Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.851
Filtrar
1.
Sci Adv ; 10(17): eadl1088, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669339

RESUMEN

A sharp drop in lenticular glutathione (GSH) plays a pivotal role in age-related cataract (ARC) formation. Despite recognizing GSH's importance in lens defense for decades, its decline with age remains puzzling. Our recent study revealed an age-related truncation affecting the essential GSH biosynthesis enzyme, the γ-glutamylcysteine ligase catalytic subunit (GCLC), at aspartate residue 499. Intriguingly, these truncated GCLC fragments compete with full-length GCLC in forming a heterocomplex with the modifier subunit (GCLM) but exhibit markedly reduced enzymatic activity. Crucially, using an aspartate-to-glutamate mutation knock-in (D499E-KI) mouse model that blocks GCLC truncation, we observed a notable delay in ARC formation compared to WT mice: Nearly 50% of D499E-KI mice remained cataract-free versus ~20% of the WT mice at their age of 20 months. Our findings concerning age-related GCLC truncation might be the key to understanding the profound reduction in lens GSH with age. By halting GCLC truncation, we can rejuvenate lens GSH levels and considerably postpone cataract onset.


Asunto(s)
Envejecimiento , Dominio Catalítico , Catarata , Glutamato-Cisteína Ligasa , Glutatión , Cristalino , Catarata/patología , Catarata/genética , Catarata/metabolismo , Animales , Glutamato-Cisteína Ligasa/metabolismo , Glutamato-Cisteína Ligasa/genética , Ratones , Glutatión/metabolismo , Cristalino/metabolismo , Cristalino/patología , Envejecimiento/metabolismo , Humanos , Modelos Animales de Enfermedad , Mutación , Técnicas de Sustitución del Gen
2.
Clin Exp Pharmacol Physiol ; 51(6): e13863, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38650114

RESUMEN

Chronic hyperglycaemia is a chief feature of diabetes mellitus and complicates with many systematic anomalies. Non-human primates (NHPs) are excellent for studying hyperglycaemia or diabetes and associated comorbidities, but lack behavioural observation. In the study, behavioural, brain imaging and histological analysis were performed in a case of spontaneously hyperglycaemic (HGM) Macaca fascicularis. The results were shown that the HGM monkey had persistent body weight loss, long-term hyperglycaemia, insulin resistance, dyslipidemia, but normal concentrations of insulin, C-peptide, insulin autoantibody, islet cell antibody and glutamic acid decarboxylase antibody. Importantly, an impaired working memory in a delayed response task and neurological dysfunctions were found in the HGM monkey. The tendency for atrophy in hippocampus was observed by magnetic resonance imaging. Lenticular opacification, lens fibres disruptions and vacuole formation also occurred to the HGM monkey. The data suggested that the spontaneous HGM monkey might present diabetes-like characteristics and associated neurobehavioral anomalies in this case. This study first reported cognitive deficits in a spontaneous hyperglycaemia NHPs, which might provide evidence to use macaque as a promising model for translational research in diabetes and neurological complications.


Asunto(s)
Catarata , Hiperglucemia , Macaca fascicularis , Animales , Hiperglucemia/metabolismo , Catarata/patología , Masculino , Trastornos del Conocimiento/etiología , Trastornos del Conocimiento/patología , Enfermedades del Sistema Nervioso , Hipocampo/patología , Hipocampo/metabolismo
3.
Exp Eye Res ; 243: 109888, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583754

RESUMEN

Cataracts and Alzheimer's disease (AD) are closely linked and are associated with aging and with systemic diseases that increase the molar ratio of free fatty acids to albumin (mFAR) in the blood. From the results of our earlier studies on the development of senile cataracts and from results recently published in the literature on the pathogenesis of Alzheimer's disease, we suggest that there is a common lipotoxic cascade for both diseases, explaining the strong connection between aging, an elevated mFAR in the blood, cataract formation, and AD. Long-chain free fatty acids (FFA) are transported in the blood as FFA/albumin complexes. In young people, vascular albumin barriers in the eyes and brain, very similar in their structure and effect, reduce the FFA/albumin complex concentration from around 650 µmol/l in the blood to 1-3 µmol/l in the aqueous humour of the eyes as well as in the cerebrospinal fluid of the brain. At such low concentrations the fatty acid uptake of the target cells - lens epithelial and brain cells - rises with increasing FFA/albumin complex concentrations, especially when the fatty acid load of albumin molecules is mFAR>1. At higher albumin concentrations, for instance in blood plasma or the interstitial tissue spaces, the fatty acid uptake of the target cells becomes increasingly independent of the FFA/albumin complex concentration and is mainly a function of the mFAR (Richieri et al., 1993). In the blood plasma of young people, the mFAR is normally below 1.0. In people over 40 years old, aging increases the mFAR by decreasing the plasma concentration of albumin and enhancing the plasma concentrations of FFA. The increase in the mFAR in association with C6-unsaturated FFA are risk factors for the vascular albumin barriers (Hennig et al., 1984). Damage to the vascular albumin barrier in the eyes and brain increases the concentration of FFA/albumin complex in the aqueous humour as well as in the cerebrospinal fluid, leading to mitochondrial dysfunction and the death of lens epithelial and brain cells, the development of cataracts, and AD. An age-dependent increase in the concentration of FFA/albumin complex has been found in the aqueous humour of 177 cataract patients, correlating with the mitochondria-mediated apoptotic death of lens epithelial cells, lens opacification and cataracts (Iwig et al., 2004). Mitochondrial dysfunction is also an early crucial event in Alzheimer's pathology, closely connected with the generation of amyloid beta peptides (Leuner et al., 2012). Very recently, amyloid beta production has also been confirmed in the lenses of Alzheimer's patients, causing cataracts (Moncaster et al., 2022). In view of this, we propose that there is a common lipotoxic cascade for senile cataract formation and senile AD, initiated by aging and/or systemic diseases, leading to an mFAR>1 in the blood.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Catarata , Ácidos Grasos no Esterificados , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/sangre , Catarata/metabolismo , Catarata/sangre , Catarata/patología , Catarata/diagnóstico , Ácidos Grasos no Esterificados/metabolismo , Ácidos Grasos no Esterificados/sangre , Biomarcadores/sangre , Biomarcadores/metabolismo , Albúmina Sérica/metabolismo , Envejecimiento , Cristalino/metabolismo
4.
BMJ Open Ophthalmol ; 9(1)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684375

RESUMEN

BACKGROUND: Retinal imaging, including fundus autofluorescence (FAF), strongly depends on the clearness of the optical media. Lens status is crucial since the ageing lens has both light-blocking and autofluorescence (AF) properties that distort image analysis. Here, we report both lens opacification and AF metrics and the effect on automated image quality assessment. METHODS: 227 subjects (range: 19-89 years old) received quantitative AF of the lens (LQAF), Scheimpflug, anterior chamber optical coherence tomography as well as blue/green FAF (BAF/GAF), and infrared (IR) imaging. LQAF values, the Pentacam Nucleus Staging score and the relative lens reflectivity were extracted to estimate lens opacification. Mean opinion scores of FAF and IR image quality were compiled by medical readers. A regression model for predicting image quality was developed using a convolutional neural network (CNN). Correlation analysis was conducted to assess the association of lens scores, with retinal image quality derived from human or CNN annotations. RESULTS: Retinal image quality was generally high across all imaging modalities (IR (8.25±1.99) >GAF >BAF (6.6±3.13)). CNN image quality prediction was excellent (average mean absolute error (MAE) 0.9). Predictions were comparable to human grading. Overall, LQAF showed the highest correlation with image quality grading criteria for all imaging modalities (eg, Pearson correlation±CI -0.35 (-0.50 to 0.18) for BAF/LQAF). BAF image quality was most vulnerable to an increase in lenticular metrics, while IR (-0.19 (-0.38 to 0.01)) demonstrated the highest resilience. CONCLUSION: The use of CNN-based retinal image quality assessment achieved excellent results. The study highlights the vulnerability of BAF to lenticular remodelling. These results can aid in the development of cut-off values for clinical studies, ensuring reliable data collection for the monitoring of retinal diseases.


Asunto(s)
Catarata , Tomografía de Coherencia Óptica , Humanos , Anciano , Persona de Mediana Edad , Adulto , Anciano de 80 o más Años , Femenino , Masculino , Tomografía de Coherencia Óptica/métodos , Adulto Joven , Catarata/diagnóstico por imagen , Catarata/patología , Retina/diagnóstico por imagen , Retina/patología , Imagen Óptica/métodos , Cristalino/diagnóstico por imagen , Cristalino/patología , Angiografía con Fluoresceína/métodos
5.
Curr Eye Res ; 49(6): 591-604, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38450708

RESUMEN

PURPOSE: Fibrotic cataracts, including anterior subcapsular cataract (ASC) as well as posterior capsule opacification (PCO), are a common vision-threatening cause worldwide. Still, little is known about the underlying mechanisms. Here, we demonstrate a miRNA-based pathway regulating the pathological fibrosis process of lens epithelium. METHODS: Gain- and loss-of-function approaches, as well as multiple fibrosis models of the lens, were applied to validate the crucial role of two miR-1225 family members in the TGF-ß2 induced PCO model of human LECs and injury-induced ASC model in mice. RESULTS: Both miR-1225-3p and miR-1225-5p prominently stimulate the migration and EMT process of lens epithelial cells (LECs) in vitro as well as lens fibrosis in vivo. Moreover, we demonstrated that the underlying mechanism for these effects of miR-1225-5p is via directly targeting Keap1 to regulate Keap1/Nrf2 signaling. In addition, evidence showed that Keap1/Nrf2 signaling is activated in the TGF-ß2 induced PCO model of human LECs and injury-induced ASC model in mice, and inhibition of the Nrf2 pathway can significantly reverse the process of LECs EMT as well as lens fibrosis. CONCLUSIONS: These results suggest that blockade of miR-1225-5p prevents lens fibrosis via targeting Keap1 thereby inhibiting Nrf2 activation. The 'miR-1225-Keap1-Nrf2' signaling axis presumably holds therapeutic promise in the treatment of fibrotic cataracts.


Asunto(s)
Catarata , Modelos Animales de Enfermedad , Fibrosis , Proteína 1 Asociada A ECH Tipo Kelch , Ratones Endogámicos C57BL , MicroARNs , Factor 2 Relacionado con NF-E2 , Transducción de Señal , Animales , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , MicroARNs/genética , Ratones , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Humanos , Catarata/metabolismo , Catarata/genética , Catarata/patología , Cristalino/metabolismo , Cristalino/patología , Regulación de la Expresión Génica , Células Cultivadas , Células Epiteliales/metabolismo , Western Blotting , Movimiento Celular , Transición Epitelial-Mesenquimal
6.
Chem Biol Interact ; 392: 110905, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373627

RESUMEN

Aldose reductase is a member of the 1B1 subfamily of aldo-keto reductase gene superfamily. The action of aldose reductase (AR) has been implicated in the pathogenesis of a variety of disease states, most notably complications of diabetes mellitus including neuropathy, retinopathy, nephropathy, and cataracts. To explore for mechanistic roles for AR in disease pathogenesis, we established mutant strains produced using Crispr-Cas9 to inactivate the AKR1B3 gene in C57BL6 mice. Phenotyping AR-knock out (ARKO) strains confirmed previous reports of reduced accumulation of tissue sorbitol levels. Lens epithelial cells in ARKO mice showed markedly reduced epithelial-to-mesenchymal transition following lens extraction in a surgical model of cataract and posterior capsule opacification. A previously unreported phenotype of preputial sebaceous gland swelling was observed frequently in male ARKO mice homozygous for the mutant AKR1B3 allele. This condition, which was shown to be accompanied by infiltration of proinflammatory CD3+ lymphocytes, was not observed in WT mice or mice heterozygous for the mutant allele. Despite this condition, reproductive fitness of the ARKO strain was indistinguishable from WT mice housed under identical conditions. These studies establish the utility of a new strain of AKR1B3-null mice created to support mechanistic studies of cataract and diabetic eye disease.


Asunto(s)
Opacificación Capsular , Catarata , Cristalino , Animales , Masculino , Ratones , Aldehído Reductasa/genética , Opacificación Capsular/patología , Catarata/genética , Catarata/patología , Incidencia , Inflamación/patología , Cristalino/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Glándulas Sebáceas
7.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38339214

RESUMEN

Eye lens α-crystallin has been shown to become increasingly membrane-bound with age and cataract formation; however, to our knowledge, no studies have investigated the membrane interactions of α-crystallin throughout the development of cataracts in separated cortical membrane (CM) and nuclear membrane (NM) from single human lenses. In this study, four pairs of human lenses from age-matched male and female donors and one pair of male lenses ranging in age from 64 to 73 years old (yo) were obtained to investigate the interactions of α-crystallin with the NM and CM throughout the progression of cortical cataract (CC) and nuclear cataract (NC) using the electron paramagnetic resonance spin-labeling method. Donor health history information (diabetes, smoker, hypertension, radiation treatment), sex, and race were included in the data analysis. The right eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 1, NC: 2), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Similarly, left eye lenses CM and NM investigated were 64 yo male (CC: 0), 68 yo male (CC: 3, NC: 2), 73 yo male (CC: 2, NC: 3), 68 yo female (CC: 3, NC: 2), and 73 yo female (CC: 1, NC: 3). Analysis of α-crystallin binding to male and female eye lens CM and NM revealed that the percentage of membrane surface occupied (MSO) by α-crystallin increases with increasing grade of CC and NC. The binding of α-crystallin resulted in decreased mobility, increased order, and increased hydrophobicity on the membrane surface in male and female eye lens CM and NM. CM mobility decreased with an increase in cataracts for both males and females, whereas the male lens NM mobility showed no significant change, while female lens NM showed increased mobility with an increase in cataract grade. Our data shows that a 68 yo female donor (long-term smoker, pre-diabetic, and hypertension; grade 3 CC) showed the largest MSO by α-crystallin in CM from both the left and right lens and had the most pronounced mobility changes relative to all other analyzed samples. The variation in cholesterol (Chol) content, size and amount of cholesterol bilayer domains (CBDs), and lipid composition in the CM and NM with age and cataract might result in a variation of membrane surface mobility, membrane surface hydrophobicity, and the interactions of α-crystallin at the surface of each CM and NM. These findings provide insight into the effect of decreased Chol content and the reduced size and amount of CBDs in the cataractous CM and NM with an increased binding of α-crystallin with increased CC and NC grade, which suggests that Chol and CBDs might be a key component in maintaining lens transparency.


Asunto(s)
Catarata , Hipertensión , Cristalino , alfa-Cristalinas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Membrana Nuclear/metabolismo , Cristalino/metabolismo , Catarata/patología , Colesterol/metabolismo , Hipertensión/metabolismo
8.
J Cell Physiol ; 239(5): e31211, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38304971

RESUMEN

Cataract, a leading cause of blindness, is characterised by lens opacification. Type 2 diabetes is associated with a two- to fivefold higher prevalence of cataracts. The risk of cataract formation increases with the duration of diabetes and the severity of hyperglycaemia. Hydroxyapatite deposition is present in cataractous lenses that could be the consequence of osteogenic differentiation and calcification of lens epithelial cells (LECs). We hypothesised that hyperglycaemia might promote the osteogenic differentiation of human LECs (HuLECs). Osteogenic medium (OM) containing excess phosphate and calcium with normal (1 g/L) or high (4.5 g/L) glucose was used to induce HuLEC calcification. High glucose accelerated and intensified OM-induced calcification of HuLECs, which was accompanied by hyperglycaemia-induced upregulation of the osteogenic markers Runx2, Sox9, alkaline phosphatase and osteocalcin, as well as nuclear translocation of Runx2. High glucose-induced calcification was abolished in Runx2-deficient HuLECs. Additionally, high glucose stabilised the regulatory alpha subunits of hypoxia-inducible factor 1 (HIF-1), triggered nuclear translocation of HIF-1α and increased the expression of HIF-1 target genes. Gene silencing of HIF-1α or HIF-2α attenuated hyperglycaemia-induced calcification of HuLECs, while hypoxia mimetics (desferrioxamine, CoCl2) enhanced calcification of HuLECs under normal glucose conditions. Overall, this study suggests that high glucose promotes HuLEC calcification via Runx2 and the activation of the HIF-1 signalling pathway. These findings may provide new insights into the pathogenesis of diabetic cataracts, shedding light on potential factors for intervention to treat this sight-threatening condition.


Asunto(s)
Diferenciación Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Células Epiteliales , Glucosa , Subunidad alfa del Factor 1 Inducible por Hipoxia , Cristalino , Osteogénesis , Humanos , Cristalino/metabolismo , Cristalino/patología , Diferenciación Celular/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Glucosa/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Osteocalcina/metabolismo , Osteocalcina/genética , Catarata/patología , Catarata/metabolismo , Catarata/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Calcinosis/metabolismo , Calcinosis/patología , Calcinosis/genética , Hiperglucemia/metabolismo , Hiperglucemia/genética , Hiperglucemia/patología , Transducción de Señal , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/genética , Células Cultivadas
9.
Am J Ophthalmol ; 262: 10-18, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38316200

RESUMEN

PURPOSE: To evaluate the association between the endothelial cell density (ECD) and central corneal thickness (CCT) in medium, short, and long eyes of preoperative Han Chinese cataract patients. DESIGN: Retrospective cross-sectional study. METHODS: We consecutively enrolled 410 eyes, namely, 50 short eyes (axial length [AL]<22.0 mm), 150 medium eyes (22.0≤AL<24.0 mm), 120 medium-long eyes (24.0≤AL<26.0 mm), and 90 long eyes (AL≥26.0 mm), of 410 adult patients scheduled for cataract surgery. The ECD and CCT were determined preoperatively with a noncontact specular microscope. The association between the CCT and ECD was identified by using a multivariable regression analysis. A thin cornea was defined as having a CCT less than 500 µm. RESULTS: After adjusting for age, the presence of arterial hypertension, the presence of diabetes mellitus, intraocular pressure, and AL, a positive association between the CCT and ECD was identified in short eyes (linear regression coefficient [B]=3.40; standardized B [ß]=0.52; P = .03), medium eyes (B = 2.33; ß=0.28; P = .002), medium-long eyes (B = 1.84; ß=0.25; P = .02), and long eyes (B = 2.69; ß=0.41; P = .04). In the total group, the multivariable logistic analysis showed a significant link between the presence of a thin cornea and a lower ECD (odds ratio [OR]=0.80 per 100 cells/mm2 increase; P = .001). CONCLUSIONS: For cataract patients of Han ethnicity, a significant association between a thin CCT and a lower ECD was shown across the AL spectrum and was most prominent in short eyes. Eyes with a thin cornea are more likely to have a lower ECD.


Asunto(s)
Pueblo Asiatico , Catarata , Córnea , Endotelio Corneal , Humanos , Masculino , Femenino , Estudios Retrospectivos , Estudios Transversales , Anciano , Recuento de Células , Endotelio Corneal/patología , Persona de Mediana Edad , Córnea/patología , Catarata/etnología , Catarata/patología , Pueblo Asiatico/etnología , China/epidemiología , Longitud Axial del Ojo/patología , Paquimetría Corneal , Anciano de 80 o más Años , Presión Intraocular/fisiología , Pueblos del Este de Asia
10.
Am J Pathol ; 194(6): 1090-1105, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38403162

RESUMEN

Changes in the anterior segment of the eye due to type 2 diabetes mellitus (T2DM) are not well-characterized, in part due to the lack of a reliable animal model. This study evaluated changes in the anterior segment, including crystalline lens health, corneal endothelial cell density, aqueous humor metabolites, and ciliary body vasculature, in a rat model of T2DM compared with human eyes. Male Sprague-Dawley rats were fed a high-fat diet (45% fat) or normal diet, and rats fed the high-fat diet were injected with streptozotocin intraperitoneally to generate a model of T2DM. Cataract formation and corneal endothelial cell density were assessed using microscopic analysis. Diabetes-related rat aqueous humor alterations were assessed using metabolomics screening. Transmission electron microscopy was used to assess qualitative ultrastructural changes ciliary process microvessels at the site of aqueous formation in the eyes of diabetic rats and humans. Eyes from the diabetic rats demonstrated cataracts, lower corneal endothelial cell densities, altered aqueous metabolites, and ciliary body ultrastructural changes, including vascular endothelial cell activation, pericyte degeneration, perivascular edema, and basement membrane reduplication. These findings recapitulated diabetic changes in human eyes. These results support the use of this model for studying ocular manifestations of T2DM and support a hypothesis postulating blood-aqueous barrier breakdown and vascular leakage at the ciliary body as a mechanism for diabetic anterior segment pathology.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ratas Sprague-Dawley , Animales , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Masculino , Ratas , Humanos , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/complicaciones , Modelos Animales de Enfermedad , Segmento Anterior del Ojo/patología , Humor Acuoso/metabolismo , Catarata/patología , Catarata/metabolismo , Cristalino/patología , Cristalino/metabolismo , Cristalino/ultraestructura , Cuerpo Ciliar/patología , Cuerpo Ciliar/metabolismo , Dieta Alta en Grasa/efectos adversos
11.
Life Sci Space Res (Amst) ; 40: 97-105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245354

RESUMEN

Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.


Asunto(s)
Catarata , Cristalino , Traumatismos por Radiación , Ratones , Ratas , Masculino , Femenino , Humanos , Animales , Catarata/etiología , Catarata/epidemiología , Catarata/patología , Traumatismos por Radiación/epidemiología , Cristalino/patología , Cristalino/efectos de la radiación , Rayos gamma/efectos adversos , Iones , Relación Dosis-Respuesta en la Radiación
12.
Sci Rep ; 14(1): 403, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172147

RESUMEN

Type 2 diabetes mellitus (T2DM) and its ocular complications, such as cataract and diabetic retinopathy (DR) have been linked to circadian rhythm-disturbances. Using a unique diurnal animal model, the sand rat (Psammomys obesus) we examined the effect of circadian disruption by short photoperiod acclimation on the development of T2DM and related ocular pathologies. We experimented with 48 male sand rats. Variables were day length (short photoperiod, SP, vs. neutral photoperiod NP) and diet (standard rodent diet vs. low-energy diet). Blood glucose, the presence of cataract and retinal pathology were monitored. Histological slides were examined for lens opacity, retinal cell count and thickness. Animals under SP and fed standard rodent diet (SPSR) for 20 weeks had higher baseline blood glucose levels and lower glucose tolerance compared with animals kept under NP regardless of diet, and under SP with low energy diet (SPLE). Animals under SPSR had less cells in the outer nuclear layer, a lower total number of cells in the retina, and a thickened retina. Higher blood glucose levels correlated with lower number of cells in all cellular layers of the retina and thicker retina. Animals under SPSR had higher occurrence of cataract, and a higher degree of cataract, which correlated with higher blood glucose levels. Sand rats kept under SPSR develop cataract and retinal abnormalities indicative of DR, whereas sand rats kept under NP regardless of diet, or under SPLE, do not. These ocular abnormalities significantly correlate with hyperglycemia.


Asunto(s)
Catarata , Diabetes Mellitus Tipo 2 , Retinopatía Diabética , Intolerancia a la Glucosa , Hiperglucemia , Animales , Masculino , Diabetes Mellitus Tipo 2/complicaciones , Fotoperiodo , Gerbillinae , Glucemia , Intolerancia a la Glucosa/complicaciones , Retinopatía Diabética/complicaciones , Hiperglucemia/complicaciones , Catarata/patología
13.
Curr Eye Res ; 49(4): 391-400, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38095165

RESUMEN

PURPOSE: Accumulated evidence has shown that microRNAs (miRNAs) are closely related to the pathogenesis and progression of senile cataracts. Here we investigate the effect of miR-29a-3p in cataractogenesis and determined the potential molecular mechanism involved. METHODS: In this study, we constructed a selenite cataract model in rats and obtained the miRNAs related to cataracts by whole transcriptome sequencing. To investigate the effect and mechanism of miR-29a-3p on cataracts, we performed several in vivo and in vitro experiments, including CCK8 assay, flow cytometry, luciferase reporter assay, Edu assay, and western blot analysis. RESULT: Sequencing data showed downregulation of miR-29a-3p in rats with selenite cataracts. Down-regulation of miR-29a-3p could promote lens epithelial cells (SRA01/04) proliferation and inhibit cell apoptosis, and miR-29a-3p silence could inhibit the development of cataracts. Additionally, CAND1 was a direct target gene for miR-29a-3p. CONCLUSION: These data demonstrate that miR-29a-3p inhibits apoptosis of lens epithelial cells by regulating CAND1, which may be a potential target for senile cataracts.


Asunto(s)
Catarata , MicroARNs , Animales , Ratas , Regulación hacia Arriba , Proliferación Celular , MicroARNs/genética , Células Epiteliales/patología , Catarata/genética , Catarata/patología , Apoptosis/genética , Ácido Selenioso
14.
Curr Eye Res ; 49(2): 158-167, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38078672

RESUMEN

PURPOSE: High myopia is demonstrated as a pathogenic factor for nuclear cataract. The main mechanism of high-myopia cataracts (HMC) is oxidative damage, which causes mitochondrial homeostasis imbalance. This study aimed to explore the mitochondrial homeostasis alterations in lens epithelial cells (LECs) of HMC. METHODS: The lens epithelium tissues of 20 patients with HMC and 20 control subjects with age-related cataracts (ARC) were collected. The real-time quantitative PCR and western blot assays were performed for gene expressions. Immunofluorescence (IF) assays were performed for mitochondrial marker TOM20, DNA damage marker 15A3, and autophagosome marker LC3. Transmission electron microscopy (TEM) was used to observe the changes in mitochondria morphology. Mitochondrial ROS, and mitochondrial membrane potential were detected by MitoSOX fluorescence, and JC-1 MitoMP staining, respectively. Rat lenses cultured in vitro were pretreated with CCCP and H2O2 (10 and 400 µM) for 24 h. RESULTS: The copy number of mtDNA was decreased in HMC patients compared to the ARC patients. Increased mitochondrial-oriented oxidative stress response was detected in LECs of HMC compared to that of ARC. Altered expressions of mitochondrial homeostasis and mitophagy markers, including TFAM, PGC1α, MFN1, MFN2, Drp1, PINK1, Parkin and LC3, were found in HMC patients. Reciprocally, no significant differences in the expression of BNIP3 and FUNDC1 were found between HMC and ARC patients. Importantly, TEM revealed that the obvious mitochondrial fission and mitophagy phenomena occur in the LECs of HMC patients compared to the ARC patients. Moreover, CCCP aggreated the mitoROS production and depolarized mitochondrial membrane potential in the H2O2-treated human lens epithelial cells line (SRA01/04); Most important, rat lens organ culture experiments indicated a significant increase in H2O2-induced lens opacity following mitochondrial uncoupling CCCP treatment. CONCLUSION: This study has identified for the first time the abnormal mitochondrial homeostasis in HMC, and provide a new perspective on the potential mechanisms of HMC, which occurs earlier and at a higher incidence rate than ARC.


Asunto(s)
Catarata , Miopía , Humanos , Ratas , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/metabolismo , Peróxido de Hidrógeno/metabolismo , Catarata/patología , Epitelio/metabolismo , Mitocondrias/metabolismo , Miopía/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo
15.
Mol Cell Biochem ; 479(4): 743-759, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37171723

RESUMEN

Fibrotic cataract, including anterior subcapsular cataract (ASC) and posterior capsule opacification, always lead to visual impairment. Epithelial-mesenchymal transition (EMT) is a well-known event that causes phenotypic alterations in lens epithelial cells (LECs) during lens fibrosis. Accumulating studies have demonstrated that microRNAs are important regulators of EMT and fibrosis. However, the evidence explaining how microRNAs modulate the behavior and alter the cellular phenotypes of the lens epithelium in fibrotic cataract is insufficient. In this study, we found that hsa-let-7c-3p is downregulated in LECs in human ASC in vivo as well as in TGFß2-induced EMT in vitro, indicating that hsa-let-7c-3p may participate in modulating the profibrotic processes in the lens. We then demonstrated that overexpression of hsa-let-7c-3p markedly suppressed human LEC proliferation and migration and attenuated TGFß2-induced EMT and injury-induced ASC in a mouse model. In addition, hsa-let-7c-3p mediated lens fibrosis by directly targeting the CDH11 gene, which encodes cadherin-11 protein, an important mediator in the EMT signaling pathway. It decreased cadherin-11 protein expression at the posttranscriptional level but not at the transcriptional level by binding to a specific site in the 3-untranslated region (3'-UTR) of CDH11 mRNA. Moreover, blockade of cadherin-11 expression with a specific short hairpin RNA reversed TGFß2-induced EMT in LECs in vitro. Collectively, these data demonstrated that hsa-let-7c-3p plays a clear role in attenuating ASC development and may be a novel candidate therapeutic for halting fibrosis and maintaining vision.


Asunto(s)
Cadherinas , Opacificación Capsular , Catarata , Cristalino , MicroARNs , Animales , Humanos , Ratones , Opacificación Capsular/genética , Opacificación Capsular/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patología , Células Epiteliales/metabolismo , Transición Epitelial-Mesenquimal , Fibrosis , Cristalino/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
16.
Vet Rec ; 194(3): e3667, 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38012019

RESUMEN

BACKGROUND: The identification of ophthalmic diseases that affect vision and/or cause discomfort should be a priority in captive penguins to improve their overall health and quality of life. METHODS: A routine ophthalmological examination was performed on 80 clinically normal penguins (160 eyes), and any lesions observed were recorded. RESULTS: Ocular lesions were frequent (56% of penguins), with cataracts being the most common (48.8% of penguins). Cortical cataracts (63% of eyes) and posterior subcapsular cataracts (27.4%) were the most commonly occurring. All maturation stages were found; incipient cataracts (52.1% of eyes with cataracts) were predominant, while Morgagnian cataracts (8.2%) were the least frequent. A correlation existed between lenticular changes and increasing age. Uveitis was present in 43.8% of eyes with cataracts, and ectropion uveae was the predominant clinical sign. Other ocular findings included blepharitis (3.8% of all eyes), corneal leukoma (5.6%) and posterior lens subluxation (7.5%). LIMITATIONS: The small number of birds of some species prevented the comparison of ophthalmic findings between species. CONCLUSION: This study corroborates the high prevalence of ocular lesions in captive penguins. Cataracts were frequent and age related. Most cataracts were cortical, and the predominant maturation stage was incipient. Lens-induced uveitis was a common finding. Lowered intraocular pressure was related to cataract formation.


Asunto(s)
Catarata , Spheniscidae , Uveítis , Animales , Calidad de Vida , Catarata/veterinaria , Catarata/patología , Ojo , Uveítis/veterinaria
17.
Curr Opin Ophthalmol ; 35(1): 57-63, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37882550

RESUMEN

PURPOSE OF REVIEW: Oxidative stress plays a central role in cataract pathogenesis, a leading cause of global blindness. This review delves into the role of oxidative stress in cataract development and key biomarkers - glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA), and 4-hydroxynonenal (4-HNE) - to clarify their functions and potential applications in predictive diagnostics and therapies. RECENT FINDINGS: Antioxidants serve as pivotal markers in cataract pathogenesis. GSH affects the central lens due to factors such as enzyme depletion and altered connexin expression, impairing GSH diffusion. Age-related oxidative stress may hinder GSH transport via connexin channels or an internal microcirculation system. N-acetylcysteine, a GSH precursor, shows promise in mitigating lens opacity when applied topically. Additionally, SOD, particularly SOD1, correlates with increased cataract development and gel formulations have exhibited protective effects against posterior subscapular cataracts. Lastly, markers of lipid peroxidation, MDA and 4-HNE, have been shown to reflect disease severity. Studies suggest a potential link between 4-HNE and connexin channel modification, possibly contributing to reduced GSH levels. SUMMARY: Oxidative stress is a significant contributor to cataract development, underscoring the importance of antioxidants in diagnosis and treatment. Notably, GSH depletion, SOD decline, and lipid peroxidation markers are pivotal factors in cataract pathogenesis, offering promising avenues for both diagnosis and therapeutic intervention.


Asunto(s)
Catarata , Cristalino , Humanos , Antioxidantes , Estrés Oxidativo , Catarata/patología , Cristalino/patología , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Conexinas/metabolismo
18.
Curr Eye Res ; 49(5): 487-495, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38152055

RESUMEN

BACKGROUND: Dysregulated circular RNAs (circRNAs) is involved in the pathogenesis of age-related cataract (ARC). Here, this study aimed to explore the function and mechanism of circMAP3K4 in ARC. METHODS: Human lens epithelial cells were exposed to hydrogen peroxide (H2O2) for functional experiments. qRT-PCR and western blotting analyses were used for the expression detection of genes and proteins. Cell proliferation was tested using cell counting kit-8 and EdU. Flow cytometry was applied to analyze cell apoptosis and cell cycle. The oxidative stress was evaluated by detecting the production of malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). The target relationship between miR-630 and circMAP3K4 or Excision repair cross-complementing group 6 (ERCC6) was analyzed by dual-luciferase reporter assay and RIP assay. RESULTS: CircMAP3K4 was lowly expressed in ARC patients and H2O2-induced HLECs. Functionally, forced expression of circMAP3K4 protected HLECs against H2O2-evoked proliferation inhibition, cell cycle arrest and the promotion of cell apoptosis and oxidative stress. Mechanistically, circMAP3K4 acted as a sponge for miR-630 to regulate the expression of its target ERCC6. MiR-630 was highly expressed while ERCC6 was lowly expressed in ARC patients and H2O2-induced HLECs. Up-regulation of miR-630 could reverse the protective effects of circMAP3K4 on HLECs under H2O2 treatment. In addition, inhibition of miR-630 suppressed H2O2-induced HLEC injury, which was abolished by ERCC6 silencing. CONCLUSION: Forced expression of circMAP3K4 protected HLECs against H2O2-evoked apoptotic and oxidative injury via miR-630/ERCC6 axis, suggesting that circMAP3K4 may function as a potential therapeutic target for ARC.


Asunto(s)
Catarata , Cristalino , MicroARNs , ARN Circular , Humanos , Apoptosis , Catarata/patología , ADN Helicasas , Enzimas Reparadoras del ADN , Células Epiteliales/metabolismo , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Cristalino/metabolismo , MicroARNs/metabolismo , Estrés Oxidativo , ARN Circular/genética , ARN Circular/metabolismo
19.
Int Ophthalmol ; 43(12): 4945-4958, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37897540

RESUMEN

PURPOSE: To investigate the link between the capsular bend and the morphological types and characteristics of posterior capsular opacification (PCO) using anterior segment optical coherence tomography. METHODS: Thirty eyes with PCO were examined, and three types of PCO were identified: pearl, fibrosis, and mixed. We assessed anterior capsular overlap, intraocular lens-capsule adhesion, and capsular bending. In addition to measuring the intraocular lens-posterior capsule distance and capsule bending angle (CBA), the PCO parameters (area, density, and score at 6-, 5-, and 3-mm intraocular lens optic regions) were recorded. The associations between capsular bend and PCO type and characteristics were investigated. A control group of 12 eyes without PCO was used to compare the study variables. RESULTS: With p values greater than 0.001, there was a statistically significant difference in the mean PCO area and score at the 6-, 5-, and 3-mm optic zones in different PCO types, with the pearl type having the highest value, followed by the mixed type, and finally the fibrosis type. The PCO group had a significantly higher mean CBA than the control group (P = 0.001). CBA was positively related to intraocular lens-posterior capsule distance, PCO area, and PCO score at the 6-, 5-, and 3-mm zones (P = 0.001). The receiver operating characteristic curve's cut-off point for CBA was 96.85° when comparing PCO cases to controls. Partial overlap and incomplete adhesion were statistically more common in the PCO eyes than in the control (P = 0.001, 0.003, respectively). CONCLUSION: PCO types and CBA have a strong relationship with PCO score and intraocular lens-posterior capsule space. In PCO's eyes, CBA has a cut-off value of 96.85°.


Asunto(s)
Opacificación Capsular , Catarata , Cápsula del Cristalino , Lentes Intraoculares , Facoemulsificación , Humanos , Tomografía de Coherencia Óptica/métodos , Implantación de Lentes Intraoculares , Opacificación Capsular/diagnóstico , Opacificación Capsular/etiología , Opacificación Capsular/patología , Cápsula del Cristalino/patología , Fibrosis , Diseño de Prótesis , Catarata/patología , Complicaciones Posoperatorias/patología
20.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569253

RESUMEN

Hereditary hyperferritinemia-cataract syndrome (HHCS) is a rare, frequently misdiagnosed, autosomal dominant disease caused by mutations in the FTL gene. It causes bilateral pediatric cataract and hyperferritinemia without iron overload. The objective of this case series, describing three Brazilian families, is to increase awareness of HHCS, as well as to discuss possible phenotypic interactions with concurrent mutations in HFE, the gene associated with autosomal recessive inheritance hereditary hemochromatosis. Whole-exome sequencing was performed in eight individuals with HHCS from three different families, as well as one unaffected member from each family for trio analysis-a total of eleven individuals. Ophthalmological and clinical genetic evaluations were conducted. The likely pathogenic variant c.-157G>A in FTL was found in all affected individuals. They presented slowly progressing bilateral cataract symptoms before the age of 14, with a phenotype of varied bilateral diffuse opacities. Hyperferritinemia was present in all affected members, varying from 971 ng/mL to 4899 ng/mL. There were two affected individuals with one concurrent pathogenic variant in HFE (c.187C>G, p.H63D), who were also the ones with the highest values of serum ferritin in our cohort. Few publications describe individuals with pathogenic mutations in both FTL and HFE genes, and further studies are needed to assess possible phenotypic interactions causing higher values of hyperferritinemia.


Asunto(s)
Catarata , Hiperferritinemia , Trastornos del Metabolismo del Hierro , Humanos , Brasil , Linaje , Trastornos del Metabolismo del Hierro/patología , Catarata/patología , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...