RESUMEN
La galactosialidosis (OMIM #256540) es una enfermedad metabólica lisosomal causada por mutaciones en el gen CTSA, que codifica la proteína protectora catepsina A. La pérdida de función de dicha proteína causa, secundariamente, un déficit combinado de dos enzimas, beta-galactosidasa y neuraminidasa. Se expone el caso de un paciente que presentó manifestaciones clínicas compatibles con el subtipo infantil tardío de galactosialidosis. El análisis bioquímico mostró déficits de las dos enzimas implicadas, mientras que el estudio molecular reveló dos mutaciones: una nueva mutación nunca antes descrita, p.His475Pro (c.1424 A>C), y una mutación previamente reportada, p.Arg441Cys (c.1321C>T), localizadas en los exones 15 y 14, respectivamente.
Galactosialidosis (OMIM #256540) is an autosomal recessive lysosomal storage disorder caused by mutations in the CTSAgene, which encodes the protective protein cathepsin A. The loss of function of this protein causes a secondarily deficiency of beta-galactosidase and N-acetyl-α-neuraminidase enzymes activities. We describe the clinical, biochemical and molecular analysis of a case report with a phenotype compatible with the late infantile form. The biochemical analysis reveled deficiencies of beta-galactosidase and neuraminidase activities in dried blood spot and fibroblasts and the molecular study showed two missense mutations in the CTSA gene: a previously reported mutation, p.Arg441Cys (c.1321C>T), and a novel mutation, p.His475Pro (c.1424 A>C), located in exons 14 and 15, respectively.
Asunto(s)
Humanos , Masculino , Preescolar , Enfermedades por Almacenamiento Lisosomal/genética , Catepsina A/genética , Mutación , Enfermedades por Almacenamiento Lisosomal/diagnósticoRESUMEN
Galactosialidosis (OMIM #256540) is an autosomal recessive lysosomal storage disorder caused by mutations in the CTSA gene, which encodes the protective protein cathepsin A. The loss of function of this protein causes a secondarily deficiency of beta-galactosidase and N-acetyl-a-neuraminidase enzymes activities. We describe the clinical, biochemical and molecular analysis of a case report with a phenotype compatible with the late infantile form. The biochemical analysis reveled deficiencies of beta-galactosidase and neuraminidase activities in dried blood spot and fibroblasts and the molecular study showed two missense mutations in the CTSA gene: a previously reported mutation, p.Arg441Cys (c.1321C>T), and a novel mutation, p.His475Pro (c.1424 A>C), located in exons 14 and 15, respectively.
La galactosialidosis (OMIM #256540) es una enfermedad metabólica lisosomal causada por mutaciones en el gen CTSA, que codifica la proteina protectora catepsina A. La pérdida de función de dicha proteína causa, secundariamente, un déficit combinado de dos enzimas, beta-galactosidasa y neuraminidasa. Se expone el caso de un paciente que presentó manifestaciones clínicas compatibles con el subtipo infantil tardío de galactosialidosis. El análisis bioquímico mostró déficits de las dos enzimas implicadas, mientras que el estudio molecular reveló dos mutaciones: una nueva mutación nunca antes descrita, p.His475Pro (c.1424 A>C), y una mutación previamente reportada, p.Arg441Cys (c.1321C>T), localizadas en los exones 15 y 14, respectivamente.
Asunto(s)
Catepsina A/genética , Enfermedades por Almacenamiento Lisosomal/genética , Mutación , Preescolar , Humanos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , MasculinoRESUMEN
Cell proteins traffic through complex and tightly regulated pathways. Although the endomembrane system is essential, its different pathways are still not well understood. In order to dissect protein trafficking pathways, chemical genomic screenings have been performed. This strategy has been utilized to successfully discover bioactive chemicals with a specific cellular action and in most cases, tunable and reversible effects. Once the bioactive chemical is identified, further strategies can be used to find the target proteins that are important for functionality of trafficking pathways. This approach can be combined with the powerful genetic tools available for model organisms. Drug-hypersensitive and drug-resistant mutant isolation can lead to the identification of cellular pathways affected by a bioactive chemical and reveal its protein target(s). Here, we describe an approach to look for hypersensitive and resistant mutants to a specific bioactive chemical that affects protein trafficking in yeast. This approach can be followed and adapted to any other pathway or cellular process that can be screened phenotypically, serving as a guide for novel screens in yeast. More importantly, information provided by this approach can potentially be extrapolated to other organisms like plants. Thus, the method described can be of broad utility to plant biologists.
Asunto(s)
Factores Inmunológicos/aislamiento & purificación , Biología Molecular/métodos , Transporte de Proteínas/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Catepsina A/metabolismo , Genoma de Planta , Genómica , Factores Inmunológicos/administración & dosificación , Factores Inmunológicos/química , Membranas Intracelulares/efectos de los fármacos , Saccharomyces cerevisiae/genéticaRESUMEN
Using specific oligonucleotides, 5'- and 3'-RACE and sequencing, two cDNAs encoding serine carboxypeptidases (tbscp-1 and tbscp-2) from the midgut of the blood sucking heteropteran Triatoma brasiliensis were identified. Both cDNAs with an open reading frame of 1389bp, encode serine carboxypeptidase precursors of 463 amino acid residues, which possess a signal peptide cleavage site after Ala19. Analysis of tbscp-1 and tbscp-2 genomic DNA showed an absence of introns in both sequences and the presence of a further intron-free SCP encoding gene (tbscp-2b). By reverse transcription polymerase chain reaction (RT-PCR), tbscp-1 and tbscp-2 transcript abundance was found similarly in fifth instar nymphs at different days after feeding (daf), high in the posterior midgut (small intestine), lower in the anterior midgut (stomach) and fat body and almost undetectable in the salivary glands. In the anterior, middle and posterior regions of the small intestine at 5daf the transcript abundance of both genes was almost identical. Also in adult female and male insects at 5daf both genes showed the strongest signal in the posterior midgut. Molecular modeling suggested that TBSCP-1 has carboxypeptidase D activity; activities against Hippuryl-Phenylalanine and Hippuryl-Arginine were also located at the posterior midgut, both were induced after blood feeding. Treatment of the posterior midgut extracts with the serine protease inhibitor PMSF strongly reduced carboxypeptidase activity. These findings suggest that triatomines might use serine carboxypeptidases, which are usually found in lysosomes, as digestive enzymes in the posterior midgut lumen, from which TBSCP-1 and TBSCP-2 are possible candidates to fulfill this function.
Asunto(s)
Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Triatoma/genética , Secuencia de Aminoácidos , Animales , Carboxipeptidasas/química , Catepsina A/química , Catepsina A/genética , Catepsina A/metabolismo , Femenino , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Masculino , Datos de Secuencia Molecular , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Alineación de Secuencia , Distribución Tisular , Triatoma/metabolismoRESUMEN
We report a Brazilian girl who was diagnosed as having galactosialidosis (deficiency of protective protein/cathepsin A; PPCA deficiency; GS) at the age of 2 years 6 months during an extensive investigation for renal failure. She was found to have low levels of both ß-galactosidase and α-neuraminidase in fibroblasts and to be a carrier of two novel mutations in the PPGB gene (p.G57V and p.R396W). She received a renal allograft at the age of 3 years 4 months. Transplantation was successful and graft function remains excellent after 6 years. However, the patient shows signs of progression of her primary disease. To our knowledge, she is the first GS patient to be given renal transplantation worldwide. We propose that renal transplantation should be considered as a therapeutic option for the treatment of severe renal complications of GS.
Asunto(s)
Fallo Renal Crónico/cirugía , Trasplante de Riñón , Enfermedades por Almacenamiento Lisosomal/complicaciones , Brasil , Catepsina A/genética , Niño , Preescolar , Progresión de la Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Supervivencia de Injerto , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/etiología , Trasplante de Riñón/efectos adversos , Donadores Vivos , Enfermedades por Almacenamiento Lisosomal/diagnóstico , Enfermedades por Almacenamiento Lisosomal/genética , Mutación , Fenotipo , Factores de Tiempo , Resultado del TratamientoRESUMEN
Most eukaryotic cells show a strong preference for the transfer in vivo and in vitro of the largest dolichol-P-P-linked glycan (Glc(3)Man(9)GlcNAc(2)) to protein chains over that of biosynthetic intermediates that lack the full complement of glucose units. The oligosaccharyltransferase (OST) is a multimeric complex containing eight different proteins, one of which (Stt3p) is the catalytic subunit. Trypanosomatid protozoa lack an OST complex and express only this last protein. Contrary to the OST complex from most eukaryotic cells, the Stt3p subunit of these parasites transfers in cell-free assays glycans with Man(7-9)GlcNAc(2) and Glc(1-3)Man(9)GlcNAc(2) compositions at the same rate. We have replaced Saccharomyces cerevisiae Stt3p by the Trypanosoma cruzi homologue and found that the complex that is formed preferentially transfers the complete glycan both in vivo and in vitro. Thus, preference for Glc(3)Man(9)GlcNAc(2) is a feature that is determined by the complex and not by the catalytic subunit.
Asunto(s)
Dominio Catalítico , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Polisacáridos/metabolismo , Saccharomyces cerevisiae/enzimología , Trypanosoma cruzi/enzimología , Animales , Catepsina A/metabolismo , Sistema Libre de Células , Glicosilación , Proteínas Protozoarias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismoRESUMEN
It has been postulated that creation of Man8GlcNAc2 isomer B (M8B) by endoplasmic reticulum (ER) alpha-mannosidase I constitutes a signal for driving irreparably misfolded glycoproteins to proteasomal degradation. Contrary to a previous report, we were able to detect in vivo (but not in vitro) an extremely feeble ER alpha-mannosidase activity in Schizosaccharomyces pombe. The enzyme yielded M8B on degradation of Man9GlcNAc2 and was inhibited by kifunensin. Live S. pombe cells showed an extremely limited capacity to demannosylate Man9GlcNAc2 present in misfolded glycoproteins even after a long residence in the ER. In addition, no preferential degradation of M8B-bearing species was detected. Nevertheless, disruption of the alpha-mannosidase encoding gene almost totally prevented degradation of a misfolded glycoprotein. This and other conflicting reports may be best explained by assuming that the role of ER mannosidase on glycoprotein degradation is independent of its enzymatic activity. The enzyme, behaving as a lectin binding polymannose glycans of varied structures, would belong together with its enzymatically inactive homologue Htm1p/Mnl1p/EDEM, to a transport chain responsible for delivering irreparably misfolded glycoproteins to proteasomes. Kifunensin and 1-deoxymannojirimycin, being mannose homologues, would behave as inhibitors of the ER mannosidase or/and Htm1p/Mnl1p/EDEM putative lectin properties.