Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Comp Immunol ; 152: 105111, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38081402

RESUMEN

Antimicrobial peptides are potential alternatives to traditional antibiotics in the face of increasing bacterial resistance. Insects possess many antimicrobial peptides and have become a valuable source of novel and highly effective antimicrobial peptides. Hermetia illucens as a resource insect, for example, has the highest number of antimicrobial peptides of any dipteran. However, most antimicrobial peptides, especially cecropin, have not been comprehensively identified and have not been evaluated for their antimicrobial ability. In this study, we analyzed the localization and gene structure of 33 cecropin molecules in the H. illucens genome and evaluated their activity against common human pathogens. The results showed that 32 cecropin molecules were concentrated on 1 chromosome, most with 2 exons. More importantly, most of the cecropins had a good antibacterial effect against Gram-negative bacteria, and were not hemolytic. The minimum inhibitory concentration (MIC) of the cecropin designated H3 against E. coli was 4 µg/mL. The toxicity, killing time kinetics, and anti-biofilm activity of H3 were further investigated and confirmed its antimicrobial ability. Overall, H3 is a potential candidate for the development of new antimicrobials to treat severe infections caused by Gram-negative pathogens such as E. coli.


Asunto(s)
Antiinfecciosos , Cecropinas , Dípteros , Animales , Humanos , Cecropinas/genética , Cecropinas/farmacología , Escherichia coli , Antibacterianos/farmacología , Antibacterianos/química , Antiinfecciosos/farmacología , Insectos , Pruebas de Sensibilidad Microbiana
2.
Amino Acids ; 55(12): 1965-1980, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966500

RESUMEN

Egypt has witnessed the emergence of multidrug-resistant (MDR) Klebsiella pneumoniae, which has posed a serious healthcare challenge. The proper treatment choice for MDR-KP infections is not well determined which renders the problem more complicated, thus making the control of such infections a serious challenge for healthcare professionals. This study aims to encapsulate the cationic antimicrobial peptide; Cecropin-B (Cec-B), to increase its lifetime, drug targeting, and efficacy and study the antimicrobial effect of free and encapsulated recombinant rCec-B peptide on multidrug-resistant K. pneumoniae (MDR-KP) isolates. Fifty isolates were collected from different clinical departments at Theodore Bilharz Research Institute. Minimal inhibitory concentrations (MICs) of rCec-B against MDR-KP isolates were determined by the broth microdilution test. In addition, encapsulation of rCec-B peptide into chitosan nanoparticles and studying its bactericidal effect against MDR-KP isolates were also performed. The relative expression of efflux pump and porin coding genes (ArcrB, TolC, mtdK, and Ompk35) was detected by quantitative PCR in treated MDR-KP bacterial isolates compared to untreated isolates. Out of 60 clinical MDR isolates, 50 were MDR-KP. 60% of the isolates were XDR while 40% were MDR. rCec-B were bactericidal on 21 isolates, then these isolates were subjected to treatment using free nanocapsule in addition to the encapsulated peptide. Free capsules showed a mild cytotoxic effect on MDR-KP at the highest concentration. MIC of encapsulated rCec-B was higher than the free peptide. The expression level of genes encoding efflux and porin (ArcrB, TolC, mtdK, and Ompk35) was downregulated after treatment with encapsulated rCec-B. These findings indicate that encapsulated rCec-B is a promising candidate with potent antibacterial activities against drug-resistant K. pneumoniae.


Asunto(s)
Cecropinas , Quitosano , Infecciones por Klebsiella , Nanopartículas , Humanos , Klebsiella pneumoniae , Quitosano/farmacología , Quitosano/uso terapéutico , Cecropinas/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Porinas/genética , Porinas/farmacología , Porinas/uso terapéutico , Pruebas de Sensibilidad Microbiana
3.
Int J Mol Sci ; 24(15)2023 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-37569868

RESUMEN

Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium responsible for severe nosocomial infections and is considered a critical pulmonary pathogen for both immunocompromised and cystic fibrosis patients. Planktonic cells of P. aeruginosa possess intrinsic and acquired resistances, inactivating several classes of conventional antibiotics. Additionally, this bacterium can grow, forming biofilms, and complex structures, further hampering the action of multiple antibiotics. Here, we report the biological properties of D-Q53 CecB, an all-D enantiomer of the silkworm natural peptide Q53 CecB. Compared to the L-variant, D-Q53 CecB was resistant to in vitro degradation by humans and P. aeruginosa elastases and showed an enhanced bactericidal activity against P. aeruginosa planktonic bacteria. D-Q53 CecB was thermostable and maintained its antimicrobial activity at high salt concentrations and in the presence of divalent cations or fetal-bovine serum, although at reduced levels. Against different types of human cells, D-Q53 CecB showed cytotoxic phenomena at concentrations several folds higher compared to those active against P. aeruginosa. When L- and D-Q53 CecB were compared for their antibiofilm properties, both peptides were active in inhibiting biofilm formation. However, the D-enantiomer was extremely effective in inducing biofilm degradation, suggesting this peptide as a favorable candidate in an anti-Pseudomonas therapy.


Asunto(s)
Cecropinas , Infecciones por Pseudomonas , Animales , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Bombyx , Cecropinas/farmacología , Cecropinas/uso terapéutico , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa/efectos de los fármacos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología
4.
Protein Pept Lett ; 30(6): 477-485, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37183466

RESUMEN

BACKGROUND: The creation of brand-new, potent, and less harmful medications to treat leukemia is urgently needed. Antimicrobial peptides (AMPs) have drawn a lot of interest as potential substitutes for chemotherapy. OBJECTIVE: In the present investigation, the anticancer activity of CM11, a short cationic AMP, was assessed on Jurkat and Raji leukemia cell lines and peripheral blood mononuclear cells (PBMCs). METHODS: Different CM11 doses were applied to the Jurkat and Raji cell lines and PBMCs throughout a 24-hour period. The impact of the CM11 on cell viability and toxicity was assessed using an MTT assay. Flow cytometry and Real-Time PCR were used to analyze the effect of this peptide on apoptotic/necrosis pathways and assess the ratio expression of the P53 and Bcl-2 genes, respectively. RESULTS: Despite the fact that peptide toxicity was successful in a variety of cell lines, cancer cells were more sensitive to the medication. The survival of Jurkat and Raji cell lines treated with 32 µg/ml peptide was 47% and 51%, respectively, while the survival of normal PBMC cells was about 65%. According to flow cytometry, Jurkat and Raji cells exposed to peptide had much greater levels of apoptosis than PBMCs. Peptide-treated cells were associated with increased expression of P53 the gene and decreased expression of the Bcl-2 gene. CONCLUSION: These results revealed that the CM11 caused more cytotoxicity to leukemia Raji and Jurkat leukemia cells compared to the normal cells by apoptosis pathway. Our findings demonstrated the potential of CM11 peptide to develop as a new antileukemic agent.


Asunto(s)
Cecropinas , Leucemia , Humanos , Cecropinas/farmacología , Meliteno/farmacología , Leucocitos Mononucleares , Proteína p53 Supresora de Tumor/genética , Apoptosis , Células Jurkat , Péptidos/farmacología , Leucemia/tratamiento farmacológico , Línea Celular Tumoral
5.
Curr Pharm Biotechnol ; 24(8): 1070-1078, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36321228

RESUMEN

BACKGROUND: Antibiotic-resistant is considered one of the critical health challenges in the management of infectious diseases. Resistant bacterial strains to different antibacterial agents have been spread worldwide. Anti-microbial peptides (AMPs), also called host defense peptides, have a broad spectrum of activity and targeting even to multi-drug resistant (MDR) bacteria, therefore, they have been extensively studied and developed as novel therapeutic antibacterial agents. OBJECTIVES: The study aims to design a novel SK4 hybrid peptide with improved characteristics compared with the BMAP-27 and Cecropin-A natural parents' peptides. METHODS: The bioinformatic analysis of the SK4 peptide compared with the parents BMAP-27 and Cecropin-A peptides was conducted and fully characterized using specialized software. The antimicrobial and antibiofilm activity of SK4 was tested, followed by a synergistic study with five conventional antibiotics (Levofloxacin, Rifampicin, Chloramphenicol, Doxycycline, and Ampicillin). Finally, the cytotoxicity against horse erythrocytes and mammalian cells was assessed. RESULTS: The SK4 peptide demonstrated broad-spectrum antimicrobial activity against both grampositive and gram-negative bacteria. The peptide also did not show any hemolytic activity even when used at concentrations ten folds higher than its MICs value. The SK4 peptide also showed a synergistic mode of action when combined with antibiotics, which resulted in a significant decrease in MIC values for both the peptide and the antibiotics. CONCLUSION: The SK4 peptide showed better activity, selectivity, and safety profile than the parent peptides, making it a novel potential treatment for MDR bacterial infections.


Asunto(s)
Antiinfecciosos , Cecropinas , Animales , Caballos , Cecropinas/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Antibacterianos/farmacología , Antibacterianos/química , Bacterias , Pruebas de Sensibilidad Microbiana , Mamíferos
6.
Integr Biol (Camb) ; 14(7): 151-161, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36314040

RESUMEN

Wound healing is an intrinsic process directed towards the restoration of damaged or lost tissue. The development of a dressing material having the ability to control the multiple aspects of the wound environment would be an ideal strategy to improve wound healing. Though natural silk proteins, fibroin, and sericin have demonstrated tissue regenerative properties, the efficacy of bioengineered silk proteins on wound healing is seldom assessed. Furthermore, silk proteins sans contaminants, having low molecular masses, and combining with other bioactive factors can hasten the wound healing process. Herein, recombinant silk proteins, fibroin and sericin, and their fusions with cecropin B were evaluated for their wound-healing effects using in vivo rat model. The recombinant silk proteins demonstrated accelerated wound closure in comparison to untreated wounds and treatment with Povidone. Among all groups, the treatment with recombinant sericin-cecropin B (RSC) showed significantly faster healing, greater than 90% wound closure by Day 12 followed by recombinant fibroin-cecropin B (RFC) (88.86%). Furthermore, histological analysis and estimation of hydroxyproline showed complete epithelialization, neovascularization, and collagenisation in groups treated with recombinant silk proteins. The wound healing activity was further verified by in vitro scratch assay using HADF cells, where the recombinant silk proteins induced cell proliferation and cell migration to the wound area. Additionally, wound healing-related gene expression showed recombinant silk proteins stimulated the upregulation of EGF and VEGF and regulated the expression of TGF-ß1 and TGF-ß3. Our results demonstrated the enhanced healing effects of the recombinant silk fusion proteins in facilitating complete tissue regeneration with scar-free healing. Therefore, the recombinant silks and their fusion proteins have great potential to be developed as smart bandages for wound healing.


Asunto(s)
Cecropinas , Fibroínas , Sericinas , Humanos , Ratas , Animales , Seda/farmacología , Fibroínas/farmacología , Sericinas/farmacología , Cecropinas/farmacología , Cicatrización de Heridas , Fibroblastos
7.
Biochim Biophys Acta Biomembr ; 1864(10): 184003, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35850261

RESUMEN

Cecropin D is an antimicrobial peptide from Bombyx mori displaying anticancer and pro-apoptotic activities and, together with Cecropin XJ and Cecropin A, one of the very few peptides targeting esophageal cancer. Cecropin D displays poor similarity to other cecropins but a remarkable similarity in the structure and activity spectrum with Cecropin A and Cecropin XJ, offering the possibility to highlight key motifs at the base of the biological activity. In this work we show by NMR and MD simulations that Cecropin D is partially structured in solution and stabilizes its two-helix folding upon interaction with biomimetic membranes. Simulations show that Cecropin D strongly interacts with the surface of cancer cell biomimetic bilayers where it recognises the phosphatidylserine headgroup often exposed in the outer leaflet of cancerous cells by means of specific salt bridges. Cecropin D is also able to penetrate deeply in bilayers containing cardiolipin, a phospholipid found in mitochondria, causing significant destabilization in the lipid packing which might account for its pro-apoptotic activity. In bacterial membranes, phosphatidylglycerol and phosphatidylethanolamine act synergically by electrostatically attracting cecropin D and providing access to the membrane core, respectively.


Asunto(s)
Bombyx , Cecropinas , Neoplasias , Animales , Apoptosis , Bombyx/química , Bombyx/metabolismo , Cardiolipinas/metabolismo , Cecropinas/química , Cecropinas/metabolismo , Cecropinas/farmacología , Mitocondrias/metabolismo
8.
Acta Trop ; 227: 106285, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34921765

RESUMEN

Cecropins and defensins are the main classes of antimicrobial peptides in the mosquito innate immune system, acting against bacteria, fungi and protozoa. There is a knowledge gap concerning these peptide genes in anopheline mosquitoes from the Brazilian Amazon. Thus, this work aimed to describe molecular techniques for detecting the genes encoding the antimicrobial peptides cecropin A (CecA) and defensin in Anopheles darlingi mosquitoes and to perform molecular phylogeny of the sequenced genes using the maximum likelihood method and Bayesian inference with other species from different geographic areas. Our results show, for the first time, a molecular biology method for detecting CecA and defensin in Anopheles darlingi that allows for the use of these molecular markers for phylogenetic analysis in anopheline species, separating the species into single and monophyletic clades.


Asunto(s)
Anopheles , Cecropinas , Animales , Anopheles/genética , Péptidos Antimicrobianos , Teorema de Bayes , Cecropinas/genética , Cecropinas/farmacología , Defensinas/genética , Defensinas/farmacología , Filogenia
9.
Molecules ; 26(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34641415

RESUMEN

The increasing antimicrobial-resistant prevalence has become a severe health problem. It has led to the invention of a new antimicrobial agent such as antimicrobial peptides. Heteroscorpine-1 is an antimicrobial peptide that has the ability to kill many bacterial strains. It consists of 76 amino acid residues with a cecropin-like region in N-terminal and a defensin-like region in the C-terminal. The cecropin-like region from heteroscorpine-1 (CeHS-1) is similar to cecropin B, but it lost its glycine-proline hinge region. The bioinformatics prediction was used to help the designing of mutant peptides. The addition of glycine-proline hinge and positively charged amino acids, the deletion of negatively charged amino acids, and the optimization of the hydrophobicity of the peptide resulted in two mutant peptides, namely, CeHS-1 GP and CeHS-1 GPK. The new mutant peptide showed higher antimicrobial activity than the native peptide without increasing toxicity. The interaction of the peptides with the membrane showed that the peptides were capable of disrupting both the inner and outer bacterial cell membrane. Furthermore, the SEM analysis showed that the peptides created the pore in the bacterial cell membrane resulted in cell membrane disruption. In conclusion, the mutants of CeHS-1 had the potential to develop as novel antimicrobial peptides.


Asunto(s)
Cecropinas/farmacología , Membrana Celular/efectos de los fármacos , Proteínas de Insectos/química , Mutación , Proteínas Citotóxicas Formadoras de Poros/farmacología , Venenos de Escorpión/farmacología , Secuencia de Aminoácidos , Animales , Cecropinas/química , Cecropinas/genética , Proteínas Citotóxicas Formadoras de Poros/química , Proteínas Citotóxicas Formadoras de Poros/genética , Escorpiones , Homología de Secuencia , Relación Estructura-Actividad
10.
Peptides ; 145: 170626, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34391826

RESUMEN

Antibiotic resistance is an increasing global problem and therapeutic alternatives to traditional antibiotics are needed. Antimicrobial and host defense peptides represent an attractive source for new therapeutic strategies, given their wide range of activities including antimicrobial, antitumoral and immunomodulatory. Insects produce several families of these peptides, including cecropins. Herein, we characterized the sequence, structure, and biological activity of three cecropins called satanin 1, 2, and curvicin, found in the transcriptome of two dung beetle species Dichotomius satanas and Onthophagus curvicornis. Sequence and circular dichroism analyses show that they have typical features of the cecropin family: short length (38-39 amino acids), positive charge, and amphipathic α-helical structure. They are active mainly against Gram-negative bacteria (3.12-12.5 µg/mL), with low toxicity on eukaryotic cells resulting in high therapeutic indexes (TI > 30). Peptides also showed effects on TNFα production in LPS-stimulated PBMCs. The biological activity of Satanin 1, 2 and Curvicin makes them interesting leads for antimicrobial strategies.


Asunto(s)
Antibacterianos/farmacología , Cecropinas/química , Cecropinas/farmacología , Neutrófilos/efectos de los fármacos , Células A549 , Animales , Antibacterianos/química , Cecropinas/aislamiento & purificación , Línea Celular Tumoral , Chlorocebus aethiops , Dicroismo Circular , Escarabajos , Bacterias Gramnegativas/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/aislamiento & purificación , Neutrófilos/metabolismo , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología , Factor de Necrosis Tumoral alfa/metabolismo , Células Vero
11.
J Vet Sci ; 22(5): e59, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34423597

RESUMEN

BACKGROUND: Antimicrobial peptides (AMPs) have been identified as promising compounds for consideration as novel antimicrobial agents. OBJECTIVES: This study analyzed the efficacy of cecropin B against Haemophilus parasuis isolates through scanning electron microscopy (SEM) and atomic force microscopy (AFM) experiments. RESULTS: Cecropin B exhibited broad inhibition activity against 15 standard Haemophilus parasuis (HPS) strains and 5 of the clinical isolates had minimum inhibition concentrations (MICs) ranging from 2 to 16 µg/mL. Microelectrophoresis and hexadecane adsorption assays indicated that the more hydrophobic and the higher the isoelectric point (IEP) of the strain, the more sensitive it was to cecropin B. Through SEM, multiple blisters of various shapes and dents on the cell surface were observed. Protrusions and leakage were detected by AFM. CONCLUSIONS: Based on the results, cecropin B could inhibit HPS via a pore-forming mechanism by interacting with the cytoplasmic membrane of bacteria. Moreover, as cecropin B concentration increased, the bacteria membrane was more seriously damaged. Thus, cecropin B could be developed as an effective anti-HPS agent for use in clinical applications.


Asunto(s)
Antiinfecciosos/farmacología , Péptidos Catiónicos Antimicrobianos/farmacología , Cecropinas/farmacología , Haemophilus parasuis/citología , Microscopía de Fuerza Atómica/veterinaria , Microscopía Electrónica de Rastreo/veterinaria , Membrana Celular/ultraestructura , Haemophilus parasuis/ultraestructura , Pruebas de Sensibilidad Microbiana/veterinaria
12.
Proteins ; 89(9): 1205-1215, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33973678

RESUMEN

Cecropins form a family of amphipathic α-helical cationic peptides with broad-spectrum antibacterial properties and potent anticancer activity. The emergence of bacteria and cancer cells showing resistance to cationic antimicrobial peptides (CAMPs) has fostered a search for new, more selective and more effective alternatives to CAMPs. With this goal in mind, we looked for cecropin homologs in the genome and transcriptome of the spruce budworm, Choristoneura fumiferana. Not only did we find paralogs of the conventional cationic cecropins (Cfcec+ ), our screening also led to the identification of previously uncharacterized anionic cecropins (Cfcec- ), featuring a poly-l-aspartic acid C-terminus. Comparative peptide analysis indicated that the C-terminal helix of Cfcec- is amphipathic, unlike that of Cfcec+ , which is hydrophobic. Interestingly, molecular dynamics simulations pointed to the lower conformational flexibility of Cfcec- peptides, relative to that of Cfcec+ . Phylogenetic analysis suggests that the evolution of distinct Cfcec+ and Cfcec- peptides may have resulted from an ancient duplication event within the Lepidoptera. Finally, we found that both anionic and cationic cecropins contain a BH3-like motif (G-[KQR]-[HKQNR]-[IV]-[KQR]) that could interact with Bcl-2, a protein involved in apoptosis; this observation is congruent with previous reports indicating that cecropins induce apoptosis. Altogether, our observations suggest that cecropins may provide templates for the development of new anticancer drugs. We also estimated the antibacterial activity of Cfcec-2 and a ∆Cfce-2 peptide as AMPs by testing directly their ability in inhibiting bacterial growth in a disk diffusion assay and their potential for development of novel therapeutics.


Asunto(s)
Antibacterianos/química , Antineoplásicos/química , Cecropinas/química , Proteínas de Insectos/química , Péptidos/química , Proteínas Proto-Oncogénicas c-bcl-2/química , Secuencia de Aminoácidos , Animales , Antibacterianos/metabolismo , Antibacterianos/farmacología , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sitios de Unión , Cecropinas/genética , Cecropinas/metabolismo , Cecropinas/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Evolución Molecular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Proteínas de Insectos/farmacología , Simulación de Dinámica Molecular , Mariposas Nocturnas/química , Mariposas Nocturnas/fisiología , Péptidos/metabolismo , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Electricidad Estática
13.
Probiotics Antimicrob Proteins ; 13(6): 1780-1789, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34018140

RESUMEN

Current antibiotics have limited action mode, which makes it difficult for the antibiotics dealing with the emergence of bacteria resisting the existing antibiotics. As a need for new bacteriolytic agents alternative to the antibiotics, AMPs have long been considered substitutes for the antibiotics. Cecropin B was expressed in a fusion form to six-histidine and SUMO tags in Escherichia coli. Six-histidine tag attached to SUMO was for purification of SUMO-cecropin B fusion proteins and removal of the SUMO tag from cecropin B. Chimeric gene was constructed into pKSEC1 vector that was designed to be functional in both Escherichia coli and chloroplast. To maximize translation of the fusion protein, sequences were codon-optimized. Four different constructs were tested for the level of expression and solubility, and the construct with a linker, 6xHisSUMO3xGly-cecropin B, showed the highest expression. In addition, cleavage of the SUMO tag by SUMOase in the three fusion constructs which have no linker sequence (3xGly, three glycines) was not as efficient as the construct with the linker between SUMO and cecropin B. The cleaved cecropin B showed bacteriolytic activity against Bacillus subtilis at a concentration of 0.0625 µg/µL, while cecropin B fused to SUMO had no activity at a higher concentration, 0.125 µg/µL. As an expression system for AMPs in prokaryotic hosts, the use of tag proteins and appropriate codon-optimization strategy can be employed and further genetic modification of the fusion construct should help the complete removal of the tag proteins from the AMP in the final step of purification.


Asunto(s)
Cecropinas , Escherichia coli , Bacillus subtilis/efectos de los fármacos , Cecropinas/biosíntesis , Cecropinas/farmacología , Codón , Escherichia coli/genética , Escherichia coli/metabolismo , Glicina , Histidina , Sumoilación
14.
Theranostics ; 11(7): 3417-3438, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33537095

RESUMEN

Ulcerative colitis (UC) is a modern refractory disease with steadily increasing incidence worldwide that urgently requires effective and safe therapies. Therapeutic peptides delivered using nanocarriers have shown promising developments for the treatment of UC. We developed a novel colon-accumulating oral drug delivery nanoplatform consisting of Musca domestica cecropin (MDC) and mesoporous carbon nanoparticles (MCNs) and investigated its effects and mechanism of action for the treatment of UC. Methods: An optimized one-step soft templating method was developed to synthesize MCNs, into which MDC was loaded to fabricate MDC@MCNs. MCNs and MDC@MCNs were characterized by BET, XRD, and TEM. MDC and MDC@MCNs resistance to trypsin degradation was measured through Oxford cup antibacterial experiments using Salmonella typhimurium as the indicator. Uptake of MDC and MDC@MCNs by NCM460 cells was observed by fluorescence microscopy. The biocompatibility of MDC, MCNs, and MDC@MCNs was evaluated in three cell lines (NCM460, L02, and NIH3T3) and C57BL/6 mice. Dextran sulphate sodium was used to establish models of NCM460 cell injury and UC in mice. MTT assay, flow cytometry, and mitochondrial membrane potential assay were applied to determine the effects of MDC@MCNs on NCM460 cells injury. Additionally, a variety of biological methods such as H&E staining, TEM, ELISA, qPCR, Western blotting, and 16s rDNA sequencing were performed to explore the effects and underlying mechanism of MDC@MCN on UC in vivo. Colonic adhesion of MCNs was compared in normal and UC mice. The oral biodistributions of MDC and MDC@MCNs in the gastrointestinal tract of mice were also determined. Results: MDC@MCNs were successfully developed and exhibited excellent ability to resist destruction by trypsin and were taken up by NCM460 cells more readily than MDC. In vitro studies showed that MDC@MCNs better inhibited DSS-induced NCM460 cells damage with lower toxicity to L02 and NIH3T3 cells compared with MDC. In vivo results indicated that MDC@MCNs have good biocompatibility and significantly improved colonic injury in UC mice by effectively inhibiting inflammation and oxidative stress, maintaining colonic tight junctions, and regulating intestinal flora. Moreover, MDC@MCNs were strongly retained in the intestines, which was attributed to intestinal adhesion and aggregation of MCNs, serving as one of the important reasons for its enhanced efficacy after oral administration compared with MDC. Conclusion: MDC@MCNs alleviated DSS-induced UC by ameliorating colonic epithelial cells damage, inhibiting inflammation and oxidative stress, enhancing colonic tight junctions, and regulating intestinal flora. This colon-accumulating oral drug delivery nanoplatform may provide a novel and precise therapeutic strategy for UC.


Asunto(s)
Antiinflamatorios/farmacología , Cecropinas/farmacología , Colitis Ulcerosa/tratamiento farmacológico , Composición de Medicamentos/métodos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/administración & dosificación , Administración Oral , Animales , Antiinflamatorios/farmacocinética , Carbono/química , Carbono/farmacocinética , Cecropinas/farmacocinética , Línea Celular , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Modelos Animales de Enfermedad , Femenino , Moscas Domésticas/química , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Nanopartículas/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Dodecil Sulfato de Sodio/administración & dosificación
15.
J Fish Dis ; 43(12): 1553-1562, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32929767

RESUMEN

Cathelicidins are a class of antimicrobial peptides (AMPs) known to possess rapid and direct antimicrobial activities against a variety of microorganisms. Recently identified cathelicidins derived from alligator and sea snake were found to be more effective in inhibiting microbial growth than other AMPs previously characterized. The ability of these two cathelicidins along with the peptides, cecropin and pleurocidin, to protect channel catfish (Ictalurus punctatus, Rafinesque) and hybrid catfish (I. punctatus ♀ × blue catfish, Ictalurus furcatus, Valenciennes ♂) against Edwardsiella ictaluri, one of the most prevalent pathogens affecting commercial catfish industry, was investigated. Cathelicidin-injected fish (50 µg ml-1  fish-1 ) that were simultaneously challenged with E. ictaluri through bath immersion at a concentration of ~1 × 106 CFU/ml had increased survival rates compared with other peptide treatments and the infected control. Bacterial numbers were also reduced in the liver and kidney of channel catfish and hybrid catfish in the cathelicidin treatments 24 hr post-infection. After 8 days of challenge, serum was collected to determine immune-related parameters such as bactericidal activity, lysozyme, serum protein, albumin and globulin. These immune-related parameters were significantly elevated in fish injected with the two cathelicidins as compared to other peptide treatments. These results indicate that cathelicidins derived from alligator and sea snake can stimulate immunity and enhance the resistance to E. ictaluri infection in channel catfish and hybrid catfish.


Asunto(s)
Catelicidinas/farmacología , Edwardsiella ictaluri/efectos de los fármacos , Infecciones por Enterobacteriaceae/inmunología , Enfermedades de los Peces/microbiología , Animales , Antiinfecciosos/farmacología , Cecropinas/farmacología , Femenino , Enfermedades de los Peces/inmunología , Proteínas de Peces/farmacología , Ictaluridae , Masculino
16.
BMC Microbiol ; 20(1): 233, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32738898

RESUMEN

BACKGROUND: The recent emergence of antibiotic-resistant strains of bacteria has increased the need to develop effective alternatives to antibiotics. Antimicrobial peptides have been considered as a promising product with several advantages. RESULTS: In this present study, we identified a novel cecropin from the armyworm, Mythimna separata (armyworm cecropin 1, AC-1) by transcriptome sequencing and multi-sequence alignment analysis. The AC-1 precursor comprised 63 amino acid residues, containing a conserved cleavage site of the signal peptide, Ala23-Pro24, while the mature AC-1 included 39 amino acid residues. Chemically synthesized AC-1 exhibited low hemolytic activity against chicken red blood cells, low cytotoxicity against swine testis cells, and effective antimicrobial activity against Salmonella, Escherichia coli, Klebsiella pneumonia, and Pseudomonas aeruginosa. Its antimicrobial activity against Salmonella remained after incubation for 1 h at 100 °C or in 250 mM NaCl, KCl, or MgCl2 solution, implying good thermal- and salt-resistant stabilities. The bactericidal effect of AC-1 on E. coli gradually increased with increasing AC-1 concentration, resulting in deformation, severe edema, cytolysis, cell membrane damage, and reducing intracellular electron density. Additionally, recombinant AC-1 protein expressed in E. coli was digested by enterokinase protease to obtain AC-1, which showed similar antimicrobial activity against E. coli to chemically synthesized AC-1. CONCLUSIONS: This study identified a novel antimicrobial peptide that may represent a potential alternative to antibiotics.


Asunto(s)
Antibacterianos/farmacología , Cecropinas/farmacología , Proteínas de Insectos/farmacología , Lepidópteros/química , Secuencia de Aminoácidos , Animales , Antibacterianos/química , Antibacterianos/metabolismo , Bacterias/efectos de los fármacos , Cecropinas/química , Cecropinas/genética , Cecropinas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Hemólisis/efectos de los fármacos , Proteínas de Insectos/química , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Lepidópteros/genética , Señales de Clasificación de Proteína , Estabilidad Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Sales (Química)/metabolismo , Temperatura
17.
Eur J Pharmacol ; 887: 173434, 2020 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-32763299

RESUMEN

Bombyx mori antimicrobial peptides (BmAMPs) are important effectors in silkworm immune system. They can inhibit and kill a variety of bacteria and fungi. Recent studies have shown that some kinds of BmAMPs exert strong inhibitory effects on a variety of tumor cells. In the present study, the antitumor activity of BmAMP Cecropin A (BmCecA) and BmAMP Cecropin D (BmCecD) was investigated against human esophageal cancer cells and their antitumor mechanism preliminary explored. Cell Counting Kit-8 and colony formation assays indicated that BmCecA and BmCecD suppressed cell proliferation and reduced colony formation of both Eca109 and TE13 cells in a dose-dependent manner, but exhibited no inhibitory effect on normal human embryonic kidney 293T cells. Wound healing and invasion experiments indicated that both BmCecA and BmCecD inhibited migration and invasion of Eca109 and TE13 cells in vitro. Annexin V/propidium iodide staining and flow cytometry detection suggested that BmCecA induced the apoptosis of Eca109 cells in a dose-dependent manner. RT-qPCR and western blot analysis showed that BmCecA induced apoptosis of Eca109 cells through the activation of a mitochondria-mediated caspase pathway, the upregulation of B-cell lymphoma 2 (Bcl-2)-associated X protein and the downregulation of Bcl-2. In addition, BmCecA significantly inhibited the growth of xenograft tumors in Eca109-bearing mice. These results suggested that BmCecA and BmCecD might serve as potential therapeutic agents for the treatment of cancer in the future.


Asunto(s)
Bombyx , Cecropinas/uso terapéutico , Neoplasias Esofágicas/prevención & control , Proteínas Citotóxicas Formadoras de Poros/uso terapéutico , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Cecropinas/aislamiento & purificación , Cecropinas/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Neoplasias Esofágicas/patología , Femenino , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Citotóxicas Formadoras de Poros/aislamiento & purificación , Proteínas Citotóxicas Formadoras de Poros/farmacología
18.
Eur J Pharmacol ; 882: 173317, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32603694

RESUMEN

Oncological diseases are invariably a challenge for the modern world. Therefore, in recent decades, scientists have begun to look for compounds of natural origin that will be able to support or independently be used in oncological therapy. Among the antimicrobial proteins (AMPs), a promising family of peptides isolated from the immunized hemolymph of Hyalophora cecropia pupae has been distinguished. The cecropin family is not only characterized by antimicrobial and antifungal properties, but most importantly also has anticancer properties. Their antitumor potential is confirmed by in vitro studies conducted on several different cell lines, among others, prostate and breast cancer cell lines. This paper presents publications demonstrating cytolytic properties against tumour cells of members belonging to the cecropin family, as well as synthesized cecropin B with the introduced modification of its sequence and conjugated cecropin B with a modified luteinizing hormone-releasing hormone (LHRH). Moreover, three models of cecropin mechanisms of action are also described. The benefits and limitations associated with the use of these peptides in oncological therapy have also been demonstrated.


Asunto(s)
Antineoplásicos/uso terapéutico , Cecropinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Cecropinas/farmacología , Humanos
19.
Front Immunol ; 11: 1361, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695115

RESUMEN

Intestinal inflammation can cause impaired epithelial barrier function and disrupt immune homeostasis, which increases the risks of developing many highly fatal diseases. Enterohemorrhagic Escherichia coli (EHEC) O157:H7 causes intestinal infections worldwide and is a major pathogen that induces intestinal inflammation. Various antibacterial peptides have been described as having the potential to suppress and treat pathogen-induced intestinal inflammation. Cecropin A (1-8)-LL37 (17-30) (C-L), a novel hybrid peptide designed in our laboratory that combines the active center of C with the core functional region of L, shows superior antibacterial properties and minimized cytotoxicity compared to its parental peptides. Herein, to examine whether C-L could inhibit pathogen-induced intestinal inflammation, we investigated the anti-inflammatory effects of C-L in EHEC O157:H7-infected mice. C-L treatment improved the microbiota composition and microbial community balance in mouse intestines. The hybrid peptide exhibited improved anti-inflammatory effects than did the antibiotic, enrofloxacin. Hybrid peptide treated infected mice demonstrated reduced clinical signs of inflammation, reduced weight loss, reduced expression of pro-inflammatory cytokines [tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interferon-gamma (IFN-γ)], reduced apoptosis, and reduced markers of jejunal epithelial barrier function. The peptide also affected the MyD88-nuclear factor κB signaling pathway, thereby modulating inflammatory responses upon EHEC stimulation. Collectively, these findings suggest that the novel hybrid peptide C-L could be developed into a new anti-inflammatory agent for use in animals or humans.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/farmacología , Cecropinas/farmacología , Infecciones por Escherichia coli/patología , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Animales , Escherichia coli O157 , Femenino , Inflamación/microbiología , Inflamación/patología , Enfermedades Intestinales/microbiología , Enfermedades Intestinales/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Recombinantes/farmacología , Catelicidinas
20.
Mater Sci Eng C Mater Biol Appl ; 110: 110712, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32204024

RESUMEN

Novel antimicrobial agents with a low propensity to develop resistance by microorganisms have contemporary relevance. In this perspective, the present study reports the green synthesis and characterization of cecropins peptides (D2A21, D2A10, and D4E1) based silver nanocomposites. The effect of pH and concentration of peptides on the formation of nanocomposite material was studied using UV-Vis spectroscopy. The particle size was determined by transmission electron microscopy, which indicated the size in the range of 3 ±â€¯0.4 to 20 ±â€¯5 nm. Fourier-transform infrared spectroscopy studies suggested the involvement of peptides as a capping and reducing agent. Zeta potential analysis suggested that nanocomposite material was more cationic in nature than its native peptides. Nanocomposite material exhibited significantly enhanced antibacterial activity as compared to native peptides and silver nanoparticles with minimum inhibitory concentration (MIC) ranging from 1 to 3 µg mL-1 against both gram-positive and negative test bacteria; whereas the MICs of native peptides were found to be in the range of 4-6 µg mL-1. The mode of action of P-AgNPs was evaluated using scanning electron microscopy, membrane potential, and membrane integrity studies; wherein the nanocomposite material was found to act at the cell membrane level, causing complete loss of membrane potential and resulting in compromised membrane integrity with irreversible damage to the cell as shown by the rapid loss of viability due to membrane disruption, resulting in lysis. Among the three peptides tested, D2A21-silver nanocomposite had maximal antibacterial activity. Taken together; our experimental findings suggested that the peptide-based-silver nanocomposites can be considered as potential antibacterial agents for various biomedical applications.


Asunto(s)
Antibacterianos , Bacterias/crecimiento & desarrollo , Cecropinas , Nanocompuestos/química , Plata , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/farmacología , Cecropinas/síntesis química , Cecropinas/química , Cecropinas/farmacología , Plata/química , Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...