Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109.900
Filtrar
1.
Nat Commun ; 15(1): 5773, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982057

RESUMEN

Harnessing the power of cell biocatalysis for sustainable chemical synthesis requires rational integration of living cells with the modern synthetic catalysts. Here, we develop silica-tiling strategy that constructs a hierarchical, inorganic, protocellular confined nanospace around the individual living cell to accommodate molecularly accessible abiotic catalytic sites. This empowers the living microorganisms for new-to-nature chemical synthesis without compromising the cellular regenerative process. Yeast cell, a widely used biocatalyst, is upgraded via highly controlled self-assembly of 2D-bilayer silica-based catalytic modules on cell surfaces, opening the avenues for diverse chemobiotic reactions. For example, combining [AuPt]-catalyzed NADH regeneration, light-induced [Pd]-catalyzed C-C cross-coupling or lipase-catalyzed esterification reactions-with the natural ketoreductase activity inside yeast cell. The conformal silica bilayer provides protection while allowing proximity to catalytic sites and preserving natural cell viability and proliferation. These living nanobiohybrids offer to bridge cell's natural biocatalytic capabilities with customizable heterogeneous metal catalysis, enabling programmable reaction sequences for sustainable chemical synthesis.


Asunto(s)
Biocatálisis , Saccharomyces cerevisiae , Dióxido de Silicio , Dióxido de Silicio/química , Saccharomyces cerevisiae/metabolismo , Catálisis , NAD/metabolismo , Lipasa/metabolismo , Paladio/química , Esterificación
2.
Nat Commun ; 15(1): 5737, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982157

RESUMEN

Exploring the promiscuity of native enzymes presents a promising strategy for expanding their synthetic applications, particularly for catalyzing challenging reactions in non-native contexts. In this study, we explore the promiscuous potential of old yellow enzymes (OYEs) to facilitate the Morita-Baylis-Hillman reaction (MBH reaction), leveraging substrate similarities between MBH reaction and reduction reaction. Using mass spectrometry and spectroscopic techniques, we confirm promiscuity of GkOYE in both MBH and reduction reactions. By blocking H- and H+ transfer pathways, we engineer GkOYE.8, which loses its reduction ability but enhances its MBH activity. The structural basis of MBH reaction catalyzed by GkOYE.8 is obtained through mutation studies and kinetic simulations. Furthermore, enantiocomplementary mutants GkOYE.11 and GkOYE.13 are obtained by directed evolution, exhibiting the ability to accept various aromatic aldehydes and alkenes as substrates. This study demonstrates the potential of leveraging substrate similarities to unlock enzyme functionalities, enabling the catalysis of new-to-nature reactions.


Asunto(s)
Biocatálisis , Especificidad por Sustrato , Cinética , Aldehídos/metabolismo , Aldehídos/química , Catálisis , Mutación , Alquenos/metabolismo , Alquenos/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Ingeniería de Proteínas
3.
Nat Commun ; 15(1): 5714, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977701

RESUMEN

Genetic code expansion has emerged as a powerful tool for precisely introducing unnatural chemical structures into proteins to improve their catalytic functions. Given the high catalytic propensity of histidine in the enzyme pocket, increasing the chemical diversity of catalytic histidine could result in new characteristics of biocatalysts. Herein, we report the genetically encoded Nδ-Vinyl Histidine (δVin-H) and achieve the wild-type-like incorporation efficiency by the evolution of pyrrolysyl tRNA synthetase. As histidine usually acts as the nucleophile or the metal ligand in the catalytic center, we replace these two types of catalytic histidine to δVin-H to improve the performance of the histidine-involved catalytic center. Additionally, we further demonstrate the improvements of the hydrolysis activity of a previously reported organocatalytic esterase (the OE1.3 variant) in the acidic condition and myoglobin (Mb) catalyzed carbene transfer reactions under the aerobic condition. As histidine is one of the most frequently used residues in the enzyme catalytic center, the derivatization of the catalytic histidine by δVin-H holds a great potential to promote the performance of biocatalysts.


Asunto(s)
Dominio Catalítico , Histidina , Histidina/metabolismo , Histidina/química , Histidina/genética , Mioglobina/genética , Mioglobina/química , Mioglobina/metabolismo , Biocatálisis , Catálisis , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Aminoacil-ARNt Sintetasas/química , Esterasas/genética , Esterasas/metabolismo , Esterasas/química , Hidrólisis , Escherichia coli/genética , Escherichia coli/metabolismo
4.
Nat Commun ; 15(1): 5705, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977710

RESUMEN

In nature, coenzyme-independent oxidases have evolved in selective catalysis using isolated substrate-binding pockets. Single-atom nanozymes (SAzymes), an emerging type of non-protein artificial enzymes, are promising to simulate enzyme active centers, but owing to the lack of recognition sites, realizing substrate specificity is a formidable task. Here we report a metal-ligand dual-site SAzyme (Ni-DAB) that exhibited selectivity in uric acid (UA) oxidation. Ni-DAB mimics the dual-site catalytic mechanism of urate oxidase, in which the Ni metal center and the C atom in the ligand serve as the specific UA and O2 binding sites, respectively, characterized by synchrotron soft X-ray absorption spectroscopy, in situ near ambient pressure X-ray photoelectron spectroscopy, and isotope labeling. The theoretical calculations reveal the high catalytic specificity is derived from not only the delicate interaction between UA and the Ni center but also the complementary oxygen reduction at the beta C site in the ligand. As a potential application, a Ni-DAB-based biofuel cell using human urine is constructed. This work unlocks an approach of enzyme-like isolated dual sites in boosting the selectivity of non-protein artificial enzymes.


Asunto(s)
Oxidación-Reducción , Urato Oxidasa , Ácido Úrico , Especificidad por Sustrato , Urato Oxidasa/química , Urato Oxidasa/metabolismo , Ácido Úrico/química , Ácido Úrico/metabolismo , Ácido Úrico/orina , Ligandos , Humanos , Níquel/química , Níquel/metabolismo , Sitios de Unión , Dominio Catalítico , Catálisis , Modelos Moleculares , Espectroscopía de Absorción de Rayos X
5.
Sci Rep ; 14(1): 15658, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977812

RESUMEN

Water pollution and antimicrobial resistance (AMR) have become two global threats; 80% of diseases and 50% of child deaths are due to poor water quality. In this study, hydrothermal processing was employed to manufacture manganese oxide nanorods. Silver dopant was deposited on the surface of manganese oxide. XRD diffractogram confirmed the facile synthesis of Ag/Mn2O3 nanocomposite. XPS survey analysis demonstrated silver content of 9.43 atom %. Photocatalytic measurements demonstrated the outstanding efficiency of the Ag-Mn2O3 compared to virgin oxide particles under visible radiation. Degradation efficiencies Mn2O3 and Ag/Mn2O3 on methyl orange (MO) dye was found to be 53% and 85% under visible spectrum. Silver dopant was found to decrease the binding energy of valence electrons; this action could support electron-hole pair generation under visible spectrum and could promote catalytic performance. Ag/Mn2O3 NPs demonstrated most effective performance (95% removal efficiency) at pH 3; this could be ascribed to the electrostatic attraction between positively charged catalyst and the negatively charged MO. Ag/Mn2O3 demonstrated enhanced antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) (19 mm ZOI), and Gram-negative Escherichia coli (E. coli) (22 mm ZOI) respectively; the developed nanocomposite demonstrated advanced anti-film activity with inhibition percentage of 95.5% against E. coli followed by 89.5% against S. aureus.


Asunto(s)
Escherichia coli , Compuestos de Manganeso , Nanocompuestos , Óxidos , Plata , Staphylococcus aureus , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Óxidos/química , Óxidos/farmacología , Plata/química , Plata/farmacología , Nanocompuestos/química , Catálisis , Escherichia coli/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Luz , Compuestos Azo/química , Compuestos Azo/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antiinfecciosos/síntesis química , Procesos Fotoquímicos
6.
Environ Geochem Health ; 46(8): 266, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954124

RESUMEN

Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.


Asunto(s)
Antibacterianos , Oxidación-Reducción , Tetraciclina , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/química , Antibacterianos/química , Tetraciclina/química , Catálisis , Aguas Residuales/química , Bismuto/química , Grafito/química , Compuestos de Nitrógeno/química , Compuestos de Tungsteno/química , Fotólisis , Purificación del Agua/métodos , Aguas del Alcantarillado/química
7.
Environ Sci Technol ; 58(26): 11843-11854, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952299

RESUMEN

Advanced oxidation processes (AOPs) are the most efficient water cleaning technologies, but their applications face critical challenges in terms of mass/electron transfer limitations and catalyst loss/deactivation. Bipolar electrochemistry (BPE) is a wireless technique that is promising for energy and environmental applications. However, the synergy between AOPs and BPE has not been explored. In this study, by combining BPE with AOPs, we develop a general approach of using carbon nanotubes (CNTs) as electric-field-induced bipolar electrodes to control electron transfer for efficient water purification. This approach can be used for permanganate and peroxide activation, with superior performances in the degradation of refractory organic pollutants and excellent durability in recycling and scale-up experiments. Theoretical calculations, in situ measurements, and physical experiments showed that an electric field could substantially reduce the energy barrier of electron transfer over CNTs and induce them to produce bipolar electrodes via electrochemical polarization or to form monopolar electrodes through a single particle collision effect with feeding electrodes. This approach can continuously provide activated electrons from one pole of bipolar electrodes and simultaneously achieve "self-cleaning" of catalysts through CNT-mediated direct oxidation from another pole of bipolar electrodes. This study provides a fundamental scientific understanding of BPE, expands its scope in the environmental field, and offers a general methodology for water purification.


Asunto(s)
Electrodos , Nanotubos de Carbono , Oxidación-Reducción , Purificación del Agua , Nanotubos de Carbono/química , Purificación del Agua/métodos , Catálisis
8.
Nat Commun ; 15(1): 5579, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961117

RESUMEN

Liquid-liquid reactions play a significant role in organic synthesis. However, control of the phase interface between incompatible two-phase liquids remains challenging. Moreover, separating liquid acid, base and oxidants from the reactor takes a long time and high cost. To address these issues, we draw inspiration from the structure and function of cells in living organisms and develop a biomimetic 3D-printed cellular reactor. The cellular reactor houses an aqueous phase containing the catalyst or oxidant while immersed in the organic phase reactant. This setup controls the distribution of the phase interface within the organic phase and increases the interface area by 2.3 times. Notably, the cellular reactor and the aqueous phase are removed from the organic phase upon completing the reaction, eliminating additional separation steps and preventing direct contact between the reactor and acidic, alkaline, or oxidizing substances. Furthermore, the cellular reactor offers the advantages of digital design feasibility and cost-effective manufacturing.


Asunto(s)
Impresión Tridimensional , Catálisis , Reactores Biológicos , Oxidantes/química
9.
Anal Chim Acta ; 1316: 342882, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38969418

RESUMEN

BACKGROUND: Transition metal phosphides with properties similar to platinum metal have received increasing attention for the non-enzymatic detection of glucose. However, the requirement of highly corrosive reagent during sample pretreatment would impose a potential risk to the human body, limiting their practical applications. RESULTS: In this study, we report a self-powered microfluidic device for the non-enzymatic detection of glucose using nickel phosphide (Ni2P) hybrid as the catalyst. The Ni2P hybrid is synthesized by pyrolysis of metal-organic framework (MOF)-based precursor and in-situ phosphating process, showing two linear detection ranges (1 µM-1 mM, 1 mM-6 mM) toward glucose with the detection limit of 0.32 µM. The good performance of Ni2P hybrid for glucose is attributed to the synergistic effect of Ni2P active sites and N-doped porous carbon matrix. The microchip is integrated with a NaOH-loaded paper pad and a capillary-based micropump, enabling the automatic NaOH redissolution and delivery of sample solution into the detection chamber. Under the optimized condition, the Ni2P hybrid-based microchip realized the detection of glucose in a user-friendly way. Besides, the feasibility of using this microchip for glucose detection in real serum samples has also been validated. SIGNIFICANCE: This article presents a facile fabrication method utilizing a MOF template to synthesize a Ni2P hybrid catalyst. By leveraging the synergy between the Ni2P active sites and the N-doped carbon matrix, an exceptional electrochemical detection performance for glucose has been achieved. Additionally, a self-powered chip device has been developed for convenient glucose detection based on the pre-established high pH environment on the chip.


Asunto(s)
Técnicas Electroquímicas , Electrodos , Níquel , Níquel/química , Técnicas Electroquímicas/instrumentación , Humanos , Glucosa/análisis , Fosfinas/química , Estructuras Metalorgánicas/química , Límite de Detección , Dispositivos Laboratorio en un Chip , Glucemia/análisis , Catálisis
10.
J Environ Sci (China) ; 146: 163-175, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969445

RESUMEN

Heterogeneous iron-based catalysts have drawn increasing attention in the advanced oxidation of persulfates due to their abundance in nature, the lack of secondary pollution to the environment, and their low cost over the last a few years. In this paper, the latest progress in the research on the activation of persulfate by heterogeneous iron-based catalysts is reviewed from two aspects, in terms of synthesized catalysts (Fe0, Fe2O3, Fe3O4, FeOOH) and natural iron ore catalysts (pyrite, magnetite, hematite, siderite, goethite, ferrohydrite, ilmenite and lepidocrocite) focusing on efforts made to improve the performance of catalysts. The advantages and disadvantages of the synthesized catalysts and natural iron ore were summarized. Particular interests were paid to the activation mechanisms in the catalyst/PS/pollutant system for removal of organic pollutants. Future research challenges in the context of field application were also discussed.


Asunto(s)
Hierro , Sulfatos , Contaminantes Químicos del Agua , Catálisis , Hierro/química , Sulfatos/química , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Eliminación de Residuos Líquidos/métodos
11.
J Environ Sci (China) ; 146: 28-38, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969456

RESUMEN

Semiconductor heterojunction engineering and three-dimensional (3D) architecture construction have been considered highly desirable strategies to enhance photocatalytic performance. Herein, a BiOI/ZnO composite photocatalyst with a 3D flower-like architecture was successfully prepared, which was stably immobilized on three-dimensional porous lignocellulosic biomass Juncus effusus (JE) fiber. The outstanding photocatalytic performance of the BiOI/ZnO-JE fiber was confirmed by the degradation of tetracycline hydrochloride (TC, 90%), ciprofloxacin (CIP, 79%), and norfloxacin (NOR, 81%). The enhanced photocatalytic activities were mainly attributed to the synergistic absorption performance of the lignocellulosic JE and the effective transfer and separation of charges. Moreover, the hydroxyl (·OH) and superoxide radicals (·O2-) are the main reactive species in the photocatalytic process according to the analysis. This work may provide a novel perspective for constructing high-performance lignocellulosic-based photocatalytic materials.


Asunto(s)
Biomasa , Fotólisis , Óxido de Zinc , Óxido de Zinc/química , Contaminantes Químicos del Agua/química , Catálisis
12.
Mikrochim Acta ; 191(8): 441, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954045

RESUMEN

A ratiometric SERS aptasensor based on catalytic hairpin self-assembly (CHA) mediated cyclic signal amplification strategy was developed for the rapid and reliable determination of Escherichia coli O157:H7. The recognition probe was synthesized by modifying magnetic beads with blocked aptamers, and the SERS probe was constructed by functionalizing gold nanoparticles (Au NPs) with hairpin structured DNA and 4-mercaptobenzonitrile (4-MBN). The recognition probe captured E. coli O157:H7 specifically and released the blocker DNA, which activated the CHA reaction on the SERS probe and turned on the SERS signal of 6-carboxyl-x-rhodamine (ROX). Meanwhile, 4-MBN was used as an internal reference to calibrate the matrix interference. Thus, sensitive and reliable determination and quantification of E. coli O157:H7 was established using the ratio of the SERS signal intensities of ROX to 4-MBN. This aptasensor enabled detection of 2.44 × 102 CFU/mL of E. coli O157:H7 in approximately 3 h without pre-culture and DNA extraction. In addition, good reliability and excellent reproducibility were observed for the determination of E. coli O157:H7 in spiked water and milk samples. This study offered a new solution for the design of rapid, sensitive, and reliable SERS aptasensors.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Escherichia coli O157 , Oro , Límite de Detección , Nanopartículas del Metal , Leche , Espectrometría Raman , Escherichia coli O157/aislamiento & purificación , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Oro/química , Leche/microbiología , Leche/química , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos , Animales , Catálisis , Secuencias Invertidas Repetidas , Contaminación de Alimentos/análisis , Microbiología del Agua , Reproducibilidad de los Resultados
13.
Mikrochim Acta ; 191(7): 438, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951285

RESUMEN

A dual-recognition strategy is reported to construct a one-step washing and highly efficient signal-transduction tag system for high-sensitivity colorimetric detection of Staphylococcus aureus (S. aureus). The porous (gold core)@(platinum shell) nanozymes (Au@PtNEs) as the signal labels show highly efficient peroxidase mimetic activity and are robust. For the sake of simplicity the detection involved the use of a vancomycin-immobilized magnetic bead (MB) and aptamer-functionalized Au@PtNEs for dual-recognition detection in the presence of S. aureus. In addition, we designed a magnetic plate to fit the 96-well microplate to ensure consistent magnetic properties of each well, which can quickly remove unreacted Au@PtNEs and sample matrix while avoiding tedious washing steps. Subsequently, Au@PtNEs catalyze hydrogen peroxide (H2O2) to oxidize 3,3',5,5'-tetramethylbenzidine (TMB) generating a color signal. Finally, the developed Au@PtNEs-based dual-recognition washing-free colorimetric assay displayed a response in the range of S. aureus of 5 × 101-5 × 105 CFU/mL, and the detection limit was 40 CFU/mL within 1.5 h. In addition, S. aureus-fortified samples were analyzed to further evaluate the performance of the proposed method, which yielded average recoveries ranging from 93.66 to 112.44% and coefficients of variation (CVs) within the range 2.72-9.01%. These results furnish a novel horizon for the exploitation of a different mode of recognition and inexpensive enzyme-free assay platforms as an alternative to traditional enzyme-based immunoassays for the detection of other Gram-positive pathogenic bacteria.


Asunto(s)
Bencidinas , Colorimetría , Oro , Peróxido de Hidrógeno , Límite de Detección , Platino (Metal) , Staphylococcus aureus , Staphylococcus aureus/aislamiento & purificación , Colorimetría/métodos , Oro/química , Platino (Metal)/química , Porosidad , Bencidinas/química , Peróxido de Hidrógeno/química , Aptámeros de Nucleótidos/química , Nanopartículas del Metal/química , Vancomicina/química , Técnicas Biosensibles/métodos , Catálisis , Humanos
14.
Bioresour Technol ; 405: 130934, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38851599

RESUMEN

Catalysts are usually employed in hydrothermal processes for different purposes, such as enhancing quality and yield of produced biofuels. However, assessing catalyst performances can be time consuming and expensive. For this reason, in this work, a technique based on high pressure differential scanning calorimetry was applied to study heterogeneous catalyst behavior under hydrothermal conditions at the micro-scale. Heterogeneous catalysts were mixed with distilled water and cellulose, selected as substrate, and tested at 250 °C. The heat release profiles obtained were deconvoluted in three Gaussian peaks, each associated with a set of reactions. Siralox and iron chloride showed the highest catalytic activities impacting the development and the enthalpy of the reactions. Selected samples were further characterized to investigate synergies among acid and basic sites and emphasize the importance of the spatial distribution of the components inside the catalysts. This study highlights the crucial role of advanced techniques in optimizing catalyst performance for more efficient biofuel production.


Asunto(s)
Biocombustibles , Rastreo Diferencial de Calorimetría , Catálisis , Celulosa/química , Agua/química , Calor , Temperatura
15.
Water Sci Technol ; 89(11): 3047-3078, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877630

RESUMEN

Graphitic carbon nitride (g-C3N4) is a widely studied visible-light-active photocatalyst for low cost, non-toxicity, and facile synthesis. Nonetheless, its photocatalytic efficiency is below par, due to fast recombination of charge carriers, low surface area, and insufficient visible light absorption. Thus, the research on the modification of g-C3N4 targeting at enhanced photocatalytic performance has attracted extensive interest. A considerable amount of review articles have been published on the modification of g-C3N4 for applications. However, limited effort has been specially contributed to providing an overview and comparison on available modification strategies for improved photocatalytic activity of g-C3N4-based catalysts in antibiotics removal. There has been no attempt on the comparison of photocatalytic performances in antibiotics removal between modified g-C3N4 and other known catalysts. To address these, our study reviewed strategies that have been reported to modify g-C3N4, including metal/non-metal doping, defect tuning, structural engineering, heterostructure formation, etc. as well as compared their performances for antibiotics removal. The heterostructure formation was the most widely studied and promising route to modify g-C3N4 with superior activity. As compared to other known photocatalysts, the heterojunction g-C3N4 showed competitive performances in degradation of selected antibiotics. Related mechanisms were discussed, and finally, we revealed current challenges in practical application.


Asunto(s)
Antibacterianos , Grafito , Luz , Compuestos de Nitrógeno , Contaminantes Químicos del Agua , Antibacterianos/química , Grafito/química , Catálisis , Compuestos de Nitrógeno/química , Contaminantes Químicos del Agua/química , Fotólisis , Procesos Fotoquímicos , Nitrilos
16.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892146

RESUMEN

Advanced oxidation processes, including photocatalysis, have been proven effective at organic dye degradation. Tailored porous materials with regulated pore size, shape, and morphology offer a sustainable solution to the water pollution problem by acting as support materials to grafted photocatalytic nanoparticles (NPs). This research investigated the influence of pore and particle sizes of photocatalytic MICROSCAFS® on the degradation of methyl orange (MO) in aqueous solution (10 mg/L). Photocatalytic MICROSCAFS® are made of binder-less supported P25 TiO2 NPs within MICROSCAFS®, which are silica-titania microspheres with a controlled size and interconnected macroporosity, synthesized by an adapted sol-gel method that involves a polymerization-induced phase separation process. Photocatalytic experiments were performed both in batch and flow reactors, with this latter one targeting a proof of concept for continuous transformation processes and real-life conditions. Photocatalytic degradation of 87% in 2 h (batch) was achieved, using a calibrated solar light simulator (1 sun) and a photocatalyst/pollutant mass ratio of 23. This study introduces a novel flow kinetic model which provides the modeling and simulation of the photocatalytic MICROSCAFS® performance. A scavenger study was performed, enabling an in-depth mechanistic understanding. Finally, the transformation products resulting from the MO photocatalytic degradation were elucidated by high-resolution mass spectrometry experiments and subjected to an in silico toxicity assessment.


Asunto(s)
Compuestos Azo , Luz Solar , Titanio , Contaminantes Químicos del Agua , Purificación del Agua , Catálisis , Purificación del Agua/métodos , Titanio/química , Contaminantes Químicos del Agua/química , Porosidad , Compuestos Azo/química , Microesferas , Dióxido de Silicio/química , Fotólisis , Cinética , Procesos Fotoquímicos
17.
Chemosphere ; 361: 142502, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838863

RESUMEN

Bitumen extraction in Alberta's oil sands region uses large volumes of water, leading to an abundance of oil sands process-affected water (OSPW). OSPW contains naphthenic acid fraction compounds (NAFCs) which have been found to contribute to OSPW toxicity. This study utilized a multistep treatment, coupling biological degradation with UV photocatalytic oxidation, and nutrient addition to boost the native microbial community's degradation capacity. OSPW initially contained 40-42 mg/L NAFCs with a toxicity of 3.8-3.9 TU. Initial biodegradation (Step 1) was used to remove the easily biodegradable NAFCs (11-25% removal), followed by a light or heavy dose of oxidation (Step 2) to breakdown the recalcitrant NAFCs (66-82% removal). Lastly, post-oxidation biodegradation with nutrients (Step 3) removed the residual bioavailable NAFCs (16-31% removal). By the end of the multistep treatment, the final NAFC concentrations and toxicity ranged from 5.3 to 6.8 mg/L and 1.1-1.2 TU. Analysis showed that OPSW was limited in phosphorus (below detection limit), and the addition of nutrients improved the degradation of NAFCs. Two treatments throughout the multistep treatment never received nutrients and showed minimal NAFC degradation post-oxidation. The native microbial community survived the stress from UV photocatalytic oxidation as seen by the post-oxidation NAFC biodegradation. Microbial community diversity was reduced considerably following oxidation, but increased with nutrient addition. The microbial community consisted predominately of Proteobacteria (Gammaproteobacteria and Alphaproteobacteria), and the composition shifted depending on the level of oxidation received. Possible NAFC-degrading microbes identified after a light oxidation dose included Pseudomonas, Acinetobacter and Xanthomonadales, while Xanthobacteracea and Rhodococcus were the dominant microbes after heavy oxidation. This experiment confirms that the microbial community is capable of degrading NAFCs and withstanding oxidative stress, and that degradation is further enhanced with the addition of nutrients.


Asunto(s)
Biodegradación Ambiental , Ácidos Carboxílicos , Yacimiento de Petróleo y Gas , Oxidación-Reducción , Titanio , Rayos Ultravioleta , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Titanio/química , Ácidos Carboxílicos/metabolismo , Alberta , Catálisis , Hidrocarburos/metabolismo
18.
Chemosphere ; 361: 142522, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838869

RESUMEN

Selecting safe, non-toxic, and non-metallic semiconductor materials that facilitate the degradation of pollutants in water stands out as an optimal approach to combat environmental pollution. Herein, graphitic carbon nitride (g-C3N4)-based hollow nanospheres nonmetallic photocatalyst modified with covalent organic framework materials named TpMA, based on 1, 3, 5-trimethylchloroglucuronide (Tp) and melamine (MA), was successfully synthesized (abbreviated as CNTP). The ordered electron donor-acceptor structure inherent in TpMA contributed to enhancing the transport efficiency of photogenerated carriers in CNTP. The CNTP photocatalysts exhibited excellent performance in degrading rhodamine B and tetracycline in visible light, with optimal degradation rates reached more than 90% in 60 and 80 min, respectively, which were 5.3 and 3.0 times higher than those of pure CNNS. The increased photocatalytic efficiency observed in CNTP composites could be traced back to the covalently connection between the two molecules, forming a π-conjugated system that facilitated the separative efficiency of photogenerated electron-hole pairs and intensified the utilization of visible light. This study provided a new means to design and fabricate highly efficient and environmentally friendly non-metallic photocatalytic materials.


Asunto(s)
Grafito , Nanosferas , Compuestos de Nitrógeno , Rodaminas , Triazinas , Contaminantes Químicos del Agua , Nanosferas/química , Catálisis , Triazinas/química , Grafito/química , Rodaminas/química , Compuestos de Nitrógeno/química , Contaminantes Químicos del Agua/química , Luz , Tetraciclina/química , Nitrilos/química , Procesos Fotoquímicos , Fotólisis
19.
Environ Sci Technol ; 58(24): 10863-10873, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38842426

RESUMEN

Electrochemical nitrate reduction (NO3RR) provides a new option to abate nitrate contamination with a low carbon footprint. Restricted by competitive hydrogen evolution, achieving satisfied nitrate reduction performance in neutral media is still a challenge, especially for the regulation of this multielectron multiproton reaction. Herein, facile element doping is adopted to tune the catalytic behavior of IrNi alloy nanobranches with an unconventional hexagonal close-packed (hcp) phase toward NO3RR. In particular, the obtained hcp IrNiCu nanobranches favor the ammonia production and suppress byproduct formation in a neutral electrolyte indicated by in situ differential electrochemical mass spectrometry, with a high Faradaic efficiency (FE) of 85.6% and a large yield rate of 1253 µg cm-2 h-1 at -0.4 and -0.6 V (vs reversible hydrogen electrode (RHE)), respectively. In contrast, the resultant hcp IrNiCo nanobranches promote the formation of nitrite, with a peak FE of 33.1% at -0.1 V (vs RHE). Furthermore, a hybrid electrolysis cell consisting of NO3RR and formaldehyde oxidation is constructed, which are both catalyzed by hcp IrNiCu nanobranches. This electrolyzer exhibits lower overpotential and holds the potential to treat polluted air and wastewater simultaneously, shedding light on green chemical production based on contaminate degradation.


Asunto(s)
Nitratos , Oxidación-Reducción , Nitratos/química , Técnicas Electroquímicas , Catálisis , Metales/química
20.
Environ Sci Technol ; 58(24): 10852-10862, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38843408

RESUMEN

The Cu(II)/H2O2 system is recognized for its potential to degrade recalcitrant organic contaminants and inactivate microorganisms in wastewater. We investigated its unique dual oxidation strategy involving the selective oxidation of copper-complexing ligands and enhanced oxidation of nonchelated organic compounds. L-Histidine (His) and benzoic acid (BA) served as model compounds for basic biomolecular ligands and recalcitrant organic contaminants, respectively. In the presence of both His and BA, the Cu(II)/H2O2 system rapidly degraded His complexed with copper ions within 30 s; however, BA degraded gradually with a 2.3-fold efficiency compared with that in the absence of His. The primary oxidant responsible was the trivalent copper ion [Cu(III)], not hydroxyl radical (•OH), as evidenced by •OH scavenging, hydroxylated BA isomer comparison with UV/H2O2 (a •OH generating system), electron paramagnetic resonance, and colorimetric Cu(III) detection via periodate complexation. Cu(III) selectively oxidized His owing to its strong chelation with copper ions, even in the presence of excess tert-butyl alcohol. This selectivity extended to other copper-complexing ligands, including L-asparagine and L-aspartic acid. The presence of His facilitated H2O2-mediated Cu(II) reduction and increased Cu(III) production, thereby enhancing the degradation of BA and pharmaceuticals. Thus, the Cu(II)/H2O2 system is a promising option for dual-target oxidation in diverse applications.


Asunto(s)
Cobre , Histidina , Peróxido de Hidrógeno , Oxidación-Reducción , Cobre/química , Histidina/química , Peróxido de Hidrógeno/química , Catálisis , Hierro/química , Radical Hidroxilo/química , Ácido Benzoico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...