Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.315
Filtrar
1.
Molecules ; 29(9)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38731576

RESUMEN

In order to reduce the waste of Akebia trifoliata peel and maximize its utilization, in this study, on the basis of a single-factor experiment and the response surface method, the optimum technological conditions for the extraction of soluble dietary fiber from Akebia trifoliata peel with the compound enzyme method were obtained. The chemical composition, physical and chemical properties, structural characterization and biological activity of the purified soluble dietary fiber (AP-SDF) from the Akebia trifoliata peel were analyzed. We discovered that that the optimum yield was 20.87% under the conditions of cellulase addition 600 U/g, enzymolysis time 100 min, solid-liquid ratio 1:24 g/mL and enzymolysis temperature 51 °C. At the same time, AP-SDF was a porous network structure cellulose type I acidic polysaccharose mainly composed of arabinoxylan (36.03%), galacturonic acid (27.40%) and glucose (19.00%), which possessed the structural characteristic peaks of the infrared spectra of polysaccharides and the average molecular weight (Mw) was 95.52 kDa with good uniformity. In addition, the AP-SDF exhibited high oil-holding capacity (15.11 g/g), good water-holding capacity and swelling capacity, a certain antioxidant capacity in vitro, hypoglycemic activity in vitro for α-glucosidase inhibition and hypolipidemic activity in vitro for the binding ability of bile acids and cholesterol. These results will provide a theoretical basis for the development of functional products with antioxidant, hypoglycemic and hypolipidemic effects, which have certain application value in related industries.


Asunto(s)
Fibras de la Dieta , Fibras de la Dieta/análisis , Antioxidantes/química , Antioxidantes/farmacología , Extractos Vegetales/química , Extractos Vegetales/farmacología , Solubilidad , Celulasa/química , Celulasa/metabolismo , Peso Molecular , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación
2.
Molecules ; 29(9)2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38731600

RESUMEN

Rosa roxburghii Tratt pomace is rich in insoluble dietary fiber (IDF). This study aimed to investigate the influence of three modification methods on Rosa roxburghii Tratt pomace insoluble dietary fiber (RIDF). The three modified RIDFs, named U-RIDF, C-RIDF, and UC-RIDF, were prepared using ultrasound, cellulase, and a combination of ultrasound and cellulase methods, respectively. The structure, physicochemical characteristics, and functional properties of the raw RIDF and modified RIDF were comparatively analyzed. The results showed that all three modification methods, especially the ultrasound-cellulase combination treatment, increased the soluble dietary fiber (SDF) content of RIDF, while also causing a transition in surface morphology from smooth and dense to wrinkled and loose structures. Compared with the raw RIDF, the modified RIDF, particularly UC-RIDF, displayed significantly improved water-holding capacity (WHC), oil-binding capacity (OHC), and swelling capacity (SC), with increases of 12.0%, 84.7%, and 91.3%, respectively. Additionally, UC-RIDF demonstrated the highest nitrite ion adsorption capacity (NIAC), cholesterol adsorption capacity (CAC), and bile salt adsorption capacity (BSAC). In summary, the combination of ultrasound and cellulase treatment proved to be an efficient approach for modifying IDF from RRTP, with the potential for developing a functional food ingredient.


Asunto(s)
Fibras de la Dieta , Rosa , Fibras de la Dieta/análisis , Rosa/química , Solubilidad , Celulasa/metabolismo , Celulasa/química , Adsorción
3.
PLoS One ; 19(5): e0303795, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38771745

RESUMEN

Recombinant proteins are essential in various industries, and scientists employ genetic engineering and synthetic biology to enhance the host cell's protein production capacity. Stress response pathways have been found effective in augmenting protein secretion. Cold atmospheric pressure plasma (CAP) can induce oxidative stress and enhance protein production. Previous studies have confirmed the applicability of CAP jets on Phytase and green fluorescent protein (GFP) production in Pichia pastoris hosts. This study investigates the effect of CAP treatment on another valuable recombinant protein, Endoglucanase II (EgII), integrated into the Pichia pastoris genome. The results demonstrated that plasma induction via two different ignition modes: sinusoidal alternating current (AC) and pulsed direct current (DC) for 120, 180, and 240 s has boosted protein secretion without affecting cell growth and viability. The AC-driven jet exhibited a higher percentage increase in secretion, up to 45%. Simulation of plasma function using COMSOL software provided a pattern of electron temperature (Te) and density distribution, which determine the plasma cocktail's chemistry and reactive species production. Furthermore, electron density (ne) and temperature were estimated from the recorded optical spectrum. The difference in electron properties may explain the moderately different impressions on expression capability. However, cell engineering to improve secretion often remains a trial-and-error approach, and improvements are, at least partially, specific to the protein produced.


Asunto(s)
Celulasa , Gases em Plasma , Proteínas Recombinantes , Gases em Plasma/farmacología , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Celulasa/metabolismo , Celulasa/genética , Presión Atmosférica , Simulación por Computador , Saccharomycetales/genética , Saccharomycetales/metabolismo
4.
PLoS One ; 19(5): e0298716, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38748703

RESUMEN

The purpose of current research work was to investigate the effect of mutagenesis on endoglucanase B activity of indigenous strain of Aspergillus niger and its heterologous expression studies in the pET28a+ vector. The physical and chemical mutagens were employed to incorporate mutations in A. niger. For determination of mutations, mRNA was isolated followed by cDNA synthesis and cellulase gene was amplified, purified and sequenced both from native and mutant A. niger. On comparison of gene sequences, it was observed that 5 nucleotide base pairs have been replaced in the mutant cellulase. The mutant recombinant enzyme showed 4.5 times higher activity (428.5 µmol/mL/min) as compared to activity of native enzyme (94 µmol/mL/min). The mutant gene was further investigated using Phyre2 and I-Tesser tools which exhibited 71% structural homology with Endoglucanase B of Thermoascus aurantiacus. The root mean square deviation (RMSD), root mean square fluctuation (RMSF), solvent accessible surface area (SASA), radius of gyration (Rg) and hydrogen bonds analysis were carried at 35°C and 50°C to explore the integrity of structure of recombinant mutant endoglucanase B which corresponded to its optimal temperature. Hydrogen bonds analysis showed more stability of recombinant mutant endoglucanase B as compared to native enzyme. Both native and mutant endoglucanase B genes were expressed in pET 28a+ and purified with nickel affinity chromatography. Theoretical masses determined through ExPaSy Protparam were found 38.7 and 38.5 kDa for native and mutant enzymes, respectively. The optimal pH and temperature values for the mutant were 5.0 and 50°C while for native these were found 4.0 and 35°C, respectively. On reacting with carboxy methyl cellulose (CMC) as substrate, the mutant enzyme exhibited less Km (0.452 mg/mL) and more Vmax (50.25 µmol/ml/min) as compared to native having 0.534 mg/mL as Km and 38.76 µmol/ml/min as Vmax. Among metal ions, Mg2+ showed maximum inducing effect (200%) on cellulase activity at 50 mM concentration followed by Ca2+ (140%) at 100 mM concentration. Hence, expression of a recombinant mutant cellulase from A. niger significantly enhanced its cellulytic potential which could be employed for further industrial applications at pilot scale.


Asunto(s)
Aspergillus niger , Celulasa , Aspergillus niger/enzimología , Aspergillus niger/genética , Celulasa/genética , Celulasa/metabolismo , Celulasa/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Mutación , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Temperatura , Concentración de Iones de Hidrógeno
5.
Sci Rep ; 14(1): 7755, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565929

RESUMEN

Cellulose-degrading microorganisms hold immense significance in utilizing cellulose resources efficiently. The screening of natural cellulase bacteria and the optimization of fermentation conditions are the hot spots of research. This study meticulously screened cellulose-degrading bacteria from mixed soil samples adopting a multi-step approach, encompassing preliminary culture medium screening, Congo red medium-based re-screening, and quantification of cellulase activity across various strains. Particularly, three robust cellulase-producing strains were identified: A24 (MT740356.1 Brevibacillus borstelensis), A49 (MT740358.1 Bacillus cereus), and A61 (MT740357.1 Paenibacillus sp.). For subsequent cultivation experiments, the growth curves of the three obtained isolates were monitored diligently. Additionally, optimal CMCase production conditions were determined, keeping CMCase activity as a key metric, through a series of single-factor experiments: agitation speed, cultivation temperature, unit medium concentration, and inoculum volume. Maximum CMCase production was observed at 150 rpm/37 °C, doubling the unit medium addition, and a 5 mL inoculation volume. Further optimization was conducted using the selected isolate A49 employing response surface methodology. The software model recommended a 2.21fold unit medium addition, 36.11 °C temperature, and 4.91 mL inoculant volume for optimal CMCase production. Consequently, three parallel experiments were conducted based on predicted conditions consistently yielding an average CMCase production activity of 15.63 U/mL, closely aligning with the predicted value of 16.41 U/mL. These findings validated the reliability of the model and demonstrated the effectiveness of optimized CMCase production conditions for isolate A49.


Asunto(s)
Celulasa , Paenibacillus , Bacillus cereus/metabolismo , Celulosa/metabolismo , Reproducibilidad de los Resultados , Celulasa/metabolismo , Paenibacillus/metabolismo , Fermentación
6.
J Agric Food Chem ; 72(15): 8415-8422, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573226

RESUMEN

Aspergillus westerdijkiae can infect many agricultural products including cereals, grapes, and pear. Pathogenic fungi secrete diverse effectors as invasive weapons for successful invasion the host plant. During the pathogen-host interaction, 4486 differentially expressed genes were observed in A. westerdijkiae with 2773 up-regulated and 1713 down-regulated, whereas 8456 differentially expressed genes were detected in pear fruits with 4777 up-regulated and 3679 down-regulated. A total of 309 effector candidate genes were identified from the up-regulated genes in A. westerdijkiae. Endoglucanase H (AwEGH) was significantly induced during the pathogen-host interaction. Deletion of AwEGH resulted in altered fungal growth and morphology and reduced conidia production and germination compared to the wild-type. Further experiments demonstrated that AwEGH plays a role in cell wall integrity. Importantly, disruption of AwEGH significantly reduced the fungal virulence on pear fruits, and this defect can be partly explained by the impaired ability of A. westerdijkiae to penetrate host plants.


Asunto(s)
Aspergillus , Celulasa , Pyrus , Pyrus/genética , Celulasa/genética , Virulencia , Frutas/genética , Proteínas Fúngicas/genética
7.
Sci Rep ; 14(1): 8560, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609443

RESUMEN

Metagenomics has revolutionized access to genomic information of microorganisms inhabiting the gut of herbivorous animals, circumventing the need for their isolation and cultivation. Exploring these microorganisms for novel hydrolytic enzymes becomes unattainable without utilizing metagenome sequencing. In this study, we harnessed a suite of bioinformatic analyses to discover a novel cellulase-degrading enzyme from the camel rumen metagenome. Among the protein-coding sequences containing cellulase-encoding domains, we identified and subsequently cloned and purified a promising candidate cellulase enzyme, Celcm05-2, to a state of homogeneity. The enzyme belonged to GH5 subfamily 4 and exhibited robust enzymatic activity under acidic pH conditions. It maintained hydrolytic activity under various environmental conditions, including the presence of metal ions, non-ionic surfactant Triton X-100, organic solvents, and varying temperatures. With an optimal temperature of 40 °C, Celcm05-2 showcased remarkable efficiency when deployed on crystalline cellulose (> 3.6 IU/mL), specifically Avicel, thereby positioning it as an attractive candidate for a myriad of biotechnological applications spanning biofuel production, paper and pulp processing, and textile manufacturing. Efficient biodegradation of waste paper pulp residues and the evidence of biopolishing suggested that Celcm05-2 can be used in the bioprocessing of cellulosic craft fabrics in the textile industry. Our findings suggest that the camel rumen microbiome can be mined for novel cellulase enzymes that can find potential applications across diverse biotechnological processes.


Asunto(s)
Celulasa , Microbiota , Animales , Metagenoma , Camelus , Celulasa/genética , Celulosa
8.
Microb Cell Fact ; 23(1): 109, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609920

RESUMEN

BACKGROUND: Cellulase is considered a group member of the hydrolytic enzymes, responsible for catalyzing the hydrolysis of cellulose and has various industrial applications. Agricultural wastes are used as an inexpensive source for several utilizable products throughout the world. So, searching for cellulase enzymes from fungal strains capable of utilizing agricultural wastes to increase productivity, reduce costs and overcome waste accumulation in the environment is very important to evaluate its potency as a bio-additive to detergent agents. RESULTS: In the current study, the previously identified fungal strain Aspergillus terreus MN901491 was screened and selected for cellulase production. Medium parameters were optimized using one-factor-at-a-time (OFAT) and multi-factorial (Plackett-Burman and Box-Behnken) design methods. OFAT showed the ability of the fungal strain to utilize agricultural wastes (corn cob and rice straw) as a substrate. Also, yeast extract was the best nitrogen source for enhancing cellulase productivity. The most significant variables were determined by Plackett-Burman Design (PBD) and their concentrations were optimized by Response Surface Methodology (RSM) using Box-Behnken Design (BBD). Among eleven independent variables screened by PBD, malt extract, (NH4)2SO4, and KCl were the most significant ones followed by rice straw which affected cellulase production positively. The ANOVA results particularly the R2-value of PBD (0.9879) and BBD (0.9883) confirmed the model efficiency and provided a good interpretation of the experiments. PBD and BBD improved cellulase productivity by 6.1-fold greater than that obtained from OFAT. Medium optimization using OFAT and statistical models increased cellulase production from A. terreus MN901491 by 9.3-fold compared to the non-optimized medium. Moreover, the efficiency of cellulase activity on cotton fabrics as a bio-additive detergent was evaluated and estimated using whiteness and scanning electron microscope (SEM) that affirmed its potential effect and remarkable detergent ability to improve whiteness by 200% in comparison with non-washed fabric and by 190% in comparison with fabric washed by water. CONCLUSION: The presented work was stabilized as a multi-efficiency in which wastes were used to produce cellulase enzyme from the fungal strain, Aspergillus terreus MN901491 as a bio-additive to detergent applications that involved ecofriendly and green processes.


Asunto(s)
Celulasa , Oryza , Detergentes , Aspergillus , Proyectos de Investigación
9.
PLoS One ; 19(4): e0301607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598514

RESUMEN

The continuous accumulation of waste, particularly from industries, often ends up in landfills. However, this waste can be transformed into a valuable resource through innovative methods. This process not only reduces environmental pollution but also generates additional useful products. This study aims to screen novel high-efficiency cellulose-degrading bacteria from cow dung, forest soil, brewery waste, and agro-industrial waste in the Debre Berhan area for the treatment of cellulose-rich agricultural waste. The serial dilution and pour plate method was used to screen for cellulolytic bacteria and further characterized using morphological and biochemical methods. From eleven isolates cow dung 1 (CD1), cow dung 6 (CD6) and cow dung (CD3) which produced the largest cellulolytic index (3.1, 2.9 and 2.87) were selected. Samples from forest soil, and spent grain didn't form a zone of clearance, and effluent treatment and industrial waste (IW9) shows the smallest cellulolytic index. Three potential isolates were then tested for cellulolytic activity, with cow dung 1 (CD1) displaying promising cellulase activity. These bacterial isolates were then identified as Bacillus species, which were isolated from cow dung 1 (CD1) with maximum cellulase production. Cow dung waste is a rich source of cellulase-producing bacteria, which can be valuable and innovative enzymes for converting lignocellulosic waste.


Asunto(s)
Celulasa , Animales , Femenino , Bovinos , Celulasa/química , Residuos Industriales , Bacterias , Celulosa , Suelo , Bosques
10.
Bioprocess Biosyst Eng ; 47(5): 737-751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38607415

RESUMEN

Enzymatic hydrolysis plays a pivotal role in transforming lignocellulosic biomass. Addressing alternate techniques to optimize the utilization of cellulolytic enzymes is one strategy to improve its efficiency and lower process costs. Cellulases are highly specific and environmentally benign biocatalysts that break down intricate polysaccharides into simple forms of sugars. In contrast to the most difficult and time-consuming enzyme immobilization processes, in this research, we studied simple, mild, and successful techniques for immobilization of pure cellulase on magnetic nanocomposites using glutaraldehyde as a linker and used in the application of sorghum residue biomass. Fe3O4 nanoparticles were coated with chitosan from the co-precipitation method, which served as an enzyme carrier. The nanoparticles were observed under XRD, Zeta Potential, FESEM, VSM, and FTIR. The size morphology results presented that the Cs@Fe3O4 have 42.2 nm, while bare nanoparticles (Fe3O4) have 31.2 nm in size. The pure cellulase reaches to 98.07% of loading efficiency and 71.67% of recovery activity at optimal conditions. Moreover, immobilized enzyme's pH stability, thermostability, and temperature tolerance were investigated at suitable conditions. The kinetic parameters of free and immobilized enzyme were estimated as Vmax; 29 ± 1.51 and 27.03 ± 2.02 µmol min-1 mg-1, Km; 4.7 ± 0.49 mM and 2.569 ± 0.522 mM and Kcat; 0.13 s-1, and 0.89 s-1. Sorghum residue was subjected to 2% NaOH pre-treatment at 50 â„ƒ. Pre-treated biomass contains cellulose of 64.8%, used as a raw material to evaluate the efficiency of reducing sugar during hydrolysis and saccharification of free and immobilized cellulase, which found maximum concentration of glucose 5.42 g/L and 5.12 g/L on 72 h. Thus, our study verifies the use of immobilized pure cellulase to successfully hydrolyze raw material, which is a significant advancement in lignocellulosic biorefineries and the reusability of enzymes.


Asunto(s)
Celulasa , Quitosano , Enzimas Inmovilizadas , Nanopartículas de Magnetita , Sorghum , Quitosano/química , Enzimas Inmovilizadas/química , Celulasa/química , Sorghum/química , Nanopartículas de Magnetita/química , Estabilidad de Enzimas , Cinética , Biomasa , Hidrólisis
11.
PLoS One ; 19(4): e0301604, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635649

RESUMEN

The red abalone (Haliotis rufescens) represents North America's most important aquaculture species. Its hepatopancreas is rich in cellulases and other polysaccharide-degrading enzymes, which provide it the remarkable ability to digest cellulose-rich macroalgae; nevertheless, its cellulolytic systems are poorly explored. This manuscript describes some functional and structural properties of an endogenous trimeric glycosylated endoglucanase from H. rufescens. The purified enzyme showed a molecular mass of 23.4 kDa determined by MALDI-TOF mass spectrometry, which behaved as a homotrimer in gel filtration chromatography and zymograms. According to the periodic acid-Schiff reagent staining, detecting sugar moieties in SDS-PAGE gel confirmed that abalone cellulase is a glycoprotein. Hydrolysis of cello-oligosaccharides and p-nitrophenyl-ß-D-glucopyranosides confirmed its endo/exoactivity. A maximum enzyme activity toward 0.5% (w/v) carboxymethylcellulose of 53.9 ± 1.0 U/mg was achieved at 45°C and pH 6.0. We elucidated the abalone cellulase primary structure using proteases and mass spectrometry methods. Based on these results and using a bioinformatic approach, we identified the gene encoding this enzyme and deduced its full-length amino acid sequence; the mature protein comprised 177 residues with a calculated molecular mass of 19.1 kDa and, according to sequence similarity, it was classified into the glycosyl-hydrolase family 45 subfamily B. An AlphaFold theoretical model and docking simulations with cellopentaose confirmed that abalone cellulase is a ß-sheet rich protein, as also observed by circular dichroism experiments, with conserved catalytic residues: Asp26, Asn109, and Asp134. Interestingly, the AlphaFold-Multimer analysis indicated a trimeric assembly for abalone cellulase, which supported our experimental findings. The discovery and characterization of these enzymes may contribute to developing efficient cellulose bioconversion processes for biofuels and sustainable bioproducts.


Asunto(s)
Celulasa , Gastrópodos , Animales , Celulasa/metabolismo , Gastrópodos/genética , Secuencia de Aminoácidos , Celulosa/metabolismo , Polisacáridos
12.
Proc Natl Acad Sci U S A ; 121(18): e2322567121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38648472

RESUMEN

Degrading cellulose is a key step in the processing of lignocellulosic biomass into bioethanol. Cellobiose, the disaccharide product of cellulose degradation, has been shown to inhibit cellulase activity, but the mechanisms underlying product inhibition are not clear. We combined single-molecule imaging and biochemical investigations with the goal of revealing the mechanism by which cellobiose inhibits the activity of Trichoderma reesei Cel7A, a well-characterized exo-cellulase. We find that cellobiose slows the processive velocity of Cel7A and shortens the distance moved per encounter; effects that can be explained by cellobiose binding to the product release site of the enzyme. Cellobiose also strongly inhibits the binding of Cel7A to immobilized cellulose, with a Ki of 2.1 mM. The isolated catalytic domain (CD) of Cel7A was also inhibited to a similar degree by cellobiose, and binding of an isolated carbohydrate-binding module to cellulose was not inhibited by cellobiose, suggesting that cellobiose acts on the CD alone. Finally, cellopentaose inhibited Cel7A binding at micromolar concentrations without affecting the enzyme's velocity of movement along cellulose. Together, these results suggest that cellobiose inhibits Cel7A activity both by binding to the "back door" product release site to slow activity and to the "front door" substrate-binding tunnel to inhibit interaction with cellulose. These findings point to strategies for engineering cellulases to reduce product inhibition and enhance cellulose degradation, supporting the growth of a sustainable bioeconomy.


Asunto(s)
Celobiosa , Celulasa , Celulosa , Hypocreales , Celobiosa/metabolismo , Celulasa/metabolismo , Celulasa/antagonistas & inhibidores , Celulosa/metabolismo , Hypocreales/enzimología , Hypocreales/metabolismo , Imagen Individual de Molécula/métodos , Dominio Catalítico , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/química
13.
J Environ Manage ; 358: 120781, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608570

RESUMEN

Transforming global agricultural waste into eco-friendly products like industrial enzymes through bioconversion can help address sustainability challenges aligning with the United Nations' Sustainable Development Goals. Present study explored the production of high-yield food-grade cellulolytic enzymes from Trichoderma reesei MTCC 4876, using a novel media formulation with a combination of waste sorghum grass and cottonseed oil cake (3:1). Optimization of physical and environmental parameters, along with the screening and optimization of media components, led to an upscaled process in a novel 6-L solid-state fermentation (SSF)-packed bed reactor (PBR) with a substrate loading of 200 g. Saturated forced aeration proved crucial, resulting in high fungal biomass (31.15 ± 0.63 mg glucosamine/gm dry fermented substrate) and high yield cellulase (20.64 ± 0.36 FPU/g-ds) and xylanase (16,186 ± 912 IU/g-ds) production at an optimal airflow rate of 0.75 LPM. The PBR exhibited higher productivity than shake flasks for all the enzyme systems. Microfiltration and ultrafiltration of the crude cellulolytic extract achieved 94% and 71% recovery, respectively, with 13.54 FPU/mL activity in the cellulolytic enzyme concentrate. The concentrate displayed stability across wide pH and temperature ranges, with a half-life of 24.5-h at 50 °C. The cellulase concentrate, validated for food-grade safety, complies with permissible limits for potential pathogens, heavy metals, mycotoxins, and pesticide residue. It significantly improved apple juice clarity (94.37 T%) by reducing turbidity (21%) and viscosity (99%) while increasing total reducing sugar release by 63% compared with untreated juice. The study also highlighted the potential use of lignin-rich fermented end residue for fuel pellets within permissible SOx emission limits, offering sustainable biorefinery prospects. Utilizing agro wastes in a controlled bioreactor environment underscores the potential for efficient large-scale cellulase production, enabling integration into food-grade applications and presenting economic benefits to fruit juice industries.


Asunto(s)
Reactores Biológicos , Fermentación , Jugos de Frutas y Vegetales , Hypocreales , Sorghum , Sorghum/metabolismo , Jugos de Frutas y Vegetales/análisis , Celulasa/metabolismo , Malus
14.
Carbohydr Res ; 539: 109104, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38643706

RESUMEN

Cellulose nanocrystals (CNCs) are crystalline domains isolated from cellulosic fibers. They have been utilized in a wide range of applications, such as reinforcing fillers, antibacterial agents and manufacturing of biosensors. Whitin this context, the aim of this work was to obtain and analyze CNCs extracted from bacterial nanocellulose (BNC) using two distinct methods combined with milling pre-treatment: an acidic hydrolysis using 64 % sulfuric acid and an enzymatic hydrolysis using a commercial cellulase enzyme mixture. The CNCs obtained from the enzymatic route (e-CNCs) were observed to be spherical nanoparticles with diameter of 56 ± 11 nm. In contrast, the CNCs from the acid hydrolysis (a-CNCs) appeared as needle-shaped nanoparticles with a high aspect ratio with lengths/widths of 158 ± 64 nm/11 ± 2 nm. The surface zeta potential (ZP) of the a-CNCs was -30,8 mV, whereas the e-CNCs has a potential of +2.70 ± 3.32 mV, indicating that a-CNCs consisted of negatively charged particles with higher stability in solution. Although the acidic route resulted in nanocrystals with a slightly higher crystallinity index compared to the enzymatic route, e-CNCs was found to be more thermally stable than BNC and a-CNCs. Here, we also confirmed the safety of a-CNCs and e-CNCs using L929 cell line. Lastly, this article describes two different CNCs synthesis approaches that leads to the formation of nanoparticles with different dimensions, morphology and unique physicochemical properties. To the best of our knowledge, this is the first study to yield spherical nanoparticles as a result of BNC enzymatic treatment.


Asunto(s)
Celulosa , Nanopartículas , Celulosa/química , Nanopartículas/química , Hidrólisis , Celulasa/química , Celulasa/metabolismo , Ácidos Sulfúricos/química , Animales , Ratones , Tamaño de la Partícula
15.
Bioresour Technol ; 400: 130666, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583673

RESUMEN

Applications of deep eutectic solvent (DES) systems to separate lignocellulosic components are of interest to develop environmentally friendly processes and achieve efficient utilization of biomass. To enhance the performance of a binary neutral DES (glycerol:guanidine hydrochloride), various Lewis acids (e.g., AlCl3·6H2O, FeCl3·6H2O, etc.) were introduced to synthesize a series of ternary DES systems; these were coupled with microwave heating and applied to moso bamboo. Among the ternary DES systems evaluated, the FeCl3-based DES effectively removed lignin (81.17%) and xylan (85.42%), significantly improving enzymatic digestibility of the residual glucan and xylan (90.15% and 99.51%, respectively). Furthermore, 50.74% of the lignin, with high purity and a well-preserved structure, was recovered. A recyclability experiment showed that the pretreatment performance of the FeCl3-based DES was still basically maintained after five cycles. Overall, the microwave-assisted ternary DES pretreatment approach proposed in this study appears to be a promising option for sustainable biorefinery operations.


Asunto(s)
Disolventes Eutécticos Profundos , Compuestos Férricos , Lignina , Microondas , Lignina/química , Hidrólisis , Disolventes Eutécticos Profundos/química , Cloruros/química , Celulasa/metabolismo , Celulasa/química , Glicerol/química , Solventes/química , Sasa/química , Poaceae/química
16.
Food Chem ; 449: 139192, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38583404

RESUMEN

The synergistic effects of ultrafine grinding and enzymolysis (cellulase and Laccase hydrolysis) alone or combined with carboxymethylation or acetylation on the hypoglycemic and antioxidant activities of oil palm kernel fibre (OPKEF) were studied for the first time. After these synergistic modifications, the microstructure of OPKEF became more porous, and its soluble fibre and total polyphenols contents, and surface area were all improved (P < 0.05). Superfine-grinding and enzymolysis combined with carboxymethylation treated OPKEF exhibited the highest viscosity (13.9 mPa∙s), inhibition ability to glucose diffusion (38.18%), and water-expansion volume (3.58 mL∙g-1). OPKEF treated with superfine-grinding and enzymolysis combined with acetylation showed the highest surface hydrophobicity (50.93) and glucose adsorption capacity (4.53 µmol∙g-1), but a lower α-amylase-inhibition ability. Moreover, OPKEF modified by superfine-grinding and enzymolysis had the highest inhibiting activity against α-amylase (25.78%). Additionally, superfine-grinding and enzymolysis combined with carboxymethylation or acetylation both improved the content and antioxidant activity of OPEKF's bounding polyphenols (P < 0.05).


Asunto(s)
Antioxidantes , Hipoglucemiantes , Antioxidantes/química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Acetilación , Aceite de Palma/química , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Lacasa/química , Lacasa/metabolismo , Metilación , Celulasa/química , Celulasa/metabolismo , Hidrólisis , Viscosidad , Semillas/química , Manipulación de Alimentos , Polifenoles/química , Polifenoles/farmacología
17.
Int J Biol Macromol ; 267(Pt 1): 131469, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38604432

RESUMEN

Pectic polysaccharide is a bioactive ingredient in Chrysanthemum morifolium Ramat. 'Hangbaiju' (CMH), but the high proportion of HG domain limited its use as a prebiotic. In this study, hot water, cellulase-assisted, medium-temperature alkali, and deep eutectic solvent extraction strategies were firstly used to extract pectin from CMH (CMHP). CMHP obtained by cellulase-assisted extraction had high purity and strong ability to promote the proliferation of Bacteroides and mixed probiotics. However, 4 extraction strategies led to general high proportion of HG domain in CMHPs. To further enhance the dissolution and prebiotic potential of CMHP, pectinase was used alone and combined with cellulase. The key factor for the optimal extraction was enzymolysis by cellulase and pectinase in a mass ratio of 3:1 at 1 % (w/w) dosage. The optimal CMHP had high yield (15.15 %), high content of total sugar, and Bacteroides proliferative activity superior to inulin, which was probably due to the cooperation of complex enzyme on the destruction of cell wall and pectin structural modification for raised RG-I domain (80.30 %) with relatively high degree of branching and moderate HG domain. This study provided a green strategy for extraction of RG-I enriched prebiotic pectin from plants.


Asunto(s)
Bacteroides , Chrysanthemum , Pectinas , Pectinas/química , Chrysanthemum/química , Proliferación Celular/efectos de los fármacos , Celulasa/química , Celulasa/metabolismo , Solubilidad , Poligalacturonasa/química , Poligalacturonasa/metabolismo
18.
Arch Microbiol ; 206(5): 236, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38676717

RESUMEN

Lignocellulolytic enzymes from a novel Myceliophthora verrucosa (5DR) strain was found to potentiate the efficacy of benchmark cellulase during saccharification of acid/alkali treated bagasse by ~ 2.24 fold, indicating it to be an important source of auxiliary enzymes. The De-novo sequencing and analysis of M. verrucosa genome (31.7 Mb) revealed to encode for 7989 putative genes, representing a wide array of CAZymes (366) with a high proportions of auxiliary activity (AA) genes (76). The LC/MS QTOF based secretome analysis of M. verrucosa showed high abundance of glycosyl hydrolases and AA proteins with cellobiose dehydrogenase (CDH) (AA8), being the most prominent auxiliary protein. A gene coding for lytic polysaccharide monooxygenase (LPMO) was expressed in Pichia pastoris and CDH produced by M. verrucosa culture on rice straw based solidified medium were purified and characterized. The mass spectrometry of LPMO catalyzed hydrolytic products of avicel showed the release of both C1/C4 oxidized products, indicating it to be type-3. The lignocellulolytic cocktail comprising of in-house cellulase produced by Aspergillus allahabadii strain spiked with LPMO & CDH exhibited enhanced and better hydrolysis of mild alkali deacetylated (MAD) and unwashed acid pretreated rice straw slurry (UWAP), when compared to Cellic CTec3 at high substrate loading rate.


Asunto(s)
Biomasa , Proteínas Fúngicas , Genoma Fúngico , Lignina , Saccharomycetales , Sordariales , Lignina/metabolismo , Sordariales/genética , Sordariales/enzimología , Sordariales/metabolismo , Hidrólisis , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Deshidrogenasas de Carbohidratos/genética , Celulosa/metabolismo , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Celulasa/metabolismo , Celulasa/genética
19.
Microb Cell Fact ; 23(1): 112, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622596

RESUMEN

BACKGROUND: Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS: This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l - 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h) - 1 , the lowest rate of 0.3 g (l h) - 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in ß -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION: We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.


Asunto(s)
Celulasa , Hypocreales , Trichoderma , Celulasa/metabolismo , Lactosa/metabolismo , Reproducibilidad de los Resultados , Biotecnología , Trichoderma/metabolismo
20.
Transgenic Res ; 33(1-2): 47-57, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451380

RESUMEN

Cellobiohydrolase II (CBH II) is an exo-glucanase that is part of a fungal mixture of enzymes from a wood-rot fungus, Trichoderma reesei. It is therefore difficult to purify and to establish a specific activity assay. The gene for this enzyme, driven by the rice Os glutelin promoter, was transformed into High II tissue culture competent corn, and the enzyme accumulated in the endosperm of the seed. The transgenic line recovered from tissue culture was bred into male and female elite Stine inbred corn lines, stiff stalk 16083-025 (female) and Lancaster MSO411 (male), for future production in their hybrid. The enzyme increases its accumulation throughout its 6 generations of back crosses, 27-266-fold between T1 and T2, and 2-10-fold between T2 and T3 generations with lesser increases in T4-T6. The germplasm of the inbred lines replaces the tissue culture corn variety germplasm with each generation, with the ultimate goal of producing a high-yielding hybrid with the transgene. The CBH II enzyme was purified from T5 inbred male grain 10-fold to homogeneity with 47.5% recovery. The specific activity was determined to be 1.544 units per µg protein. The corn-derived CBH II works in biopolishing of cotton by removing surface fibers to improve dyeability and increasing glucose from corn flour for increasing ethanol yield from starch-based first-generation processes.


Asunto(s)
Celulasa , Trichoderma , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Zea mays/genética , Zea mays/metabolismo , Endospermo/genética , Endospermo/metabolismo , Trichoderma/genética , Trichoderma/metabolismo , Fitomejoramiento , Celulasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...