Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38256054

RESUMEN

Caveolae constitute membrane microdomains where receptors and ion channels functionally interact. Caveolin-3 (cav-3) is the key structural component of muscular caveolae. Mutations in CAV3 lead to caveolinopathies, which result in both muscular dystrophies and cardiac diseases. In cardiomyocytes, cav-1 participates with cav-3 to form caveolae; skeletal myotubes and adult skeletal fibers do not express cav-1. In the heart, the absence of cardiac alterations in the majority of cases may depend on a conserved organization of caveolae thanks to the expression of cav-1. We decided to focus on three specific cav-3 mutations (Δ62-64YTT; T78K and W101C) found in heterozygosis in patients suffering from skeletal muscle disorders. We overexpressed both the WT and mutated cav-3 together with ion channels interacting with and modulated by cav-3. Patch-clamp analysis conducted in caveolin-free cells (MEF-KO), revealed that the T78K mutant is dominant negative, causing its intracellular retention together with cav-3 WT, and inducing a significant reduction in current densities of all three ion channels tested. The other cav-3 mutations did not cause significant alterations. Mathematical modelling of the effects of cav-3 T78K would impair repolarization to levels incompatible with life. For this reason, we decided to compare the effects of this mutation in other cell lines that endogenously express cav-1 (MEF-STO and CHO cells) and to modulate cav-1 expression with an shRNA approach. In these systems, the membrane localization of cav-3 T78K was rescued in the presence of cav-1, and the current densities of hHCN4, hKv1.5 and hKir2.1 were also rescued. These results constitute the first evidence of a compensatory role of cav-1 in the heart, justifying the reduced susceptibility of this organ to caveolinopathies.


Asunto(s)
Caveolina 1 , Caveolina 3 , Adulto , Animales , Cricetinae , Humanos , Caveolina 1/genética , Caveolina 3/genética , Cricetulus , Mutación , Células CHO , Canales Iónicos
2.
Circ Res ; 133(2): 120-137, 2023 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-37313722

RESUMEN

BACKGROUND: Beta-2 adrenergic receptors (ß2ARs) but not beta-2 adrenergic receptors (ß1ARs) form a functional complex with L-type Ca2+ channels (LTCCs) on the cardiomyocyte membrane. However, how microdomain localization in the plasma membrane affects the function of these complexes is unknown. We aim to study the coupling between LTCC and ß adrenergic receptors in different cardiomyocyte microdomains, the distinct involvement of PKA and CAMKII (Ca2+/calmodulin-dependent protein kinase II) and explore how this functional complex is disrupted in heart failure. METHODS: Global signaling between LTCCs and ß adrenergic receptors was assessed with whole-cell current recordings and western blot analysis. Super-resolution scanning patch-clamp was used to explore the local coupling between single LTCCs and ß1AR or ß2AR in different membrane microdomains in control and failing cardiomyocytes. RESULTS: LTCC open probability (Po) showed an increase from 0.054±0.003 to 0.092±0.008 when ß2AR was locally stimulated in the proximity of the channel (<350 nm) in the transverse tubule microdomain. In failing cardiomyocytes, from both rodents and humans, this transverse tubule coupling between LTCC and ß2AR was lost. Interestingly, local stimulation of ß1AR did not elicit any change in the Po of LTCCs, indicating a lack of proximal functional interaction between the two, but we confirmed a general activation of LTCC via ß1AR. By using blockers of PKA and CaMKII and a Caveolin-3-knockout mouse model, we conclude that the ß2AR-LTCC regulation requires the presence of caveolin-3 and the activation of the CaMKII pathway. By contrast, at a cellular "global" level PKA plays a major role downstream ß1AR and results in an increase in LTCC current. CONCLUSIONS: Regulation of the LTCC activity by proximity coupling mechanisms occurs only via ß2AR, but not ß1AR. This may explain how ß2ARs tune the response of LTCCs to adrenergic stimulation in healthy conditions. This coupling is lost in heart failure; restoring it could improve the adrenergic response of failing cardiomyocytes.


Asunto(s)
Caveolina 3 , Insuficiencia Cardíaca , Ratones , Animales , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptores Adrenérgicos beta 2/metabolismo , Adrenérgicos , Canales de Calcio Tipo L/metabolismo
3.
Sci Adv ; 9(24): eadg0183, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327338

RESUMEN

Junctional folds are unique membrane specializations developed progressively during the postnatal maturation of vertebrate neuromuscular junctions (NMJs), but how they are formed remains elusive. Previous studies suggested that topologically complex acetylcholine receptor (AChR) clusters in muscle cultures undergo a series of transformations, resembling the postnatal maturation of NMJs in vivo. We first demonstrated the presence of membrane infoldings at AChR clusters in cultured muscles. Live-cell super-resolution imaging further revealed that AChRs are gradually redistributed to the crest regions and spatially segregated from acetylcholinesterase along the elongating membrane infoldings over time. Mechanistically, lipid raft disruption or caveolin-3 knockdown not only inhibits membrane infolding formation at aneural AChR clusters and delays agrin-induced AChR clustering in vitro but also affects junctional fold development at NMJs in vivo. Collectively, this study demonstrated the progressive development of membrane infoldings via nerve-independent, caveolin-3-dependent mechanisms and identified their roles in AChR trafficking and redistribution during the structural maturation of NMJs.


Asunto(s)
Acetilcolinesterasa , Caveolina 3 , Caveolina 3/genética , Unión Neuromuscular/fisiología , Receptores Colinérgicos , Músculos
4.
Eur J Neurol ; 30(8): 2506-2517, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37166430

RESUMEN

BACKGROUND AND PURPOSE: CAV3 gene mutations, mostly inherited as an autosomal dominant trait, cause various skeletal muscle diseases. Clinical presentations encompass proximal myopathy, distal myopathy, or isolated persistent high creatine kinase (CK) with a major overlapping phenotype. METHODS: Twenty-three patients with CAV3 symptomatic mutations, from 16 different families, were included in a retrospective cohort. Mean follow-up duration was 24.2 ± 15.0 years. Clinical and functional data were collected during the follow-up. The results of muscle imaging, electroneuromyography, muscle histopathology, immunohistochemistry, and caveolin-3 Western blot analysis were also compiled. RESULTS: Exercise intolerance was the most common phenotype (52%). Eighty percent of patients had calf hypertrophy, and only 65% of patients presented rippling. One patient presented initially with camptocormia. A walking aid was required in only two patients. Electroneuromyography was mostly normal. CK level was elevated in all patients. No patient had cardiac or respiratory impairment. Muscle imaging showed fatty involvement of semimembranosus, semitendinosus, rectus femoris, biceps brachialis, and spinal muscles. Almost all (87%) of the biopsies were abnormal but without any specific pattern. Whereas a quarter of patients had normal caveolin-3 immunohistochemistry results, Western blots disclosed a reduced amount of the protein. We report nine mutations, including four not previously described. No phenotype-genotype correlation was evidenced. CONCLUSIONS: Caveolinopathy has diverse clinical, muscle imaging, and histological presentations but often has limited functional impact. Mild forms of the disease, an atypical phenotype, and normal caveolin-3 immunostaining are pitfalls leading to misdiagnosis.


Asunto(s)
Caveolina 3 , Enfermedades Musculares , Humanos , Caveolina 3/genética , Caveolina 3/metabolismo , Estudios Retrospectivos , Estudios de Seguimiento , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Músculo Esquelético/patología , Mutación/genética
5.
Circulation ; 147(15): 1162-1179, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36883479

RESUMEN

BACKGROUND: Myocardial insulin resistance is a hallmark of diabetic cardiac injury. However, the underlying molecular mechanisms remain unclear. Recent studies demonstrate that the diabetic heart is resistant to other cardioprotective interventions, including adiponectin and preconditioning. The "universal" resistance to multiple therapeutic interventions suggests impairment of the requisite molecule(s) involved in broad prosurvival signaling cascades. Cav (Caveolin) is a scaffolding protein coordinating transmembrane signaling transduction. However, the role of Cav3 in diabetic impairment of cardiac protective signaling and diabetic ischemic heart failure is unknown. METHODS: Wild-type and gene-manipulated mice were fed a normal diet or high-fat diet for 2 to 12 weeks and subjected to myocardial ischemia and reperfusion. Insulin cardioprotection was determined. RESULTS: Compared with the normal diet group, the cardioprotective effect of insulin was significantly blunted as early as 4 weeks of high-fat diet feeding (prediabetes), a time point where expression levels of insulin-signaling molecules remained unchanged. However, Cav3/insulin receptor-ß complex formation was significantly reduced. Among multiple posttranslational modifications altering protein/protein interaction, Cav3 (not insulin receptor-ß) tyrosine nitration is prominent in the prediabetic heart. Treatment of cardiomyocytes with 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride reduced the signalsome complex and blocked insulin transmembrane signaling. Mass spectrometry identified Tyr73 as the Cav3 nitration site. Phenylalanine substitution of Tyr73 (Cav3Y73F) abolished 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride-induced Cav3 nitration, restored Cav3/insulin receptor-ß complex, and rescued insulin transmembrane signaling. It is most important that adeno-associated virus 9-mediated cardiomyocyte-specific Cav3Y73F reexpression blocked high-fat diet-induced Cav3 nitration, preserved Cav3 signalsome integrity, restored transmembrane signaling, and rescued insulin-protective action against ischemic heart failure. Last, diabetic nitrative modification of Cav3 at Tyr73 also reduced Cav3/AdipoR1 complex formation and blocked adiponectin cardioprotective signaling. CONCLUSIONS: Nitration of Cav3 at Tyr73 and resultant signal complex dissociation results in cardiac insulin/adiponectin resistance in the prediabetic heart, contributing to ischemic heart failure progression. Early interventions preserving Cav3-centered signalsome integrity is an effective novel strategy against diabetic exacerbation of ischemic heart failure.


Asunto(s)
Insuficiencia Cardíaca , Resistencia a la Insulina , Daño por Reperfusión Miocárdica , Estado Prediabético , Ratones , Animales , Caveolina 3/genética , Caveolina 3/metabolismo , Adiponectina/metabolismo , Adiponectina/farmacología , Cloruros/metabolismo , Cloruros/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/metabolismo
6.
Genet Test Mol Biomarkers ; 27(3): 109-119, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36989524

RESUMEN

Background: Acute myocardial infarction (AMI) is one of the world's leading causes of cardiovascular death. Recent studies have reported the influence of the genes caveolin-3 (CAV3), suppression of tumorigenicity 2, and growth differentiating factor-15 in cardiovascular diseases, especially myocardial infarction, but their role and function remain unclear. Hence, this study was designed to evaluate the expression levels of these three genes in AMI and understanding the role of CAV-3 in the pathogenesis of AMI. Methods and Results: Blood samples were collected from 50 AMI patients and 50 non-AMI controls in this cross-sectional study. Relative expression levels of the three genes were performed using real-time PCR. Bioinformatics tools were used for functional gene enrichment and protein-protein interactions. CAV-3 was significantly upregulated among AMI patients compared to controls. In silico analyses identified CAV-3 as playing critical roles in smooth muscle contraction, cardiac conduction, and calcium-mediated transport via binding with essential proteins including dysferlin and annexins Conclusion: This study is a first of its kind, reporting an upregulation of CAV-3 in AMI patients. The expression of all three genes significantly influenced the systolic function of the heart in AMI patients. A more in-depth understanding of CAV-3 in the pathophysiology of AMI is essential and it may prove to be a novel.


Asunto(s)
Caveolina 3 , Infarto del Miocardio , Humanos , Caveolina 3/genética , Estudios Transversales , Factores de Diferenciación de Crecimiento , Hospitales , India , Infarto del Miocardio/genética
7.
J Mol Cell Cardiol ; 177: 38-49, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36842733

RESUMEN

RATIONALE: Flask-shaped invaginations of the cardiomyocyte sarcolemma called caveolae require the structural protein caveolin-3 (Cav-3) and host a variety of ion channels, transporters, and signaling molecules. Reduced Cav-3 expression has been reported in models of heart failure, and variants in CAV3 have been associated with the inherited long-QT arrhythmia syndrome. Yet, it remains unclear whether alterations in Cav-3 levels alone are sufficient to drive aberrant repolarization and increased arrhythmia risk. OBJECTIVE: To determine the impact of cardiac-specific Cav-3 ablation on the electrophysiological properties of the adult mouse heart. METHODS AND RESULTS: Cardiac-specific, inducible Cav3 homozygous knockout (Cav-3KO) mice demonstrated a marked reduction in Cav-3 expression by Western blot and loss of caveolae by electron microscopy. However, there was no change in macroscopic cardiac structure or contractile function. The QTc interval was increased in Cav-3KO mice, and there was an increased propensity for ventricular arrhythmias. Ventricular myocytes isolated from Cav-3KO mice exhibited a prolonged action potential duration (APD) that was due to reductions in outward potassium currents (Ito, Iss) and changes in inward currents including slowed inactivation of ICa,L and increased INa,L. Mathematical modeling demonstrated that the changes in the studied ionic currents were adequate to explain the prolongation of the mouse ventricular action potential. Results from human iPSC-derived cardiomyocytes showed that shRNA knockdown of Cav-3 similarly prolonged APD. CONCLUSION: We demonstrate that Cav-3 and caveolae regulate cardiac repolarization and arrhythmia risk via the integrated modulation of multiple ionic currents.


Asunto(s)
Caveolas , Síndrome de QT Prolongado , Animales , Humanos , Ratones , Caveolas/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Arritmias Cardíacas/metabolismo , Potenciales de Acción , Canales Iónicos/metabolismo , Síndrome de QT Prolongado/metabolismo , Miocitos Cardíacos/metabolismo , Caveolina 1/genética , Caveolina 1/metabolismo
8.
Mil Med Res ; 9(1): 58, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36229865

RESUMEN

BACKGROUND: Abnormal myocardial Nav1.5 expression and function cause lethal ventricular arrhythmias during myocardial ischemia-reperfusion (I/R). Protein inhibitor of activated STAT Y (PIASy)-mediated caveolin-3 (Cav-3) SUMO modification affects Cav-3 binding to the voltage-gated sodium channel 1.5 (Nav1.5). PIASy activity is increased after myocardial I/R, but it is unclear whether this is attributable to plasma membrane Nav1.5 downregulation and ventricular arrhythmias. METHODS: Using recombinant adeno-associated virus subtype 9 (AAV9), rat cardiac PIASy was silenced using intraventricular injection of PIASy short hairpin RNA (shRNA). After two weeks, rat hearts were subjected to I/R and electrocardiography was performed to assess malignant arrhythmias. Tissues from peri-infarct areas of the left ventricle were collected for molecular biological measurements. RESULTS: PIASy was upregulated by I/R (P < 0.01), with increased SUMO2/3 modification of Cav-3 and reduced membrane Nav1.5 density (P < 0.01). AAV9-PIASy shRNA intraventricular injection into the rat heart downregulated PIASy after I/R, at both mRNA and protein levels (P < 0.05 vs. Scramble-shRNA + I/R group), decreased SUMO-modified Cav-3 levels, enhanced Cav-3 binding to Nav1.5, and prevented I/R-induced decrease of Nav1.5 and Cav-3 co-localization in the intercalated disc and lateral membrane. PIASy silencing in rat hearts reduced I/R-induced fatal arrhythmias, which was reflected by a modest decrease in the duration of ventricular fibrillation (VF; P < 0.05 vs. Scramble-shRNA + I/R group) and a significantly reduced arrhythmia score (P < 0.01 vs. Scramble-shRNA + I/R group). The anti-arrhythmic effects of PIASy silencing were also evidenced by decreased episodes of ventricular tachycardia (VT), sustained VT and VF, especially at the time 5-10 min after ischemia (P < 0.05 vs. Scramble-shRNA + IR group). Using in vitro human embryonic kidney 293 T (HEK293T) cells and isolated adult rat cardiomyocyte models exposed to hypoxia/reoxygenation (H/R), we confirmed that increased PIASy promoted Cav-3 modification by SUMO2/3 and Nav1.5/Cav-3 dissociation after H/R. Mutation of SUMO consensus lysine sites in Cav-3 (K38R or K144R) altered the membrane expression levels of Nav1.5 and Cav-3 before and after H/R in HEK293T cells. CONCLUSIONS: I/R-induced cardiac PIASy activation increased Cav-3 SUMOylation by SUMO2/3 and dysregulated Nav1.5-related ventricular arrhythmias. Cardiac-targeted PIASy silencing mediated Cav-3 deSUMOylation and partially prevented I/R-induced Nav1.5 downregulation in the plasma membrane of cardiomyocytes, and subsequent ventricular arrhythmias in rats. PIASy was identified as a potential therapeutic target for life-threatening arrhythmias in patients with ischemic heart diseases.


Asunto(s)
Antiarrítmicos , Caveolina 3 , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Inhibidoras de STAT Activados/genética , Animales , Arritmias Cardíacas/genética , Caveolina 3/genética , Caveolina 3/metabolismo , Regulación hacia Abajo , Silenciador del Gen , Células HEK293 , Humanos , Isquemia/complicaciones , Lisina/genética , Lisina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , ARN Mensajero , ARN Interferente Pequeño , Ratas , Reperfusión/efectos adversos
9.
Biochem Biophys Res Commun ; 628: 84-90, 2022 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-36084555

RESUMEN

Mutations of the caveolin 3 gene cause autosomal dominant limb-girdle muscular dystrophy (LGMD)1C. In mice, overexpression of mutant caveolin 3 leads to loss of caveolin 3 and results in myofiber hypotrophy in association with activation of neuronal nitric oxide synthase (nNOS) at the sarcolemma. Here, we show that caveolin 3 directly bound to nNOS and suppressed its phosphorylation-dependent activation at a specific residue, Ser1412 in the nicotinamide adenine dinucleotide phosphate (NADPH)-flavin adenine dinucleotide (FAD) module near the C-terminus of the reduction domain, in vitro. Constitutively active nNOS enhanced myoblast fusion, but not myogenesis, in vitro. Phosphorylation-dependent activation of nNOS occurred in muscles from caveolin 3-mutant mice and LGMD1C patients. Mating with nNOS-mutant mice exacerbated myofiber hypotrophy in the caveolin 3-mutant mice. In nNOS-mutant mice, regenerating myofibers after cardiotoxin injury became hypotrophic with reduced myoblast fusion. Administration of NO donor increased myofiber size and the number of myonuclei in the caveolin 3-mutant mice. Exercise also increased myofiber size accompanied by phosphorylation-dependent activation of nNOS in wild-type and caveolin 3-mutant mice. These data indicate that caveolin 3 inhibits phosphorylation-dependent activation of nNOS, which leads to myofiber hypertrophy via enhancing myoblast fusion. Hypertrophic signaling by nNOS phosphorylation could act in a compensatory manner in caveolin 3-deficient muscles.


Asunto(s)
Caveolina 3 , Flavina-Adenina Dinucleótido , Óxido Nítrico Sintasa de Tipo I , Animales , Cardiotoxinas , Caveolina 3/genética , Caveolina 3/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Ratones , NADP/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Fosforilación , Sarcolema/metabolismo
10.
Am J Physiol Cell Physiol ; 323(4): C1137-C1148, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993515

RESUMEN

Caveolins, encoded by the Cav gene family, are the main components of caveolae. Caveolin-3 (Cav3) is specifically expressed in muscle cells. Mutations in Cav3 are responsible for a group of muscle diseases called caveolinopathies, and Cav3 deficiency is associated with sarcolemmal membrane alterations, disorganization of T-tubules, and disruption of specific cell-signaling pathways. However, Cav3 overexpression increases the number of sarcolemmal caveolae and muscular dystrophy-like regenerating muscle fibers with central nuclei, suggesting that the alteration of Cav3 expression levels or localization influences muscle cell functions. Here, we used mouse C2C12 myoblasts in which Cav3 expression was suppressed with short hairpin RNA and found that Cav3 suppression impaired myotube differentiation without affecting the expression of MyoD and Myog. We also observed an increase of intracellular Ca2+ levels, total calpain activity, and Ca2+-dependent calmodulin kinase II (CaMKII) levels in Cav3-depleted myoblasts. Importantly, those phenotypes due to Cav3 suppression were caused by the ryanodine receptor activation. Furthermore, pharmacological inhibition of CaMKII rescued the impairment of myoblast differentiation due to Cav3 knockdown. Our results suggest that Cav3 regulates intracellular Ca2+ concentrations by modulating ryanodine receptor activity in muscle cells and that CaMKII suppression in muscle could be a novel therapy for caveolinopathies.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Caveolina 3 , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calpaína/genética , Calpaína/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Caveolinas/metabolismo , Ratones , Músculo Esquelético/metabolismo , ARN Interferente Pequeño/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
11.
Biochem Biophys Res Commun ; 586: 157-162, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847441

RESUMEN

Sarcopenia is the age-related loss of muscle mass and function and no pharmacological medication has been approved for its treatment. We established an atrogin-1/MAFbx promoter assay to find drug candidates that inhibit myotube atrophy. Alverine citrate (AC) was identified using high-throughput screening of an existing drug library. AC is an established medicine for stomach and intestinal spasms. AC treatment increased myotube diameter and inhibited atrophy signals induced by either C26-conditioned medium or dexamethasone in cultured C2C12 myoblasts. AC also enhanced myoblast fusion through the upregulation of fusion-related genes during C2C12 myoblast differentiation. Oral administration of AC improves muscle mass and physical performance in aged mice, as well as hindlimb-disused mice. Taken together, our data suggest that AC may be a novel therapeutic candidate for improving muscle weakness, including sarcopenia.


Asunto(s)
Envejecimiento/genética , Diferenciación Celular/efectos de los fármacos , Atrofia Muscular/prevención & control , Parasimpatolíticos/farmacología , Propilaminas/farmacología , Sarcopenia/prevención & control , Envejecimiento/metabolismo , Animales , Biomarcadores/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Caveolina 3/genética , Caveolina 3/metabolismo , Línea Celular , Dexametasona/farmacología , Modelos Animales de Enfermedad , Expresión Génica , Ensayos Analíticos de Alto Rendimiento , Inmovilización , Integrina beta1/genética , Integrina beta1/metabolismo , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/patología , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patología
12.
Dev Biol ; 480: 14-24, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34407458

RESUMEN

Neural tube closure (NTC) is a complex multi-step morphogenetic process that transforms the flat neural plate found on the surface of the post-gastrulation embryo into the hollow and subsurface central nervous system (CNS). Errors in this process underlie some of the most prevalent human birth defects, and occur in about 1 out of every 1000 births. Previously, we discovered a mutant in the basal chordate Ciona savignyi (named bugeye) that revealed a novel role for a T-Type Calcium Channel (Cav3) in this process. Moreover, the requirement for CAV3s in Xenopus NTC suggests a conserved function among the chordates. Loss of CAV3 leads to defects restricted to anterior NTC, with the brain apparently fully developed, but protruding from the head. Here we report first on a new Cav3 mutant in the related species C. robusta. RNAseq analysis of both C. robusta and C. savignyi bugeye mutants reveals misregulation of a number of transcripts including ones that are involved in cell-cell recognition and adhesion. Two in particular, Selectin and Fibronectin leucine-rich repeat transmembrane, which are aberrantly upregulated in the mutant, are expressed in the closing neural tube, and when disrupted by CRISPR gene editing lead to the open brain phenotype displayed in bugeye mutants. We speculate that these molecules play a transient role in tissue separation and adhesion during NTC and failure to downregulate them leads to an open neural tube.


Asunto(s)
Caveolina 3/genética , Adhesión Celular/fisiología , Ciona/metabolismo , Animales , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Caveolina 3/metabolismo , Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Morfogénesis/genética , Placa Neural/metabolismo , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Neurulación/genética
14.
Am J Physiol Heart Circ Physiol ; 320(2): H787-H797, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33416459

RESUMEN

Angiotensin II (AngII) is a key mediator of the renin-angiotensin system and plays an important role in the regulation of cardiac electrophysiology by affecting various cardiac ion currents, including transient outward potassium current, Ito. AngII receptors and molecular components of Ito, Kv4.2 and Kv4.3 channels, have been linked to caveolae structures. However, their functional interaction and the importance of such proximity within 50- to 100-nm caveolar nanodomains remain unknown. To address this, we studied the mechanisms of Ito regulation by AngII in atrial myocytes of wild-type (WT) and cardiac-specific caveolin-3 (Cav3) conditional knockout (Cav3KO) mice. We showed that in WT atrial myocytes, a short-term (2 h) treatment with AngII (5 µM) significantly reduced Ito density. This effect was prevented 1) by a 30-min pretreatment with a selective antagonist of AngII receptor 1 (Ang1R) losartan (2 µM) or 2) by a selective inhibition of protein kinase C (PKC) by BIM1 (10 µM). The effect of AngII on Ito was completely abolished in Cav3-KO mice, with no change in a baseline Ito current density. In WT atria, Ang1Rs co-localized with Cav3, and the expression of Ang1Rs was significantly decreased in Cav3KO in comparison with WT mice, whereas no change in Kv4.2 and Kv4.3 protein expression was observed. Overall, our findings demonstrate that Cav3 is involved in the regulation of Ang1R expression and is required for the modulation of Ito by AngII in mouse atrial myocytes.NEW & NOTEWORTHY Angiotensin II receptor 1 is associated with caveolae and caveolar scaffolding protein caveolin-3 in mouse atrial myocytes that is required for the regulation of Ito by angiotensin II. Downregulation of caveolae/caveolin-3 disrupts this regulation and may be implicated in pathophysiological atrial remodeling.


Asunto(s)
Angiotensina II/farmacología , Caveolina 3/metabolismo , Atrios Cardíacos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Potasio/metabolismo , Receptor de Angiotensina Tipo 1/agonistas , Canales de Potasio Shal/metabolismo , Animales , Caveolina 3/deficiencia , Caveolina 3/genética , Femenino , Atrios Cardíacos/metabolismo , Masculino , Potenciales de la Membrana , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteína Quinasa C/metabolismo , Receptor de Angiotensina Tipo 1/metabolismo
15.
Am J Phys Med Rehabil ; 100(7): e101-e103, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33002912

RESUMEN

ABSTRACT: Idiopathic hyperckemia has been described as persistent serum creatine kinase elevation at least 1.5 times the upper limit of normal in individuals with otherwise normal laboratory findings and neurological examination. This type of hyperckemia encompasses both sporadic and familial cases, which have been found to be asymptomatic or subclinical, presenting with mild symptoms, such as myalgias or cramps. Genetic causes of hyperckemia have been rarely described. The authors aim to describe a benign autosomal dominant condition caused by a rare mutation in the caveolin gene. Caveolin gene encodes for structural membrane proteins in muscle. The purpose of this article was to discuss the presentation, pathophysiology, and diagnosis of familial hyperckemia secondary to a relatively unknown mutation in caveolin-3 gene.


Asunto(s)
Caveolina 3/genética , Creatina Quinasa/sangre , Creatina Quinasa/genética , Proteínas de la Membrana/genética , Enfermedades Neuromusculares/genética , Adolescente , Humanos , Hipertrofia , Pierna , Masculino , Mutación
16.
Int J Mol Sci ; 21(22)2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33228026

RESUMEN

Caveolae are the cholesterol-rich small invaginations of the plasma membrane present in many cell types including adipocytes, endothelial cells, epithelial cells, fibroblasts, smooth muscles, skeletal muscles and cardiac muscles. They serve as specialized platforms for many signaling molecules and regulate important cellular processes like energy metabolism, lipid metabolism, mitochondria homeostasis, and mechano-transduction. Caveolae can be internalized together with associated cargo. The caveolae-dependent endocytic pathway plays a role in the withdrawal of many plasma membrane components that can be sent for degradation or recycled back to the cell surface. Caveolae are formed by oligomerization of caveolin proteins. Caveolin-3 is a muscle-specific isoform, whose malfunction is associated with several diseases including diabetes, cancer, atherosclerosis, and cardiovascular diseases. Mutations in Caveolin-3 are known to cause muscular dystrophies that are collectively called caveolinopathies. Altered expression of Caveolin-3 is also observed in Duchenne's muscular dystrophy, which is likely a part of the pathological process leading to muscle weakness. This review summarizes the major functions of Caveolin-3 in skeletal muscles and discusses its involvement in the pathology of muscular dystrophies.


Asunto(s)
Arritmias Cardíacas/genética , Cardiomegalia/genética , Caveolina 3/genética , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Unión Neuromuscular/genética , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Caveolas/metabolismo , Caveolina 3/química , Caveolina 3/metabolismo , Distrofina/genética , Distrofina/metabolismo , Endocitosis , Regulación de la Expresión Génica , Humanos , Mecanotransducción Celular , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/fisiopatología , Distrofias Musculares/metabolismo , Distrofias Musculares/fisiopatología , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiopatología , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Receptores Adrenérgicos beta/genética , Receptores Adrenérgicos beta/metabolismo
17.
Methods Mol Biol ; 2169: 189-196, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548830

RESUMEN

Caveolae are plasma membrane organelles that are, among many other features, involved in mechanosensing and mechanoprotection. Different tools have been developed to study caveolae-dependent mechanoprotection and had to be adapted to the tissue or cells studied, as these structures are found in almost every type of cells. This chapter focuses on a protocol combining the use of live-cell imaging, micropatterning, hypo-osmotic shock as a mechanical stress, and dyes such as calcein-AM and propidium iodide. We used this protocol for the in vitro study of the effect of mechanical stress on membrane integrity in human muscle cells from patients bearing caveolin-3 mutations.


Asunto(s)
Caveolas/metabolismo , Caveolina 3/metabolismo , Membrana Celular/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía por Video/métodos , Células Musculares/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fenómenos Biomecánicos/fisiología , Caveolina 3/genética , Línea Celular , Fluoresceínas/química , Humanos , Microscopía por Video/instrumentación , Fibras Musculares Esqueléticas/citología , Mutación , Presión Osmótica , Propidio/química , Estrés Mecánico
18.
Methods Mol Biol ; 2169: 197-216, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32548831

RESUMEN

Immunohistochemistry- and/or immunofluorescence-based analysis of muscular proteins represents a standard procedure in the diagnostic management of patients suffering from neuromuscular diseases such as "Caveolinopathies" which are caused by mutations in the CAV3 gene encoding for caveolin-3. Human caveolin-3 is a 151 amino acid sized transmembrane protein localized within caveolae, predominantly expressed in cardiac and skeletal muscle cells and involved in a diversity of cellular functions crucial for muscle cell homeostasis. Loss of caveolin-3 protein abundance is indicative for the presence of pathogenic mutations within the corresponding gene and thus for the diagnosis of "Caveolinopathies." Moreover, description of abnormal immunoreactivity findings for the caveolin-3 protein is increasing in the context of other neuromuscular diseases suggesting that profound knowledge of abnormal caveolin-3-expression and/or distribution findings can be decisive also for the diagnosis of other neurological diseases as well as for a better understanding of the biology of the protein. Here, we summarize the current knowledge about the caveolin-3, report on a protocol for immunofluorescence-based analysis of the protein in the diagnostic workup of neuromuscular patients-also considering problems encountered-and confirm as well as summarize already published abnormal histological findings in muscular pathologies beyond "Caveolinopathies."


Asunto(s)
Caveolina 3/genética , Caveolina 3/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Músculo Esquelético/metabolismo , Enfermedades Neuromusculares/diagnóstico , Enfermedades Neuromusculares/metabolismo , Caveolas/metabolismo , Humanos , Mutación , Enfermedades Neuromusculares/patología , Fenotipo
19.
Int J Cardiol ; 319: 71-77, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387251

RESUMEN

BACKGROUND: Caveolin-3 (Cav-3) is an essential scaffolding protein for caveolae formation in cardiomyocytes and targets multiple long QT syndrome (LQTS)-associated ion channels. Mutations in CAV3 have caused an LQT3-like accentuation in late sodium current, INa (Nav1.5). Here, we characterize a novel CAV3-V37L variant and determine whether it is the substrate for the patient's LQTS. METHODS: The proband was a 39-year-old female with drug-induced, sudden cardiac arrest (SCA) with profound QT prolongation (QTc > 600 ms). Genetic testing revealed a rare CAV3-V37L variant of uncertain significance (VUS). Whole-cell patch clamp technique was used to measure IKs, IKr, INa, and ICa, L currents co-expressed with either CAV3-WT or CAV3-V37L in TSA201 cells and to measure the action potential duration (APD) in control human induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) overexpressed with CAV3-WT or CAV3-V37L. RESULTS: CAV3-V37L did not affect Nav1.5 late current. Instead, CAV3-V37L resulted in 1) ICa, L with slower inactivation, a 1.5 fold increase in peak ICa, L current density and a 1.1 fold increase in ICa, L persistent current, 2) dramatically reduced IKs peak current density by 74.9%, 3) significantly reduced IKr peak current density by 31.1%, and 4) significantly prolonged the APD in hiPSC-CMs. CONCLUSIONS: These functional validation assays enabled the promotion of CAV3-V37L from VUS status to a likely pathogenic variant. Although Nav1.5 was spared, this monogenetic insult precipitated an oligo-proteomic impact with a concomitant gain-of-function of ICa, L and loss-of-function of both IKs and IKr culminating in a marked prolongation of the cardiomyocyte's action potential duration.


Asunto(s)
Caveolina 3/genética , Potenciales de Acción , Adulto , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado/genética , Miocitos Cardíacos , Proteómica
20.
Clin Neurol Neurosurg ; 191: 105687, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32004987

RESUMEN

Caveolins are essential proteins in caveolae architecture, small plasma membrane invaginations that play a key role in a variety of cellular processes, including vesicular trafficking and signal transduction. Mutations in the gene encoding caveolin-3 (CAV3) cause a broad spectrum of clinical phenotypes, ranging from isolated hyperCKemia to most severe limb girdle muscular dystrophy and cardiomyopathy. We report a novel heterozygous p.Val44Met (c.130G > A) CAV3 mutation in two brothers presenting with persistent elevation of serum creatine kinase, myalgia and hypercholesterolemia. Immunofluorescence study with anticaveolin-3 antibodies on muscle biopsy of the proband confirmed a reduced immuno-reactivity of caveolin-3 on the sarcolemma. This findings support the pathogenic effect of this novel mutation and extend the genotypic and clinical spectrum of Caveolinopathies. Finally, we discuss the hypothesis that the association between CAV3 mutations and hypercholesterolemia may not be coincidental.


Asunto(s)
Caveolina 3/genética , Creatina Quinasa/metabolismo , Hipercolesterolemia/metabolismo , Mialgia/genética , Adulto , Humanos , Hipercolesterolemia/complicaciones , Italia , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación Missense , Mialgia/complicaciones , Mialgia/metabolismo , Linaje , Sarcolema/metabolismo , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...