Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.457
Filtrar
1.
J Photochem Photobiol B ; 255: 112905, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38703452

RESUMEN

Bacterial antibiotic resistance is one of the most significant challenges for public health. The increase in bacterial resistance, mainly due to microorganisms harmful to health, and the need to search for alternative treatments to contain infections that cannot be treated by conventional antibiotic therapy has been aroused. An alternative widely studied in recent decades is antimicrobial photodynamic therapy (aPDT), a treatment that can eliminate microorganisms through oxidative stress. Although this therapy has shown satisfactory results in infection control, it is still controversial in the scientific community whether bacteria manage to develop resistance after successive applications of aPDT. Thus, this work provides an overview of the articles that performed successive aPDT applications in models using bacteria published since 2010, focusing on sublethal dose cycles, highlighting the main PSs tested, and addressing the possible mechanisms for developing tolerance or resistance to aPDT, such as efflux pumps, biofilm formation, OxyR and SoxRS systems, catalase and superoxide dismutase enzymes and quorum sensing.


Asunto(s)
Biopelículas , Farmacorresistencia Bacteriana , Fotoquimioterapia , Fármacos Fotosensibilizantes , Farmacorresistencia Bacteriana/efectos de los fármacos , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Biopelículas/efectos de los fármacos , Bacterias/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antibacterianos/química , Percepción de Quorum/efectos de los fármacos , Humanos , Catalasa/metabolismo , Estrés Oxidativo/efectos de los fármacos
2.
Mol Biol Rep ; 51(1): 616, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722391

RESUMEN

BACKGROUND: Chlorpyrifos (CPF) is a widely used pesticide in the production of plant crops. Despite rapid CPF biodegradation, fish were exposed to wastewater containing detectable residues. Recently, medicinal plants and algae were intensively used in aquaculture to replace antibiotics and ameliorate stress impacts. METHODS AND RESULTS: An indoor experiment was conducted to evaluate the deleterious impacts of CPF pollution on Nile tilapia health and the potential mitigation role of Chlorella vulgaris algae. Firstly, the median lethal concentration LC50 - 72 h of CPF was determined to be 85.8 µg /L in Nile tilapia (35.6 ± 0.5 g body weight) at a water temperature of 27.5 °C. Secondly, fish were exposed to 10% of LC50 - 72 h for six weeks, and tissue samples were collected and examined every two weeks. Also, Nile tilapia were experimentally infected with Streptococcus agalactiae. Exposed fish were immunosuppressed expressed with a decrease in gene expressions of interleukin (IL) 1ß, IL-10, and tumor necrosis factor (TNF)-α. Also, a decline was recorded in glutathione peroxidase (GPx), superoxide dismutase (SOD), and catalase (CAT) gene expression in the head kidney tissue. A high mortality rate (MR) of 100% was recorded in fish exposed to CPF for six weeks and challenged with S. agalactiae. Fish that received dietary C. vulgaris could restore gene expression cytokines and antioxidants compared to the control. After six weeks of CPF exposure, fish suffered from anemia as red blood cell count (RBCs), hemoglobin (Hb), and packed cell volume (PCV) significantly declined along with downregulation of serum total protein (TP), globulin (GLO), and albumin (ALB). Liver enzymes were significantly upregulated in fish exposed to CPF pollution, alanine aminotransferase (ALT) (42.5, 53.3, and 61.7 IU/L) and aspartate aminotransferase (AST) (30.1, 31.2, and 22.8) after 2, 4, and 6 weeks, respectively. On S. agalactiae challenge, high MR was recorded in Nile tilapia exposed to CPF (G3) 60%, 60%, and 100% in week 2, week 4, and week 6, and C. vulgaris provided a relative protection level (RPL) of 0, 14.29, and 20%, respectively. CONCLUSIONS: It was concluded that CPF pollution induces immunosuppressed status, oxidative stress, and anemic signs in Nile tilapia. In contrast, C. vulgaris at a 50 g/kg fish feed dose could partially ameliorate such withdrawals, restoring normal physiological parameters.


Asunto(s)
Antioxidantes , Chlorella vulgaris , Cloropirifos , Cíclidos , Enfermedades de los Peces , Streptococcus agalactiae , Animales , Streptococcus agalactiae/efectos de los fármacos , Cíclidos/metabolismo , Cíclidos/microbiología , Cíclidos/genética , Cloropirifos/toxicidad , Antioxidantes/metabolismo , Enfermedades de los Peces/microbiología , Infecciones Estreptocócicas/veterinaria , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/genética , Catalasa/metabolismo , Catalasa/genética , Contaminantes Químicos del Agua/toxicidad , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Estrés Oxidativo/efectos de los fármacos , Acuicultura/métodos
3.
PLoS One ; 19(5): e0303060, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38723008

RESUMEN

In the current study we investigated the impact of combination of rutin and vitamin A on glycated products, the glyoxalase system, oxidative markers, and inflammation in animals fed a high-fat high-fructose (HFFD) diet. Thirty rats were randomly divided into six groups (n = 5). The treatments, metformin (120 mg/kg), rutin (100 mg/kg), vitamin A (43 IU/kg), and a combination of rutin (100 mg/kg) and vitamin A (43 IU/kg) were given to relevant groups of rats along with high-fructose high-fat diet for 42 days. HbA1c, D-lactate, Glyoxylase-1, Hexokinase 2, malondialdehyde (MDA), glutathione peroxidase (GPx), catalase (CAT), nuclear transcription factor-B (NF-κB), interleukin-6 (IL-6), interleukin-8 (IL-8) and histological examinations were performed after 42 days. The docking simulations were conducted using Auto Dock package. The combined effects of rutin and vitamin A in treated rats significantly (p < 0.001) reduced HbA1c, hexokinase 2, and D-lactate levels while preventing cellular damage. The combination dramatically (p < 0.001) decreased MDA, CAT, and GPx in treated rats and decreased the expression of inflammatory cytokines such as IL-6 andIL-8, as well as the transcription factor NF-κB. The molecular docking investigations revealed that rutin had a strong affinity for several important biomolecules, including as NF-κB, Catalase, MDA, IL-6, hexokinase 2, and GPx. The results propose beneficial impact of rutin and vitamin A as a convincing treatment strategy to treat AGE-related disorders, such as diabetes, autism, alzheimer's, atherosclerosis.


Asunto(s)
Dieta Alta en Grasa , Fructosa , Hiperglucemia , Inflamación , Estrés Oxidativo , Rutina , Vitamina A , Animales , Rutina/farmacología , Estrés Oxidativo/efectos de los fármacos , Fructosa/efectos adversos , Ratas , Dieta Alta en Grasa/efectos adversos , Vitamina A/farmacología , Vitamina A/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Masculino , Hiperglucemia/tratamiento farmacológico , Hiperglucemia/metabolismo , Hiperglucemia/inducido químicamente , Simulación del Acoplamiento Molecular , Ratas Wistar , Modelos Animales de Enfermedad , Glicosilación/efectos de los fármacos , Metformina/farmacología , Hemoglobina Glucada/metabolismo , FN-kappa B/metabolismo , Hexoquinasa/metabolismo , Catalasa/metabolismo
4.
Sci Rep ; 14(1): 11508, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769439

RESUMEN

There is a growing trend towards enhancing the post-harvest shelf life and maintaining the nutritional quality of horticultural products using eco-friendly methods. Raspberries are valued for their diverse array of phenolic compounds, which are key contributors to their health-promoting properties. However, raspberries are prone to a relatively short post-harvest lifespan. The present study aimed to investigate the effect of exogenous melatonin (MEL; 0, 0.001, 0.01, and 0.1 mM) on decay control and shelf-life extension. The results demonstrated that MEL treatment significantly reduced the fruit decay rate (P ≤ 0.01). Based on the findings, MEL treatment significantly increased titratable acidity (TA), total phenolics content (TPC), total flavonoid content (TFC), and total anthocyanin content (TAC). Furthermore, the MEL-treated samples showed increased levels of rutin and quercetin content, as well as antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reduction activity potential (FRAP). Additionally, the samples exhibited higher levels of phenylalanine ammonia-lyase (PAL) and catalase (CAT) enzymes compared to the control samples. Moreover, the levels of pH, total soluble solids (TSS), and IC50 were decreased in the MEL-treated samples (P ≤ 0.01). The highest amount of TA (0.619 g/100 ml juice), rutin (16.722 µg/ml juice) and quercetin (1.467 µg/ml juice), and PAL activity (225.696 nm/g FW/min) was observed at 0.001 mM treatment, while, the highest amount of TAC (227.235 mg Cy-g/100 ml juice) at a concentration of 0.01 mM and CAT (0.696 u/g FW) and TAL activities (9.553 nm/100 g FW) at a concentration of 0.1 mM were obtained. Considering the lack of significant differences in the effects of melatonin concentrations and the low dose of 0.001 mM, this concentration is recommended for further research. The hierarchical cluster analysis (HCA) and principal component analysis (PCA) divided the treatments into three groups based on their characteristics. Based on the Pearson correlation between TPC, TFC, TAC, and TAA, a positive correlation was observed with antioxidant (DPPH and FRAP) and enzyme (PAL and CAT) activities. The results of this study have identified melatonin as an eco-friendly compound that enhances the shelf life of raspberry fruits by improving phenolic compounds, as well as antioxidant and enzyme activities.


Asunto(s)
Antioxidantes , Frutas , Melatonina , Fitoquímicos , Rubus , Antioxidantes/metabolismo , Antioxidantes/análisis , Melatonina/farmacología , Rubus/química , Fitoquímicos/análisis , Fitoquímicos/química , Frutas/química , Frutas/efectos de los fármacos , Fenoles/análisis , Flavonoides/análisis , Catalasa/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Antocianinas/análisis
5.
Int J Mycobacteriol ; 13(1): 91-95, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38771285

RESUMEN

BACKGROUND: Rapid detection of tuberculosis (TB) and its resistance are essential for the prompt initiation of correct drug therapy and for stopping the spread of drug-resistant TB. There is an urgent need for increased use of rapid diagnostic tests to control the threat of increased TB and multidrug-resistant TB (MDR-TB). METHODS: EMPE Diagnostics has developed a multiplex molecular diagnostic platform called mfloDx™ by combining nucleotide-specific padlock probe-dependent rolling circle amplification with sensitive lateral flow biosensors, providing visual signals, similar to a COVID-19 test. The first test kit of this platform, mfloDx™ MDR-TB can identify Mycobacterium tuberculosis (MTB) complex and its clinically significant mutations in the rpoB and katG genes and in the inhA promotor contributing resistance to rifampicin (RIF) and isoniazid (INH), causing MDR-TB. RESULTS: We have evaluated the performance of the mfloDx™ MDR-TB test on 210 sputum samples (110 from suspected TB cases and 100 from TB-negative controls) received from a tertiary care center in India. The clinical sensitivity for detecting MTB compared to acid-fast microscopy and mycobacteria growth indicator tube (MGIT) cultures was 86.4% and 84.9%, respectively. All the 100 control samples were negative indicating excellent specificity. In smear-positive sputum samples, the mfloDx™ MDR-TB test showed a sensitivity of 92.5% and 86.4% against MGIT culture and Xpert MTB/RIF, respectively. The clinical sensitivity for the detection of RIF and INH resistance in comparison with MGIT drug susceptibility testing was 100% and 84.6%, respectively, while the clinical specificity was 100%. CONCLUSION: From the above evaluation, we find mfloDx™ MDR-TB to be a rapid and efficient test to detect TB and its multidrug resistance in 3 h at a low cost making it suitable for resource-limited laboratories.


Asunto(s)
Antituberculosos , Isoniazida , Mycobacterium tuberculosis , Rifampin , Sensibilidad y Especificidad , Tuberculosis Resistente a Múltiples Medicamentos , Rifampin/farmacología , Humanos , Isoniazida/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Antituberculosos/farmacología , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana Múltiple/genética , Esputo/microbiología , Proteínas Bacterianas/genética , India , Técnicas de Diagnóstico Molecular/métodos , Catalasa , Oxidorreductasas
6.
Toxicon ; 243: 107743, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38701903

RESUMEN

The estrogen-like mycotoxin zearalenone (ZEA) was popularly occurred in several food and feeds, posing threats to human and animal health. ZEA induced renal toxicity and caused oxidative stress. In the current study, the protecting effect of kefir administration against ZEA-induced renal damage in rats was explored. Rats were divided into 4 groups, each consisting of 5 animals. For the initial 7 days, they were orally administered sterile milk (200 µL/day). Subsequently, during the second week, the groups were exposed to kefir (200 µL/day), ZEA (40 mg/kg b.w./day) and a combination of kefir and ZEA. The biochemical parameters, kidney histological changes and ZEA residue were assessed. Kefir supplementation enhanced the antioxidant enzymes in the kidney, such as superoxide dismutase, catalase and glutathione peroxidase activities, which increased by 1.2, 4 and 20 folds, respectively, relative to the ZEA group. Remarkably, the concomitant administration kefir + ZEA suppressed ZEA residues in both serum and kidney. Additionally, serum levels of blood urea nitrogen, uric acid and renal malondialdehyde decreased by 22, 65 and 54%, respectively, in the kefir + ZEA group; while, the creatinine content increased by around 60%. Rats co-treated with kefir showed a normal kidney histological architecture contrary to tissues alterations mediated in the ZEA group. These results suggest that kefir may showed a protective effect on the kidneys, mitigating ZEA-induced acute toxicity in rats.


Asunto(s)
Kéfir , Riñón , Estrés Oxidativo , Ratas Wistar , Zearalenona , Animales , Zearalenona/toxicidad , Estrés Oxidativo/efectos de los fármacos , Femenino , Ratas , Riñón/efectos de los fármacos , Riñón/patología , Superóxido Dismutasa/metabolismo , Antioxidantes/farmacología , Catalasa/metabolismo , Malondialdehído/metabolismo , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Enfermedades Renales/patología
7.
Rev Assoc Med Bras (1992) ; 70(4): e20230990, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716935

RESUMEN

OBJECTIVE: We aimed to investigate the effect of coenzyme q10 on cyclophosphamide-induced kidney damage in rats. METHODS: A total of 30 female Wistar-Albino rats were utilized to form three groups. In group 1 (control group) (n=10), no drugs were given. In group 2 (cyclophosphamide group) (n=10), 30 mg/kg intraperitoneal cyclophosphamide was administered for 7 days. In group 3 (cyclophosphamide+coenzyme q10 group) (n=10), 30 mg/kg cyclophosphamide and 10 mg/kg coenzyme q10 were given for 7 days via intraperitoneal route. Right kidneys were removed in all groups. Blood malondialdehyde levels and activities of catalase and superoxide dismutase were measured. Histopathological damage was evaluated by examining the slides prepared from kidney tissue using a light microscope. RESULTS: Tissue damage was significantly higher in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). The malondialdehyde levels were significantly higher and the activities of superoxide dismutase and catalase were lower in the cyclophosphamide group than in the cyclophosphamide+coenzyme q10 group (p<0.05). CONCLUSION: Coenzyme q10 may be a good option to prevent cyclophosphamide-induced kidney damage.


Asunto(s)
Catalasa , Ciclofosfamida , Malondialdehído , Ratas Wistar , Superóxido Dismutasa , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ciclofosfamida/toxicidad , Ciclofosfamida/efectos adversos , Femenino , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/efectos de los fármacos , Riñón/efectos de los fármacos , Riñón/patología , Ratas , Enfermedades Renales/inducido químicamente , Enfermedades Renales/prevención & control , Enfermedades Renales/patología , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos
8.
PLoS One ; 19(5): e0303145, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728268

RESUMEN

Water stress can adversely affect seed germination and plant growth. Seed osmopriming is a pre-sowing treatment in which seeds are soaked in osmotic solutions to undergo the first stage of germination prior to radicle protrusion. Seed osmopriming enhances germination performance under stressful environmental conditions, making it an effective method to improve plant resistance and yield. This study analyzed the effect of seed osmopriming with polyethylene glycol (PEG) on seed germination and physiological parameters of Coronilla varia L. Priming treatments using 10% to 30% PEG enhanced germination percentage, germination vigor, germination index, vitality index, and seedling mass and reduced the time to reach 50% germination (T50). The PEG concentration that led to better results was 10%. The content of soluble proteins (SP), proline (Pro), soluble sugars (SS), and malondialdehyde (MDA) in Coronilla varia L. seedlings increased with the severity of water stress. In addition, under water stress, electrolyte leakage rose, and peroxidase (POD) and superoxide dismutase (SOD) activities intensified, while catalase (CAT) activity increased at mild-to-moderate water stress but declined with more severe deficiency. The 10% PEG priming significantly improved germination percentage, germination vigor, germination index, vitality index, and time to 50% germination (T50) under water stress. Across the water stress gradient here tested (8 to 12% PEG), seed priming enhanced SP content, Pro content, and SOD activity in Coronilla varia L. seedlings compared to the unprimed treatments. Under 10% PEG-induced water stress, primed seedlings displayed a significantly lower MDA content and electrolyte leakage than their unprimed counterparts and exhibited significantly higher CAT and POD activities. However, under 12% PEG-induced water stress, differences in electrolyte leakage, CAT activity, and POD activity between primed and unprimed treatments were not significant. These findings suggest that PEG priming enhances the osmotic regulation and antioxidant capacity of Coronilla varia seedlings, facilitating seed germination and seedling growth and alleviating drought stress damage, albeit with reduced efficacy under severe water deficiency.


Asunto(s)
Germinación , Polietilenglicoles , Plantones , Semillas , Polietilenglicoles/farmacología , Germinación/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Semillas/efectos de los fármacos , Semillas/crecimiento & desarrollo , Deshidratación , Catalasa/metabolismo , Malondialdehído/metabolismo , Prolina/metabolismo , Superóxido Dismutasa/metabolismo , Agua/metabolismo
9.
Braz Oral Res ; 38: e042, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747829

RESUMEN

The aim of this study was to investigate the DNA methylation profile in genes encoding catalase (CAT) and superoxide dismutase (SOD3) enzymes, which are involved in oxidative stress mechanisms, and in genes encoding pro-inflammatory cytokines interleukin-6 (IL6) and tumor necrosis factor-alpha (TNF-α) in the oral mucosa of oncopediatric patients treated with methotrexate (MTX®). This was a cross-sectional observational study and the population comprised healthy dental patients (n = 21) and those with hematological malignancies (n = 64) aged between 5 and 19 years. Oral conditions were evaluated using the Oral Assessment Guide and participants were divided into 4 groups: 1- healthy individuals; 2- oncopediatric patients without mucositis; 3- oncopediatric patients with mucositis; 4- oncopediatric patients who had recovered from mucositis. Methylation of DNA from oral mucosal cells was evaluated using the Methylation-Specific PCR technique (MSP). For CAT, the partially methylated profile was the most frequent and for SOD3 and IL6, the hypermethylated profile was the most frequent, with no differences between groups. For TNF-α, the hypomethylated profile was more frequent in the group of patients who had recovered from mucositis. It was concluded that the methylation profiles of CAT, SOD3, and IL6 are common profiles for oral cells of children and adolescents and have no association with oral mucositis or exposure to chemotherapy with MTX®. Hypomethylation of TNF-α is associated with oral mucosal recovery in oncopediatric patients who developed oral mucositis during chemotherapy.


Asunto(s)
Catalasa , Metilación de ADN , Interleucina-6 , Metotrexato , Mucosa Bucal , Estomatitis , Superóxido Dismutasa , Factor de Necrosis Tumoral alfa , Humanos , Factor de Necrosis Tumoral alfa/genética , Niño , Estudios Transversales , Adolescente , Preescolar , Masculino , Femenino , Adulto Joven , Interleucina-6/genética , Interleucina-6/análisis , Catalasa/genética , Mucosa Bucal/efectos de los fármacos , Superóxido Dismutasa/genética , Metotrexato/uso terapéutico , Metotrexato/efectos adversos , Estomatitis/genética , Estomatitis/inducido químicamente , Regiones Promotoras Genéticas/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/tratamiento farmacológico , Valores de Referencia , Antimetabolitos Antineoplásicos/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Reacción en Cadena de la Polimerasa , Estadísticas no Paramétricas , Mucositis/genética , Mucositis/inducido químicamente , Estudios de Casos y Controles
10.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G483-G494, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38573193

RESUMEN

Fatty acid oxidation (FAO) releases the energy stored in fat to maintain basic biological processes. Dehydrogenation is a major way to oxidize fatty acids, which needs NAD+ to accept the released H+ from fatty acids and form NADH, which increases the ratio of NADH/NAD+ and consequently inhibits FAO leading to the deposition of fat in the liver, which is termed fatty liver or steatosis. Consumption of alcohol (ethanol) initiates simple steatosis that progresses to alcoholic steatohepatitis, which constitutes a spectrum of liver disorders called alcohol-associated liver disease (ALD). ALD is linked to ethanol metabolism. Ethanol is metabolized by alcohol dehydrogenase (ADH), microsomal ethanol oxidation system (MEOS), mainly cytochrome P450 2E1 (CYP2E1), and catalase. ADH also requires NAD+ to accept the released H+ from ethanol. Thus, ethanol metabolism by ADH leads to increased ratio of NADH/NAD+, which inhibits FAO and induces steatosis. CYP2E1 directly consumes reducing equivalent NADPH to oxidize ethanol, which generates reactive oxygen species (ROS) that lead to cellular injury. Catalase is mainly present in peroxisomes, where very long-chain fatty acids and branched-chain fatty acids are oxidized, and the resultant short-chain fatty acids will be further oxidized in mitochondria. Peroxisomal FAO generates hydrogen peroxide (H2O2), which is locally decomposed by catalase. When ethanol is present, catalase uses H2O2 to oxidize ethanol. In this review, we introduce FAO (including α-, ß-, and ω-oxidation) and ethanol metabolism (by ADH, CYP2E1, and catalase) followed by the interaction between FAO and ethanol metabolism in the liver and its pathophysiological significance.


Asunto(s)
Hígado Graso , Hepatopatías Alcohólicas , Humanos , Catalasa , NAD , Citocromo P-450 CYP2E1 , Peróxido de Hidrógeno , Etanol , Ácidos Grasos
11.
Eur Rev Med Pharmacol Sci ; 28(6): 2538-2549, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38567613

RESUMEN

OBJECTIVE: In the present study, the protective effects of adenosine triphosphate (ATP), Benidipine, and Lacidipine on potential kidney damage induced by 5-fluorouracil (5-FU) were investigated in rats. MATERIALS AND METHODS: Totally 48 rats were divided into 8 groups: healthy (HG), 5-FU (FUG), ATP+5-FU (AFU), Benidipine+5-FU (BFU), Lacidipine+5-FU (LFU), ATP+Benidipine+5-FU (ABFU), ATP+Lacidipine+5-FU (ALFU) and Benidipine+Lacidipine+5-FU (BLFU). In a 10-day period, ATP (4 mg/kg) was administered intraperitoneally, and Benidipine (4 mg/kg) and Lacidipine (4 mg/kg) were administered orally once a day. On days 1, 3, and 5, 5-FU (100 mg/kg) was administered intraperitoneally one hour after the drug was administered. Afterward, the rats were euthanized, and kidney tissues were removed. An analysis of malondialdehyde, total glutathione, superoxide dismutase, and catalase was performed on tissues, as well as a histopathological examination. A creatinine and blood urea nitrogen analysis were performed on blood samples. RESULTS: It was revealed that 5-FU decreased the amount of total glutathione, superoxide dismutase, and catalase activities in rat kidney tissues and increased malondialdehyde. Further, increased serum creatinine and blood urea nitrogen levels, as well as histopathological examination of kidney tissues, were found in the 5-FU group. ATP+Benidipine and ATP treatments were the most effective in preventing both biochemical and histopathological changes induced by 5-FU. A treatment with Benidipine improved biochemical and histopathologic data, but not to the same extent as a treatment with ATP+Benidipine and ATP. As a result of Lacidipine+ATP combination, 5-FU-induced biochemical changes in kidney tissue were partially inhibited, but the degree of histopathologic damage remained unchanged. Neither Benidipine+Lacidipine nor Lacidipine showed a protective effect on both biochemical changes and histopathologic damage. CONCLUSIONS: It may be possible to prevent nephrotoxicity by adding ATP + Benidipine or ATP to 5-FU treatment.


Asunto(s)
Dihidropiridinas , Fluorouracilo , Enfermedades Renales , Ratas , Animales , Fluorouracilo/efectos adversos , Riñón/patología , Catalasa , Adenosina Trifosfato , Enfermedades Renales/inducido químicamente , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/prevención & control , Glutatión , Superóxido Dismutasa , Malondialdehído
12.
J Biochem Mol Toxicol ; 38(4): e23712, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602238

RESUMEN

Type 1 diabetes (T1D) is an insulin-dependent autoimmune condition. Short chain fatty acids (SCFAs) are volatile fatty acids with 1-6 carbon atoms that influence glucose storage in the body and can reduce appetite, potentially decreasing T1D risk. Alpha-lipoic acid (α-LA), a type of SCFA, has previously been used to treat diabetic neuropathy and inflammation due to its antioxidant properties. This study aims to assess α-LA's protective effects against T1D and associated kidney damage in rats induced with streptozotocin. Diabetic rats were treated with α-LA orally for 15 days, resulting in improved blood glucose (56% decrease) and kidney function markers like blood urea nitrogen, creatinine and uric acid. α-LA also showed significant antioxidant effects by decreasing LPO as well as improving activities of antioxidant enzymes like superoxide dismutase, catalase and glutathione-S transferase and alleviated kidney damage caused by diabetes. Docking experiments suggest that α-LA may regulate diabetes-related changes at the epigenetic level through interactions with the SIRT1 protein, indicating its potential as a target for future antidiabetic drug development.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Enfermedades Renales , Ácido Tióctico , Ratas , Animales , Ácido Tióctico/farmacología , Ácido Tióctico/uso terapéutico , Antioxidantes/metabolismo , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ratas Wistar , Peroxidación de Lípido , Catalasa/metabolismo , Glucemia/metabolismo , Superóxido Dismutasa/metabolismo , Estrés Oxidativo
13.
Huan Jing Ke Xue ; 45(5): 3037-3046, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38629564

RESUMEN

Through lettuce potting experiments, the effects of different types of biochar (apple branch, corn straw, and modified sorghum straw biochar with phosphoric acid modification) on lettuce growth under tetracycline (TC) and copper (Cu) co-pollution were investigated. The results showed that compared with those under CK, the addition of biochar treatment significantly increased the plant height, root length, shoot fresh weight, and root fresh weight of lettuce (P < 0.05). The addition of different biochars significantly increased the nitrate nitrogen, chlorophyll, and soluble protein content in lettuce physiological indicators to varying degrees, while also significantly decreasing the levels of malondialdehyde, proline content, and catalase activity. The effects of biochar on lettuce physiological indicators were consistent during both the seedling and mature stages. Compared with those in CK, the addition of biochar resulted in varying degrees of reduction in the TC and Cu contents of both the aboveground and underground parts of lettuce. The aboveground TC and Cu levels decreased by 2.49%-92.32% and 12.79%-36.47%, respectively. The underground TC and Cu levels decreased by 12.53%-55.64% and 22.41%-42.29%, respectively. Correlation analysis showed that nitrate nitrogen, chlorophyll, and soluble protein content of lettuce were negatively correlated with TC content, whereas malondialdehyde, proline content, and catalase activity were positively correlated with TC content. The resistance genes of lettuce were positively correlated with TC content (P < 0.05). In general, modified biochar was found to be more effective in improving lettuce growth quality and reducing pollutant accumulation compared to unmodified biochar, with modified sorghum straw biochar showing the best remediation effect.


Asunto(s)
Contaminantes Ambientales , Contaminantes del Suelo , Cobre , Lactuca , Contaminantes Ambientales/análisis , Suelo , Catalasa , Nitratos/análisis , Antibacterianos , Tetraciclina/análisis , Carbón Orgánico , Contaminantes del Suelo/análisis , Clorofila/análisis , Malondialdehído , Nitrógeno/análisis , Prolina
14.
Physiol Plant ; 176(2): e14294, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38634335

RESUMEN

In our comprehensive meta-analysis, we initially collected 177 publications focusing on the impact of melatonin on wheat. After meticulous screening, 40 published studies were selected, encompassing 558 observations for antioxidant enzymes, 312 for reactive oxygen species (ROS), and 92 for soluble biomolecules (soluble sugar and protein). This analysis revealed significant heterogeneity across studies (I2 > 99% for enzymes, ROS, and soluble biomolecules) and notable publication bias, indicating the complexity and variability in the research field. Melatonin application generally increased antioxidant enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] in wheat, particularly under stress conditions, such as high temperature and heavy-metal exposure. Compared to control, melatonin application increased SOD, POD, CAT, and APX activities by 29.5, 16.96, 35.98, and 171.64%, respectively. Moreover, oxidative stress markers like hydrogen peroxide (H2O2), superoxide anion (O2), and malondialdehyde (MDA) decreased with melatonin by 23.73, 13.64, and 21.91%, respectively, suggesting a reduction in oxidative stress. The analysis also highlighted melatonin's role in improving carbohydrate metabolism and antioxidant defenses. Melatonin showed an overall increase of 12.77% in soluble sugar content, and 22.76% in glutathione peroxidase (GPX) activity compared to the control. However, the effects varied across different wheat varieties, environmental conditions, and application methods. Our study also uncovered complex relationships between antioxidant enzyme activities and H2O2 levels, indicating a nuanced regulatory role of melatonin in oxidative stress responses. Our meta-analysis demonstrates the significant role of melatonin in increasing wheat resilience to abiotic stressors, potentially through its regulatory impact on antioxidant defense systems and stress response.


Asunto(s)
Antioxidantes , Melatonina , Antioxidantes/metabolismo , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Triticum/metabolismo , Peróxido de Hidrógeno/metabolismo , Catalasa/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidasas/metabolismo , Peroxidasa/metabolismo , Estrés Oxidativo , Azúcares/metabolismo , Malondialdehído/metabolismo
15.
Clin Lab ; 70(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38623662

RESUMEN

BACKGROUND: Cutaneous larva migrans (CLM) is a helminthic infection found in tropical areas. It is commonly seen in patients in contact with soil contaminated by cat and dog hookworm larvae. CLM manifests as an erythematous, serpiginous, and pruritic cutaneous eruption. We present a case of a 27-year-old female with a serpiginous lesion on the plantar surface of the right foot. METHODS AND RESULTS: The patient was prescribed Albendazole at 400 mg twice a day for three days. After treatment, the lesion and pruritus have decreased in severity. CONCLUSIONS: Hookworm-related CLM is diagnosed clinically based on the typical clinical presentation. Clinicians need to be aware of the possibility of hookworm-related CLM with a history of travel to tropical areas, especially walking barefoot.


Asunto(s)
Larva Migrans , Femenino , Perros , Humanos , Animales , Gatos , Adulto , Larva Migrans/diagnóstico , Larva Migrans/tratamiento farmacológico , Albendazol/uso terapéutico , Viaje , Catalasa/uso terapéutico
16.
Environ Monit Assess ; 196(5): 449, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609694

RESUMEN

The work objective was to assess the ecological state of soils by changing the residual oil content and restoring catalase activity after remediation. The soils were selected in various ecosystems: a steppe of the Rostov Region (Haplic Chernozem), beech-hornbeam forests in the Republic of Adygea (Haplic Cambisols), and semi-desert of the Caspian province of the Republic of Kalmykia (Eutric Cambisols). Soil samples were polluted with oil at a concentration of 5% of the soil mass. After that, ameliorants (biochar, nitroammophoska, sodium humate, and Baikal EM-1) were introduced into the oil-contaminated soil. The catalase activity of Haplic Cambisols was stimulated only with the introduction of D2 biochar by 11% relative to the control, and in Haplic Chernozem, catalase was most stimulated with the addition of nitroammophoska D0.5 and D1 by 65% and 57% of the control, respectively. Nitroammophoska in all doses significantly stimulated the enzymatic activity, in Eutric Cambisols by four to six times compared to the control. The range of soil stability determined by catalase activity: Eutric Cambisols > Haplic Chernozem > Haplic Cambisols. Thus, it is most effective to apply biochar in doses of D and D2 and D0.5 and D nitroammophoska during the remediation of oil-contaminated Haplic Chernozem. For the remediation of Haplic Cambisols, it is effective to introduce biochar in dose of D2, and Eutric Cambisols-biochar and sodium humate in dose of D0.5 and nitroammophoska (all doses). The results of the study allow using catalase activity as a very informative and statistically significant diagnostical indicator of the health of oil-contaminated soils after remediation.


Asunto(s)
Carbón Orgánico , Ecosistema , Monitoreo del Ambiente , Catalasa , Compuestos de Nitrógeno , Sodio , Suelo , Sustancias Húmicas
17.
Urolithiasis ; 52(1): 52, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564033

RESUMEN

Urolithiasis is a prevalent urological disorder that contributes significantly to global morbidity. This study aimed to assess the anti-urolithic effects of Cymbopogon proximus (Halfa Bar) and Petroselinum crispum (parsley) seed ethanolic extract /Gum Arabic (GA) emulsion, and its nanogel form against ethylene glycol (EG) and ammonium chloride (AC)-induced experimental urolithiasis in rats. Rats were divided into four groups: group 1 served as the normal control, group 2 received EG with AC in drinking water for 14 days to induce urolithiasis, groups 3 and 4 were orally administered emulsion (600 mg/kg/day) and nanogel emulsion (600 mg/kg/day) for 7 days, followed by co-administration with EG and AC in drinking water for 14 days. Urolithiatic rats exhibited a significant decrease in urinary excreted magnesium, and non-enzymic antioxidant glutathione and catalase activity. Moreover, they showed an increase in oxalate crystal numbers and various urolithiasis promoters, including excreted calcium, oxalate, phosphate, and uric acid. Renal function parameters and lipid peroxidation were intensified. Treatment with either emulsion or nanogel emulsion significantly elevated urolithiasis inhibitors, excreted magnesium, glutathione levels, and catalase activities. Reduced oxalate crystal numbers, urolithiasis promoters' excretion, renal function parameters, and lipid peroxidation while improving histopathological changes. Moreover, it decreased renal crystal deposition score and the expression of Tumer necrosis factor-α (TNF-α) and cleaved caspase-3. Notably, nanogel emulsion showed superior effects compared to the emulsion. Cymbopogon proximus (C. proximus) and Petroselinum crispum (P. crispum) seed ethanolic extracts/GA nanogel emulsion demonstrated protective effects against ethylene glycol induced renal stones by mitigating kidney dysfunction, oxalate crystal formation, and histological alterations.


Asunto(s)
Cymbopogon , Agua Potable , Cálculos Renales , Polietilenglicoles , Polietileneimina , Urolitiasis , Animales , Ratas , Petroselinum , Cloruro de Amonio , Goma Arábiga , Emulsiones , Catalasa , Magnesio , Nanogeles , Urolitiasis/inducido químicamente , Urolitiasis/tratamiento farmacológico , Urolitiasis/prevención & control , Semillas , Antioxidantes/uso terapéutico , Etanol , Glutatión , Oxalatos , Glicoles de Etileno , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico
18.
Molecules ; 29(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38611786

RESUMEN

Membrane-based sensors (MePSs) exhibit remarkable precision and sensitivity in detecting pressure changes. MePSs are commonly used to monitor catalytic reactions in solution, generating gas products crucial for signal amplification in bioassays. They also allow for catalyst quantification by indirectly measuring the pressure generated by the gaseous products. This is particularly interesting for detecting enzymes in biofluids associated with disease onset. To enhance the performance of a MePS, various structural factors influence membrane flexibility and response time, ultimately dictating the device's pressure sensitivity. In this study, we fabricated MePSs using polydimethylsiloxane (PDMS) and investigated how structural modifications affect the Young's modulus (E) and residual stress (σ0) of the membranes. These modifications have a direct impact on the sensors' sensitivity to pressure variations, observed as a function of the volume of the chamber (Σ) or of the mechanical properties of the membrane itself (S). MePSs exhibiting the highest sensitivities were then employed to detect catalyst quantities inducing the dismutation of hydrogen peroxide, producing dioxygen as a gaseous product. As a result, a catalase enzyme was successfully detected using these optimized MePSs, achieving a remarkable sensitivity of (22.7 ± 1.2) µm/nM and a limit of detection (LoD) of 396 pM.


Asunto(s)
Bioensayo , Gases , Catalasa , Membranas , Catálisis , Módulo de Elasticidad
19.
J Colloid Interface Sci ; 666: 176-188, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38593652

RESUMEN

AIM: Ultraviolet B (UVB) radiation can compromise the functionality of the skin barrier through various mechanisms. We hypothesize that UVB induce photochemical alterations in the components of the outermost layer of the skin, known as the stratum corneum (SC), and modulate its antioxidative defense mechanisms. Catalase is a well-known antioxidative enzyme found in the SC where it acts to scavenge reactive oxygen species. However, a detailed characterization of acute UVB exposure on the activity of native catalase in the SC is lacking. Moreover, the effects of UVB irradiation on the molecular dynamics and organization of the SC keratin and lipid components remain unclear. Thus, the aim of this work is to characterize consequences of UVB exposure on the structural and antioxidative properties of catalase, as well as on the molecular and global properties of the SC matrix surrounding the enzyme. EXPERIMENTS: The effect of UVB irradiation on the catalase function is investigated by chronoamperometry with a skin covered oxygen electrode, which probes the activity of native catalase in the SC matrix. Circular dichroism is used to explore changes of the catalase secondary structure, and gel electrophoresis is used to detect fragmentation of the enzyme following the UVB exposure. UVB induced alterations of the SC molecular dynamics and structural features of the SC barrier, as well as its water sorption behavior, are investigated by a complementary set of techniques, including natural abundance 13C polarization transfer solid-state NMR, wide-angle X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, and dynamic vapor sorption microbalance. FINDINGS: The findings show that UVB exposure impairs the antioxidative function of catalase by deactivating both native catalase in the SC matrix and lyophilized catalase. However, UVB radiation does not alter the secondary structure of the catalase nor induce any observable enzyme fragmentation, which otherwise could explain deactivation of its function. NMR measurements on SC samples show a subtle increase in the molecular mobility of the terminal segments of the SC lipids, accompanied by a decrease in the mobility of lipid chain trans-gauche conformers after high doses of UVB exposure. At the same time, the NMR data suggest increased rigidity of the polypeptide backbone of the keratin filaments, while the molecular mobility of amino acid residues in random coil domains of keratin remain unaffected by UVB irradiation. The FTIR data show a consistent decrease in absorbance associated with lipid bond vibrations, relative to the main protein bands. Collectively, the NMR and FTIR data suggest a small modification in the composition of fluid and solid phases of the SC lipid and protein components after UVB exposure, unrelated to the hydration capacity of the SC tissue. To conclude, UVB deactivation of catalase is anticipated to elevate oxidative stress of the SC, which, when coupled with subtle changes in the molecular characteristics of the SC, may compromise the overall skin health and elevate the likelihood of developing skin disorders.


Asunto(s)
Catalasa , Rayos Ultravioleta , Catalasa/metabolismo , Catalasa/química , Humanos , Epidermis/efectos de la radiación , Epidermis/metabolismo , Epidermis/enzimología , Piel/efectos de la radiación , Piel/metabolismo , Piel/química , Queratinas/química , Queratinas/metabolismo
20.
Sci Rep ; 14(1): 8288, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594299

RESUMEN

Hand dysfunction is a common observation after arteriovenous fistula (AVF) creation for hemodialysis access and has a variable clinical phenotype; however, the underlying mechanism responsible is unclear. Grip strength changes are a common metric used to assess AVF-associated hand disability but has previously been found to poorly correlate with the hemodynamic perturbations post-AVF placement implicating other tissue-level factors as drivers of hand outcomes. In this study, we sought to test if expression of a mitochondrial targeted catalase (mCAT) in skeletal muscle could reduce AVF-related limb dysfunction in mice with chronic kidney disease (CKD). Male and female C57BL/6J mice were fed an adenine-supplemented diet to induce CKD prior to placement of an AVF in the iliac vascular bundle. Adeno-associated virus was used to drive expression of either a green fluorescent protein (control) or mCAT using the muscle-specific human skeletal actin (HSA) gene promoter prior to AVF creation. As expected, the muscle-specific AAV-HSA-mCAT treatment did not impact blood urea nitrogen levels (P = 0.72), body weight (P = 0.84), or central hemodynamics including infrarenal aorta and inferior vena cava diameters (P > 0.18) or velocities (P > 0.38). Hindlimb perfusion recovery and muscle capillary densities were also unaffected by AAV-HSA-mCAT treatment. In contrast to muscle mass and myofiber size which were not different between groups, both absolute and specific muscle contractile forces measured via a nerve-mediated in-situ preparation were significantly greater in AAV-HSA-mCAT treated mice (P = 0.0012 and P = 0.0002). Morphological analysis of the post-synaptic neuromuscular junction uncovered greater acetylcholine receptor cluster areas (P = 0.0094) and lower fragmentation (P = 0.0010) in AAV-HSA-mCAT treated mice. Muscle mitochondrial oxidative phosphorylation was not different between groups, but AAV-HSA-mCAT treated mice had lower succinate-fueled mitochondrial hydrogen peroxide emission compared to AAV-HSA-GFP mice (P < 0.001). In summary, muscle-specific scavenging of mitochondrial hydrogen peroxide significantly improves neuromotor function in mice with CKD following AVF creation.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Insuficiencia Renal Crónica , Humanos , Masculino , Femenino , Animales , Ratones , Catalasa , Peróxido de Hidrógeno , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/terapia , Diálisis Renal , Fuerza Muscular , Fallo Renal Crónico/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...