Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.250
Filtrar
1.
Biochemistry (Mosc) ; 89(Suppl 1): S262-S277, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621755

RESUMEN

Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.


Asunto(s)
G-Cuádruplex , ADN/metabolismo , Sodio/química , Cationes Monovalentes/química , Termodinámica
2.
Soft Matter ; 20(19): 3980-3986, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38686506

RESUMEN

In this paper we investigate the effects of varying cation valency and concentration on the rheology of entangled λDNA solutions. We show that monovalent cations moderately increase the viscoelasticty of the solutions mainly by stabilising linear concatenation of λDNA "monomers" via hybridisation of their sticky ends. On the contrary, divalent cations have a far more complex and dramatic effect on the rheology of the solution and we observe evidence of inter-molecular DNA-DNA bridging by Mg2+. We argue that these results may be interesting in the context of dense solutions of single and double stranded DNA, e.g. in vivo or in biotechnology applications such as DNA origami and DNA hydrogels.


Asunto(s)
Cationes Bivalentes , ADN , Reología , ADN/química , Cationes Bivalentes/química , Cationes Monovalentes/química , Viscosidad , Magnesio/química
3.
Mikrochim Acta ; 191(5): 244, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578321

RESUMEN

The sensing sensitivity was improved for silver nanoparticles (AgNPs)-based colorimetric biosensors by using the most suitable salt to induce AgNPs aggregation. As for the salt composed of low-affinity anion and monovalent cation, the cation-dependent charge screening effect was the driving force for AgNPs aggregation. Apart from the charge screening effect, both the bridging of multivalent cation to the surface ligand of AgNP and the interaction between anion and Ag contributed to inducing AgNPs aggregation. Considering the higher aggregation efficiency of AgNPs resulted in a narrower sensing range, salt composed of low-affinity anion and monovalent cation was recommended for AgNPs-based colorimetric analysis, which was confirmed by fourfold higher sensitivity of DNA-21 detection using NaF than NaCl. This work inspires further thinking on improving the sensing performance of metal nanomaterials-based sensors from the point of colloidal surface science.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Cloruro de Sodio , Plata , Colorimetría/métodos , Aniones , Cationes Monovalentes
4.
Environ Sci Pollut Res Int ; 31(17): 25342-25355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472574

RESUMEN

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers' hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.


Asunto(s)
Bentonita , Cesio , Arcilla , Cesio/química , Adsorción , Cloruro de Sodio , Minerales/química , Cationes Monovalentes , Silicatos de Aluminio/química
5.
Electrophoresis ; 45(5-6): 528-536, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38087830

RESUMEN

Capillary electrophoresis has been used to measure the free solution mobilities of a series of 26-base pair (bp) DNA oligomers containing two phased A4T1in-tracts embedded in flanking sequences containing 0 to 11 additional AT bps. A random-sequence 26-bp oligomer with 12 isolated AT bps was used as the reference. Mobility ratios (A-tract/reference) were measured in background electrolytes (BGEs) containing mixtures of small monovalent cations and tetrabutylammonium (TBA+ ) or tetrapropylammonium (TPA+ ) ions. The mobility ratios observed in 0.3 M TBA+ were >1.00, suggesting that the TBA+ ions had formed electrostatic contact pairs with the AT bp in the reference and in the A-tract flanking sequences, decreasing the mobilities of both oligomers. The TBA-AT pairing interactions could be eliminated by increasing the concentration of small monovalent cations in the BGE. In 0.3 M TPA+ , electrostatic contact pairs were formed with the AT bps in the flanking sequences and in the A-tracts. Interestingly, the shapes of the mobility ratio profiles observed for the A4T1in-tract oligomers depended on the total number of A + T residues in the oligomer.


Asunto(s)
ADN , Emparejamiento Base , Cationes Monovalentes/química , Secuencia de Bases , ADN/química , Iones , Cationes
6.
Bioresour Technol ; 393: 129939, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37951553

RESUMEN

The sulfate reagent plays a crucial role as an electron acceptor in the sulfidogenic biodegradation process of the BSP assay for assessing the anaerobic biodegradability of organic substrates. However, the specific role and influence of the monovalent cations (sodium or potassium) in the sulfate reagent remain unknown. To address this gap, a series of batch assays were conducted to investigate the mechanistic effects of Na+ and K+. The results demonstrated that sodium has inhibitory effects on BSP assay when the dosage exceeds 8500 mg/L, whereas no adverse effects were observed in the potassium tests (ranging from 1800 to 14400 mg/L). In fact, the presence of K+ even enhanced the anaerobic biodegradability of organic substrates, and the underlying mechanisms were explored. These findings confirm the influence of cations in the BSP assay for biodegradability assessment and also provide guidance on sulfate dosage strategies for BSP assay application in anaerobic biotechnologies.


Asunto(s)
Aguas del Alcantarillado , Sulfuros , Cationes Monovalentes , Sulfuros/metabolismo , Sulfatos/metabolismo , Sodio , Potasio
7.
Int J Mol Sci ; 24(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38068884

RESUMEN

Monovalent cation proton antiporters (CPAs) play crucial roles in ion and pH homeostasis, which is essential for plant development and environmental adaptation, including salt tolerance. Here, 68 CPA genes were identified in soybean, phylogenetically dividing into 11 Na+/H+ exchangers (NHXs), 12 K+ efflux antiporters (KEAs), and 45 cation/H+ exchangers (CHXs). The GmCPA genes are unevenly distributed across the 20 chromosomes and might expand largely due to segmental duplication in soybean. The GmCPA family underwent purifying selection rather than neutral or positive selections. The cis-element analysis and the publicly available transcriptome data indicated that GmCPAs are involved in development and various environmental adaptations, especially for salt tolerance. Based on the RNA-seq data, twelve of the chosen GmCPA genes were confirmed for their differentially expression under salt or osmotic stresses using qRT-PCR. Among them, GmCHX20a was selected due to its high induction under salt stress for the exploration of its biological function on salt responses by ectopic expressing in Arabidopsis. The results suggest that the overexpression of GmCHX20a increases the sensitivity to salt stress by altering the redox system. Overall, this study provides comprehensive insights into the CPA family in soybean and has the potential to supply new candidate genes to develop salt-tolerant soybean varieties.


Asunto(s)
Antiportadores , Arabidopsis , Antiportadores/genética , Antiportadores/metabolismo , Protones , Glycine max/genética , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Cationes Monovalentes/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Nat Commun ; 14(1): 8482, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123540

RESUMEN

Cleavage and formation of phosphodiester bonds in nucleic acids is accomplished by large cellular machineries composed of both protein and RNA. Long thought to rely on a two-metal-ion mechanism for catalysis, structure comparisons revealed many contain highly spatially conserved second-shell monovalent cations, whose precise function remains elusive. A recent high-resolution structure of the spliceosome, essential for pre-mRNA splicing in eukaryotes, revealed a potassium ion in the active site. Here, we employ biased quantum mechanics/ molecular mechanics molecular dynamics to elucidate the function of this monovalent ion in splicing. We discover that the K+ ion regulates the kinetics and thermodynamics of the first splicing step by rigidifying the active site and stabilizing the substrate in the pre- and post-catalytic state via formation of key hydrogen bonds. Our work supports a direct role for the K+ ion during catalysis and provides a mechanistic hypothesis likely shared by other nucleic acid processing enzymes.


Asunto(s)
ARN , Empalmosomas , Empalmosomas/metabolismo , ARN/metabolismo , Empalme del ARN , Catálisis , Metales/metabolismo , Potasio/metabolismo , Quelantes/metabolismo , Conformación de Ácido Nucleico , Sitios de Unión , Cationes Monovalentes/metabolismo
9.
Phys Chem Chem Phys ; 25(40): 27744-27755, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37814577

RESUMEN

Double-stranded DNA bears the highest linear negative charge density (2e- per base-pair) among all biopolymers, leading to strong interactions with cations and dipolar water, resulting in the formation of a dense 'condensation layer' around DNA. Interactions involving proteins and ligands binding to DNA are primarily governed by strong electrostatic forces. Increased salt concentrations impede such electrostatic interactions - a situation that prevails in oceanic species due to their cytoplasm being enriched with salts. Nevertheless, how these interactions' dynamics are affected in crowded hypersaline environments remains largely unexplored. Here, we employ steady-state and time-resolved fluorescence Stokes shifts (TRFSS) of a DNA-bound ligand (DAPI) to investigate the static and dynamic solvation properties of DNA in the presence of two divalent cations, magnesium (Mg2+), and calcium (Ca2+) at varying high to very-high concentrations of 0.15 M, 1 M and 2 M. We compare the results to those obtained in physiological concentrations (0.15 M) of monovalent Na+ ions. Combining data from fluorescence femtosecond optical gating (FOG) and time-correlated single photon counting (TCSPC) techniques, dynamic fluorescence Stokes shifts in DNA are analysed over a broad range of time-scales, from 100 fs to 10 ns. We find that while divalent cation crowding strongly influences the DNA stability and ligand binding affinity to DNA, the dynamics of DNA solvation remain remarkably similar across a broad range of five decades in time, even in a high-salinity crowded environment with divalent cations, as compared to the physiological concentration of the Na+ ion. Steady-state and time-resolved data of the DNA-groove-bound ligand are seemingly unaffected by ion-crowding in hypersaline solution, possibly due to ions being mostly displaced by the DNA-bound ligand. Furthermore, the dynamic coupling of cations with nearby water may possibly contribute to a net-neutral effect on the overall collective solvation dynamics in DNA, owing to the strong anti-correlation of their electrostatic interaction energy fluctuations. Such dynamic scenarios may persist within the cellular environment of marine life and other biological cells that experience hypersaline conditions.


Asunto(s)
ADN , Salinidad , Cationes Bivalentes , Ligandos , ADN/química , Iones , Sodio , Agua/química , Cationes , Cationes Monovalentes
10.
J Phys Chem B ; 127(31): 6842-6855, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37504511

RESUMEN

G-Quadruplexes (G4s) are ubiquitous nucleic acid folding motifs that exhibit structural diversity that is dependent on cationic conditions. In this work, we exploit temperature-controlled single-molecule fluorescence resonance energy transfer (smFRET) to elucidate the kinetic and thermodynamic mechanisms by which monovalent cations (K+ and Na+) impact folding topologies for a simple G-quadruplex sequence (5'-GGG-(TAAGGG)3-3') with a three-state folding equilibrium. Kinetic measurements indicate that Na+ and K+ influence G4 formation in two distinctly different ways: the presence of Na+ modestly enhances an antiparallel G4 topology through an induced fit (IF) mechanism with a low affinity (Kd = 228 ± 26 mM), while K+ drives G4 into a parallel/hybrid topology via a conformational selection (CS) mechanism with much higher affinity (Kd = 1.9 ± 0.2 mM). Additionally, temperature-dependent studies of folding rate constants and equilibrium ratios reveal distinctly different thermodynamic driving forces behind G4 binding to K+ (ΔH°bind > 0, ΔS°bind > 0) versus Na+ (ΔH°bind < 0, ΔS°bind < 0), which further illuminates the diversity of the possible pathways for monovalent facilitation of G-quadruplex folding.


Asunto(s)
G-Cuádruplex , Termodinámica , Polimorfismo Genético , Cinética , Cationes Monovalentes , Sodio/química , Potasio/química , Modelos Moleculares , Conformación de Ácido Nucleico , Temperatura
11.
Molecules ; 28(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446774

RESUMEN

Two new esters of lasalocid, that are more hydrophilic, with glucose (LasGlu) and xylitol (LasX), have been synthesized, and their complexation of monovalent cations has been studied by various spectrometric and spectroscopic methods, such as ESI mass spectrometry, 1H, 13C NMR and FT-IR. Analyses of the results confirmed the synthesis of new esters with good yields. In order to carry out further studies, it was necessary to purify them using "flash" liquid chromatography. It was confirmed that the newly obtained molecules, as well as their complexes with lithium, sodium and potassium cations, were stabilized by a strong system of intramolecular hydrogen bonds. It was found that the hydroxyl groups of esters derived from xylitol and glucose were also involved in the complexation of cations. The results of the PM6 semiempirical calculations permitted determination of the heat of formation (HOF), and visualization of the structure of the new esters and their complexes with the cations studied. All computation results are in agreement with the spectroscopic data.


Asunto(s)
Lasalocido , Xilitol , Espectroscopía Infrarroja por Transformada de Fourier , Modelos Moleculares , Metales/química , Cationes/química , Cationes Monovalentes/química , Ésteres
12.
Int J Mol Sci ; 24(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298189

RESUMEN

The opening of the permeability transition pore (PTP) in mitochondria is a key event in the initiation of cell death in various pathologic states, including ischemia/reperfusion. The activation of K+ transport into mitochondria protects cells from ischemia/reperfusion. However, the role of K+ transport in PTP regulation is unclear. Here, we studied the role of K+ and other monovalent cations in the regulation of the PTP opening in an in vitro model. The registration of the PTP opening, membrane potential, Ca2+-retention capacity, matrix pH, and K+ transport was performed using standard spectral and electrode techniques. We found that the presence of all cations tested in the medium (K+, Na+, choline+, and Li+) strongly stimulated the PTP opening compared with sucrose. Several possible reasons for this were examined: the effect of ionic strength, the influx of cations through selective and non-selective channels and exchangers, the suppression of Ca2+/H+ exchange, and the influx of anions. The data obtained indicate that the mechanism of PTP stimulation by cations includes the suppression of K+/H+ exchange and acidification of the matrix, which facilitates the influx of phosphate. Thus, the K+/H+ exchanger and the phosphate carrier together with selective K+ channels compose a PTP regulatory triad, which might operate in vivo.


Asunto(s)
Mitocondrias Hepáticas , Poro de Transición de la Permeabilidad Mitocondrial , Humanos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Cationes Monovalentes/metabolismo , Isquemia/metabolismo , Calcio/metabolismo , Permeabilidad
13.
Nature ; 618(7967): 1078-1084, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37344591

RESUMEN

Numerous studies have shown how RNA molecules can adopt elaborate three-dimensional (3D) architectures1-3. By contrast, whether DNA can self-assemble into complex 3D folds capable of sophisticated biochemistry, independent of protein or RNA partners, has remained mysterious. Lettuce is an in vitro-evolved DNA molecule that binds and activates4 conditional fluorophores derived from GFP. To extend previous structural studies5,6 of fluorogenic RNAs, GFP and other fluorescent proteins7 to DNA, we characterize Lettuce-fluorophore complexes by X-ray crystallography and cryogenic electron microscopy. The results reveal that the 53-nucleotide DNA adopts a four-way junction (4WJ) fold. Instead of the canonical L-shaped or H-shaped structures commonly seen8 in 4WJ RNAs, the four stems of Lettuce form two coaxial stacks that pack co-linearly to form a central G-quadruplex in which the fluorophore binds. This fold is stabilized by stacking, extensive nucleobase hydrogen bonding-including through unusual diagonally stacked bases that bridge successive tiers of the main coaxial stacks of the DNA-and coordination of monovalent and divalent cations. Overall, the structure is more compact than many RNAs of comparable size. Lettuce demonstrates how DNA can form elaborate 3D structures without using RNA-like tertiary interactions and suggests that new principles of nucleic acid organization will be forthcoming from the analysis of complex DNAs.


Asunto(s)
ADN , Proteínas Fluorescentes Verdes , Imitación Molecular , Conformación de Ácido Nucleico , ADN/química , ADN/ultraestructura , G-Cuádruplex , ARN/química , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/ultraestructura , Cristalografía por Rayos X , Microscopía por Crioelectrón , Enlace de Hidrógeno , Cationes Bivalentes/química , Cationes Monovalentes/química
14.
Electrophoresis ; 44(17-18): 1414-1422, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37354056

RESUMEN

The free solution mobilities of 26-base pair (bp) DNA oligomers containing A-tracts with and without internal ApT steps have been measured by capillary electrophoresis, using the mobility of a 26-bp random-sequence oligomer as a reference. The background electrolytes (BGEs) contained mixtures of Li+ and tetrapropylammonium (TPA+ ) ions, keeping the total cation concentration constant at 0.3 M. The mobility ratios equaled 1.00 in 0.3 M TPA+ , indicating that the A-tract and reference oligomers had the same B-form conformation in this BGE. With increasing [Li+ ], the mobility ratio decreased as Li+ ions became localized in the A-tract minor groove, suggesting that the A-tract was now in the B* conformation. If the A-tract contained an internal ApT step and the oligomer contained less than ∼50% A + T, the mobility ratio reached a reduced plateau value that remained constant as the [Li+ ] increased to 0.3 M. However, for A-tracts without an internal ApT step and for A-tracts embedded in oligomers containing more than 50% A + T, the mobility ratios increased again at high [Li+ ], eventually reaching a plateau value of 1.00. Hence, DNA A-tracts in solution appear to exist as mixtures of the B and B* conformations, with the fractional concentration of each conformer depending on the [Li+ ], the A-tract sequence, and the total A + T content of the oligomer.


Asunto(s)
ADN , Litio , Cationes Monovalentes , Secuencia de Bases , Iones , Conformación de Ácido Nucleico
15.
J Phys Chem B ; 127(9): 1932-1939, 2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36811958

RESUMEN

At acidic pH, cytosine-rich single-stranded DNA can be folded into a tetraplex structure called i-motif (iM). In recent studies, the effect of monovalent cations on the stability of iM structure has been addressed, but a consensus about the issue has not been reached yet. Thus, we investigated the effects of various factors on the stability of iM structure using fluorescence resonance energy transfer (FRET)-based analysis for three types of iM derived from human telomere sequences. We confirmed that the protonated cytosine-cytosine (C:C+) base pair is destabilized as the concentration of monovalent cations (Li+, Na+, K+) increases and that Li+ has the greatest tendency of destabilization. Intriguingly, monovalent cations would play an ambivalent role in iM formation by making single-stranded DNA flexible and pliant for an iM structure. In particular, we found that Li+ has a notably greater flexibilizing effect than Na+ and K+. All taken together, we conclude that the stability of iM structure is controlled by the subtle balance of the two counteractive effects of monovalent cations: electrostatic screening and disruption of cytosine base pairing.


Asunto(s)
ADN de Cadena Simple , Sodio , Humanos , Cationes Monovalentes/química , Sodio/química , Litio/química , Citosina/química , Cationes
16.
Biophys Chem ; 294: 106949, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36706510

RESUMEN

Monovalent and divalent cations play a crucial role in living cells and for molecular techniques such as PCR. Here we evaluate DNA melting temperatures in magnesium (Mg2+) and magnesium­potassium (Mg2++ K+) buffers with a mesoscopic model that allows us to estimate hydrogen bonds and stacking interaction potentials. The Mg2+ and Mg2++ K+ results are compared to previous calculations for sodium ions (Na+), in terms of equivalent sodium concentration and ionic strength. Morse potentials, related to hydrogen bonding, were found to be essentially constant and unaffected by cation conditions. However, for stacking interactions we find a clear dependence with ionic strength and cation valence. The highest ionic strength variations, for both hydrogen bonds and stacking interactions, was found at the sequence terminals. This suggests that end-to-end interactions in DNA will be strongly dependent on cation valence and ionic strength.


Asunto(s)
ADN , Magnesio , Enlace de Hidrógeno , Cationes , ADN/química , Sodio , Cationes Monovalentes/química
17.
J Biol Chem ; 299(2): 102811, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36539036

RESUMEN

The Na+/K+-ATPase is an integral plasma membrane glycoprotein of all animal cells that couples the exchange of intracellular Na+ for extracellular K+ to the hydrolysis of ATP. The asymmetric distribution of Na+ and K+ is essential for cellular life and constitutes the physical basis of a series of fundamental biological phenomena. The pumping mechanism is explained by the Albers-Post model. It involves the presence of gates alternatively exposing Na+/K+-ATPase transport sites to the intracellular and extracellular sides and includes occluded states in which both gates are simultaneously closed. Unlike for K+, information is lacking about Na+-occluded intermediates, as occluded Na+ was only detected in states incapable of performing a catalytic cycle, including two Na+-containing crystallographic structures. The current knowledge is that intracellular Na+ must bind to the transport sites and become occluded upon phosphorylation by ATP to be transported to the extracellular medium. Here, taking advantage of epigallocatechin-3-gallate to instantaneously stabilize native Na+-occluded intermediates, we isolated species with tightly bound Na+ in an enzyme able to perform a catalytic cycle, consistent with a genuine occluded state. We found that Na+ becomes spontaneously occluded in the E1 dephosphorylated form of the Na+/K+-ATPase, exhibiting positive interactions between binding sites. In fact, the addition of ATP does not produce an increase in Na+ occlusion as it would have been expected; on the contrary, occluded Na+ transiently decreases, whereas ATP lasts. These results reveal new properties of E1 intermediates of the Albers-Post model for explaining the Na+ transport pathway.


Asunto(s)
Biocatálisis , ATPasa Intercambiadora de Sodio-Potasio , Sodio , Animales , Adenosina Trifosfato/metabolismo , Membrana Celular/metabolismo , Cinética , Potasio/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/química , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Transporte Iónico , Fosforilación , Cationes Monovalentes/metabolismo
18.
Biophys J ; 122(3): 565-576, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36540026

RESUMEN

The prediction of RNA secondary structure and thermodynamics from sequence relies on free energy minimization and nearest neighbor parameters. Currently, algorithms used to make these predictions are based on parameters from optical melting studies performed in 1 M NaCl. However, many physiological and biochemical buffers containing RNA include much lower concentrations of monovalent cations and the presence of divalent cations. In order to improve these algorithms, thermodynamic data was previously collected for RNA duplexes in solutions containing 71, 121, 221, and 621 mM Na+. From this data, correction factors for free energy (ΔG°37) and melting temperature (Tm) were derived. Despite these newly derived correction factors for sodium, the stabilizing effects of magnesium have been ignored. Here, the same RNA duplexes were melted in solutions containing 0.5, 1.5, 3.0, and 10.0 mM Mg2+ in the absence of monovalent cations. Correction factors for Tm and ΔG°37 were derived to scale the current parameters to a range of magnesium concentrations. The Tm correction factor predicts the melting temperature within 1.2°C, and the ΔG°37 correction factor predicts the free energy within 0.30 kcalmol. These newly derived magnesium correction factors can be incorporated into algorithms that predict RNA secondary structure and stability from sequence.


Asunto(s)
Magnesio , Sodio , Magnesio/química , Termodinámica , Temperatura , Sodio/química , Cationes Monovalentes/farmacología , ARN/química , Conformación de Ácido Nucleico , Estabilidad del ARN
19.
Adv Biol (Weinh) ; 7(3): e2200164, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36328593

RESUMEN

The effect of monovalent cations on a cell-free transcription-translation (TX-TL) system is examined using a luciferase assay. It is found that the potency for all ions analyzed here is in the order Rb+  > K+  > Cs+  > Na+  ≈ Li+  > (CH3 )4 N+ , where Rb+ is most efficient at promoting TX-TL and the ions of Li+ , Na+ , and (CH3 )4 N+ exhibit an inhibitory effect. Similar promotion/inhibition effects are observed for cell-free TL alone with an mRNA template.


Asunto(s)
Litio , Sodio , Cationes Monovalentes/farmacología , Litio/farmacología , Sodio/farmacología , Expresión Génica
20.
Food Chem ; 404(Pt A): 134519, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36252377

RESUMEN

The present study aimed to investigate effects of pH and monovalent (Na+ and K+)/divalent (Ca2+ and Mg2+) cations on the structural and physicochemical properties of myofibrillar protein (MP) from silver carp. MP treated with divalent cation had lesser change for the structure than that treated with monovalent cation. Ca2+-ATPase activity of MP treated with monovalent cation was increased firstly and then decreased, while that treated with divalent cation was decreased with increasing ionic strength. Surface hydrophobicity and Z-average of MP treated with divalent cations was lower than that with monovalent cations, while they decreased and then increased with the pH shifting from 3.0 to 9.0. Zeta potential of MP was increased and then decreased with increasing the pH but decreased and then increased with increasing ionic strength. In general, the pH and monovalent/divalent cations could cause various hydrophobic and electrostatic interactions, resulting in changes of the physicochemical properties of MP.


Asunto(s)
Carpas , Animales , Cationes Monovalentes/química , Cationes Bivalentes/química , Carpas/metabolismo , Sodio/metabolismo , Concentración de Iones de Hidrógeno , Cationes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...