity in the NES-binding cleft region, ScCRM1 exhibits 16-fold lower binding affinity than HsCRM1 toward PKI-NES and significant differences in affinities toward potential CRM1 inhibitors. In contrast to HsCRM1, competition assays revealed that a human adapted mutant ScCRM1-T539C does not bind all inhibitors tested. Taken together, our data indicate the importance of using HsCRM1 for molecular analysis and development of novel antitumor and antiviral drugs.


Asunto(s)
Carioferinas/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Ácidos Grasos Insaturados/metabolismo , Humanos , Carioferinas/química , Carioferinas/metabolismo , Mutación , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Proteína Exportina 1
16.
Adv Biosyst ; 4(1): e1900189, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-32293126

RESUMEN

Development of nanomaterials that surely transport functional biomacromolecules and bioactive synthetic compounds into the cell nucleus must be promising for the generation of nuclear-targeting new technologies. However, the development of nuclear transporting nanomaterials thus still remains a significant challenge, because molecular transport between the cytoplasm and the nucleus of a eukaryotic cell is strictly regulated by the sole gateway through the nuclear envelope, the nuclear pore complexes (NPCs). Here, the rational design of novel artificial nuclear nanotransporters (NucPorters), inspired by importin, naturally occurring nuclear transporters is shown. The NucPorter is generated by simple molecular design: self-assembly of amphiphilic polymers, where a few numbers of hydrophobic amino-acid derivatives with phenyl groups are conjugated to negatively charged hydrophilic heparin. The NucPorter can mimic essential structural and chemical features of importin machinery to pass through the NPCs. Importantly, the NucPorter demonstrates remarkable rapid and high efficient nuclear transport in cultured cells, tissue/organ, and living mice. Moreover, the NucPorter successfully imports both enzymes and synthetic anticancer drugs into the nucleus while maintaining their bioactivity. Thus, the NucPorter provides a promising new route to generate innovative nuclear-targeting medicines, diagnostics, cell imaging and engineering techniques, and drug delivery systems.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Aminoácidos , Núcleo Celular/metabolismo , Nanoestructuras/química , Polisacáridos , Aminoácidos/química , Aminoácidos/metabolismo , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/metabolismo , Portadores de Fármacos , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Carioferinas/química , Ratones , Polisacáridos/química , Polisacáridos/metabolismo
17.
Protein Sci ; 29(6): 1366-1372, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31495993

RESUMEN

Chromosome region maintenance 1 (CRM1) exports nuclear export signal (NES) containing cargos from nucleus to cytoplasm and plays critical roles in cancer and viral infections. Biochemical and biophysical studies on this protein were often obstructed by its low purification yield and stability. With the help of PROSS server and NES protection strategy, we successfully designed three small fragments of CRM1, each made of four HEAT repeats and capable of binding to NESs in the absence of RanGTP. One of the fragments, C7, showed dramatically improved purification yield, thermostability, mechanostability, and resistance to protease digestion. We showed by isothermal titration that the protein kinase inhibitor NES binds to C7 at 1.18 µM affinity. Direct binding to C7 by several reported CRM1 inhibitors derived from plants were verified using pull-down assays. These fragments might be useful for the development of CRM1 inhibitors towards treatment of related diseases. The strategy applied here might help to tackle similar problems encountered in different fields.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Ingeniería de Proteínas , Señales de Clasificación de Proteína , Receptores Citoplasmáticos y Nucleares/metabolismo , Sitios de Unión/efectos de los fármacos , Núcleo Celular/química , Núcleo Celular/efectos de los fármacos , Humanos , Carioferinas/antagonistas & inhibidores , Carioferinas/química , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/química , Proteína Exportina 1
18.
Cancer Discov ; 9(10): 1452-1467, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31285298

RESUMEN

Altered expression of XPO1, the main nuclear export receptor in eukaryotic cells, has been observed in cancer, and XPO1 has been a focus of anticancer drug development. However, mechanistic evidence for cancer-specific alterations in XPO1 function is lacking. Here, genomic analysis of 42,793 cancers identified recurrent and previously unrecognized mutational hotspots in XPO1. XPO1 mutations exhibited striking lineage specificity, with enrichment in a variety of B-cell malignancies, and introduction of single amino acid substitutions in XPO1 initiated clonal, B-cell malignancy in vivo. Proteomic characterization identified that mutant XPO1 altered the nucleocytoplasmic distribution of hundreds of proteins in a sequence-specific manner that promoted oncogenesis. XPO1 mutations preferentially sensitized cells to inhibitors of nuclear export, providing a biomarker of response to this family of drugs. These data reveal a new class of oncogenic alteration based on change-of-function mutations in nuclear export signal recognition and identify therapeutic targets based on altered nucleocytoplasmic trafficking. SIGNIFICANCE: Here, we identify that heterozygous mutations in the main nuclear exporter in eukaryotic cells, XPO1, are positively selected in cancer and promote the initiation of clonal B-cell malignancies. XPO1 mutations alter nuclear export signal recognition in a sequence-specific manner and sensitize cells to compounds in clinical development inhibiting XPO1 function.This article is highlighted in the In This Issue feature, p. 1325.


Asunto(s)
Transformación Celular Neoplásica , Señales de Exportación Nuclear , Transporte Activo de Núcleo Celular , Animales , Proliferación Celular , Modelos Animales de Enfermedad , Expresión Génica , Genes bcl-2 , Genes myc , Humanos , Carioferinas/química , Carioferinas/genética , Carioferinas/metabolismo , Leucemia de Células B/genética , Leucemia de Células B/metabolismo , Leucemia de Células B/mortalidad , Leucemia de Células B/patología , Ratones , Mutación , Especificidad de Órganos/genética , Unión Proteica , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Relación Estructura-Actividad , Proteína Exportina 1
19.
J Cell Biol ; 218(6): 1839-1852, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31023722

RESUMEN

Importins ferry proteins into nuclei while exportins carry cargoes to the cytoplasm. In the accompanying paper in this issue (Vera Rodriguez et al. 2019. J. Cell Biol. https://doi.org/10.1083/jcb.201812091), we discovered that Pdr6 is a biportin that imports, e.g., the SUMO E2 ligase Ubc9 while depleting the translation factor eIF5A from the nuclear compartment. In this paper, we report the structures of key transport intermediates, namely, of the Ubc9•Pdr6 import complex, of the RanGTP•Pdr6 heterodimer, and of the trimeric RanGTP•Pdr6•eIF5A export complex. These revealed nonlinear transport signals, chaperone-like interactions, and how the RanGTPase system drives Pdr6 to transport Ubc9 and eIF5A in opposite directions. The structures also provide unexpected insights into the evolution of transport selectivity. Specifically, they show that recognition of Ubc9 by Pdr6 differs fundamentally from that of the human Ubc9-importer Importin 13. Likewise, Pdr6 recognizes eIF5A in a nonhomologous manner compared with the mammalian eIF5A-exporter Exportin 4. This suggests that the import of Ubc9 and active nuclear exclusion of eIF5A evolved in different eukaryotic lineages more than once and independently from each other.


Asunto(s)
Núcleo Celular/metabolismo , Carioferinas/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , beta Carioferinas/química , beta Carioferinas/metabolismo , Proteína de Unión al GTP ran/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Humanos , Carioferinas/química , Carioferinas/genética , Factores de Iniciación de Péptidos/química , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Unión Proteica , Conformación Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Homología de Secuencia , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genética , beta Carioferinas/genética , Proteína de Unión al GTP ran/química , Proteína de Unión al GTP ran/genética , Factor 5A Eucariótico de Iniciación de Traducción
20.
Elife ; 82019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30855230

RESUMEN

We report the crystal structure of nuclear import receptor Importin-9 bound to its cargo, the histones H2A-H2B. Importin-9 wraps around the core, globular region of H2A-H2B to form an extensive interface. The nature of this interface coupled with quantitative analysis of deletion mutants of H2A-H2B suggests that the NLS-like sequences in the H2A-H2B tails play a minor role in import. Importin-9•H2A-H2B is reminiscent of interactions between histones and histone chaperones in that it precludes H2A-H2B interactions with DNA and H3-H4 as seen in the nucleosome. Like many histone chaperones, which prevent inappropriate non-nucleosomal interactions, Importin-9 also sequesters H2A-H2B from DNA. Importin-9 appears to act as a storage chaperone for H2A-H2B while escorting it to the nucleus. Surprisingly, RanGTP does not dissociate Importin-9•H2A-H2B but assembles into a RanGTP•Importin-9•H2A-H2B complex. The presence of Ran in the complex, however, modulates Imp9-H2A-H2B interactions to facilitate its dissociation by DNA and assembly into a nucleosome.


Asunto(s)
Histonas/química , Histonas/metabolismo , Carioferinas/química , Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Animales , Cristalografía por Rayos X , Análisis Mutacional de ADN , Humanos , Carioferinas/genética , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Conformación Proteica , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...