Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Elife ; 3: e03427, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25027440

RESUMEN

To understand the neural origins of rhythmic behavior one must characterize the central pattern generator circuit and quantify the population size needed to sustain functionality. Breathing-related interneurons of the brainstem pre-Bötzinger complex (preBötC) that putatively comprise the core respiratory rhythm generator in mammals are derived from Dbx1-expressing precursors. Here, we show that selective photonic destruction of Dbx1 preBötC neurons in neonatal mouse slices impairs respiratory rhythm but surprisingly also the magnitude of motor output; respiratory hypoglossal nerve discharge decreased and its frequency steadily diminished until rhythm stopped irreversibly after 85±20 (mean ± SEM) cellular ablations, which corresponds to ∼15% of the estimated population. These results demonstrate that a single canonical interneuron class generates respiratory rhythm and contributes in a premotor capacity, whereas these functions are normally attributed to discrete populations. We also establish quantitative cellular parameters that govern network viability, which may have ramifications for respiratory pathology in disease states.


Asunto(s)
Proteínas de Homeodominio/genética , Nervio Hipogloso/fisiopatología , Neuronas Motoras/metabolismo , Centro Respiratorio/fisiopatología , Potenciales de Acción , Animales , Animales Recién Nacidos , Expresión Génica , Proteínas de Homeodominio/metabolismo , Inhalación/fisiología , Interneuronas/citología , Interneuronas/fisiología , Terapia por Láser , Ratones , Ratones Transgénicos , Neuronas Motoras/patología , Técnicas de Placa-Clamp , Centro Respiratorio/lesiones , Centro Respiratorio/patología , Frecuencia Respiratoria , Técnicas de Cultivo de Tejidos
2.
J Neurosci ; 33(13): 5454-65, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23536061

RESUMEN

Postsynaptic inhibition is a key element of neural circuits underlying behavior, with 20-50% of all mammalian (nongranule) neurons considered inhibitory. For rhythmic movements in mammals, e.g., walking, swimming, suckling, chewing, and breathing, inhibition is often hypothesized to play an essential rhythmogenic role. Here we study the role of fast synaptic inhibitory neurotransmission in the generation of breathing pattern by blocking GABA(A) and glycine receptors in the preBötzinger complex (preBötC), a site essential for generation of normal breathing pattern, and in the neighboring Bötzinger complex (BötC). The breathing rhythm continued following this blockade, but the lung inflation-induced Breuer-Hering inspiratory inhibitory reflex was suppressed. The antagonists were efficacious, as this blockade abolished the profound effects of the exogenously applied GABA(A) receptor agonist muscimol or glycine, either of which under control conditions stopped breathing in vagus-intact or vagotomized, anesthetized, spontaneously breathing adult rats. In vagotomized rats, GABA(A)ergic and glycinergic antagonists had little, if any, effect on rhythm. The effect in vagus-intact rats was to slow the rhythm to a pace equivalent to that seen after suppression of the aforementioned Breuer-Hering inflation reflex. We conclude that postsynaptic inhibition within the preBötC and BötC is not essential for generation of normal respiratory rhythm in intact mammals. We suggest the primary role of inhibition is in shaping the pattern of respiratory motor output, assuring its stability, and in mediating reflex or volitional apnea, but not in the generation of rhythm per se.


Asunto(s)
Inhibición Neural/fisiología , Respiración , Centro Respiratorio/citología , Centro Respiratorio/fisiología , Animales , Bicuculina/farmacología , Colina O-Acetiltransferasa/metabolismo , Diafragma/efectos de los fármacos , Diafragma/fisiopatología , Electromiografía , Lateralidad Funcional , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Glicina/farmacología , Glicinérgicos/farmacología , Indoles , Nervios Laríngeos/fisiología , Masculino , Microinyecciones , Muscimol/farmacología , Inhibición Neural/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Reflejo/efectos de los fármacos , Respiración/efectos de los fármacos , Centro Respiratorio/efectos de los fármacos , Centro Respiratorio/lesiones , Estricnina/farmacología , Vagotomía , Nervio Vago/fisiología
3.
Respir Physiol Neurobiol ; 175(1): 1-11, 2011 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-20601204

RESUMEN

Abrupt, bilateral destruction of the pre-Bötzinger Complex (preBötC) leads to terminal apnea in unanesthetized goats and rats. In contrast, respiratory rhythm and pattern and arterial blood gases in goats during wakefulness and sleep are normal after incremental (over a month) destruction of > 90% of the preBötC. Here, we tested the hypothesis that the difference in effects between abrupt and incremental destruction of the preBötC are a result of time-dependent plasticity, which manifests as anatomic changes at sites within the respiratory network. Accordingly, we report data from histological analyses comparing the brainstems of control goats, and goats that had undergone bilateral, incremental, ibotenic acid (IA)-induced preBötC lesioning. A major focus was on the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN) and the pontine respiratory group (PRG), which are sites thought to contribute to respiratory rhythmogenesis. We also studied the facial (FN), rostral nucleus ambiguus (NA), medullary raphé (MRN), hypoglossal (HN), and the dorsal motor vagal (DMV) nuclei. Neuronal counts, count region area (mm²), and neuronal densities were calculated using computer-assisted analyses and/or manual microscopy to compare control and preBötC-lesioned animals. We found that within the ventral and lateral medulla 2mm rostral to the caudal pole of the FN (presumed pFRG/RTN), there were 25% and 65% more (P < 0.001) neurons, respectively, in preBötC-lesioned compared to control goats. Lesioned goats also showed 14% and 13% more (P < 0.001) neurons in the HN and medial parabrachialis nucleus, but 46%, 28%, 7%, and 17% fewer (P < 0.001) neurons in the FN, NA, DMV, and Kölliker-Fuse nuclei, respectively. In the remaining sites analyzed, there were no differences between groups. We conclude that anatomic changes at multiple sites within the respiratory network may contribute to the time-dependent plasticity in breathing following incremental and near-complete destruction of the preBötC.


Asunto(s)
Núcleo Celular/patología , Bulbo Raquídeo/patología , Centro Respiratorio/lesiones , Centro Respiratorio/patología , Análisis de Varianza , Animales , Recuento de Células/métodos , Cabras , Ácido Iboténico/toxicidad , Bulbo Raquídeo/metabolismo , Red Nerviosa/patología , Neuronas/patología , Neurotoxinas/toxicidad , Análisis Numérico Asistido por Computador , Fosfopiruvato Hidratasa/metabolismo , Receptor Muscarínico M1/metabolismo , Receptores de Neuroquinina-1/metabolismo , Factores de Tiempo , Vigilia
4.
J Neurosci ; 29(18): 5806-19, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19420248

RESUMEN

The retrotrapezoid "nucleus" (RTN), located in the rostral ventrolateral medullary reticular formation, contains a bilateral cluster of approximately 1000 glutamatergic noncatecholaminergic Phox2b-expressing propriobulbar neurons that are activated by CO(2) in vivo and by acidification in vitro. These cells are thought to function as central respiratory chemoreceptors, but this theory still lacks a crucial piece of evidence, namely that stimulating these particular neurons selectively in vivo increases breathing. The present study performed in anesthetized rats seeks to test whether this expectation is correct. We injected into the left RTN a lentivirus that expresses the light-activated cationic channel ChR2 (channelrhodopsin-2) (H134R mutation; fused to the fluorescent protein mCherry) under the control of the Phox2-responsive promoter PRSx8. Transgene expression was restricted to 423 +/- 38 Phox2b-expressing neurons per rat consisting of noncatecholaminergic and C1 adrenergic neurons (3:2 ratio). Photostimulation delivered to the RTN region in vivo via a fiberoptic activated the CO(2)-sensitive neurons vigorously, produced a long-lasting (t(1/2) = 11 s) increase in phrenic nerve activity, and caused a small and short-lasting cardiovascular stimulation. Selective lesions of the C1 cells eliminated the cardiovascular response but left the respiratory stimulation intact. In rats with C1 cell lesions, the mCherry-labeled axon terminals originating from the transfected noncatecholaminergic neurons were present exclusively in the lower brainstem regions that contain the respiratory pattern generator. These results provide strong evidence that the Phox2b-expressing noncatecholaminergic neurons of the RTN region function as central respiratory chemoreceptors.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Luz , Neuronas/metabolismo , Respiración , Centro Respiratorio/citología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Análisis de Varianza , Animales , Presión Sanguínea/fisiología , Mapeo Encefálico , Dióxido de Carbono/farmacología , Colina O-Acetiltransferasa/metabolismo , Electromiografía/métodos , Lateralidad Funcional , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Masculino , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Mutación/fisiología , Neuronas/efectos de los fármacos , Nervio Frénico/fisiología , Ratas , Ratas Sprague-Dawley , Respiración/efectos de los fármacos , Respiración/genética , Centro Respiratorio/lesiones , Centro Respiratorio/fisiología , Rodopsina/genética , Rodopsina/metabolismo , Factores de Tiempo , Transducción Genética/métodos , Tirosina 3-Monooxigenasa/metabolismo
5.
Nat Neurosci ; 8(9): 1142-4, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16116455

RESUMEN

Ablation of preBötzinger complex (preBötC) neurons, critical for respiratory rhythm generation, resulted in a progressive, increasingly severe disruption of respiratory pattern, initially during sleep and then also during wakefulness in adult rats. Sleep-disordered breathing is highly prevalent in elderly humans and in some patients with neurodegenerative disease. We propose that sleep-disordered breathing results from loss of preBötC neurons and could underlie death during sleep in these populations.


Asunto(s)
Inmunotoxinas/toxicidad , Neuronas/patología , Centro Respiratorio/patología , Síndromes de la Apnea del Sueño/patología , Sustancia P/análogos & derivados , Animales , Muerte Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Electromiografía/métodos , Inmunohistoquímica/métodos , Neuronas/fisiología , Polisomnografía/métodos , Ratas , Receptores de Neuroquinina-1/metabolismo , Centro Respiratorio/lesiones , Proteínas Inactivadoras de Ribosomas Tipo 1 , Saporinas , Síndromes de la Apnea del Sueño/inducido químicamente , Síndromes de la Apnea del Sueño/fisiopatología , Sueño REM/efectos de los fármacos , Sueño REM/fisiología , Sustancia P/toxicidad , Factores de Tiempo , Vigilia/efectos de los fármacos , Vigilia/fisiología
6.
Neurosci Lett ; 295(1-2): 67-9, 2000 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-11078938

RESUMEN

The brainstem-spinal cord preparation from neonatal rat has been used in several reports to evaluate the central effect of low oxygen level on the respiratory network. We demonstrate that bilateral lesion of retrotrapezoid nucleus and parapyramidal area unmasks an early reinforcement of the respiratory output in response to anoxia. This suggests that neurons in both areas might trigger or relay a central depressive influence of hypoxia on the respiratory network.


Asunto(s)
Hipoxia/fisiopatología , Centro Respiratorio/fisiología , Animales , Animales Recién Nacidos , Ratas , Ratas Sprague-Dawley , Centro Respiratorio/lesiones , Núcleo Espinal del Trigémino/fisiología
7.
J Neurosurg ; 90(4): 734-42, 1999 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10193619

RESUMEN

OBJECT: Respiratory dysfunction including apnea frequently follows head injury in humans. The purpose of this study was to identify any structural alterations in the region of brainstem respiratory nuclei that might account for immediate postinjury respiratory abnormalities in anesthetized experimental animals. METHODS: Using scanning electron microscopy, the authors examined the floor of the fourth ventricle in injured rats after a piston strike to the sensorimotor cortex that depressed the dura 1, 2, or 4 mm. The rats were killed within minutes of injury. Cortical impact depths measuring either 1 or 2 mm (eight rats) produced no respiratory abnormalities, and the structural integrity of the ependymal lining of the ventricular floor in these animals was not compromised. Thirteen rats were subjected to impact to a 4-mm depth and 10 of these exhibited immediate temporary or permanent apnea. The medullae of nine of these rats were studied using scanning electron microscopy, and the fourth ventricular floors of all nine rats showed tears. Four rats that exhibited immediate, permanent apnea had tears in the caudal fourth ventricle floor near the obex, whereas five rats with no or only transient apnea had tears located more anteriorly, near the aqueduct or laterally. Changes in cerebrospinal fluid flow or pressure dynamics may have caused these tears. Light microscopy, focused near the area postrema, revealed a shearing defect through the ependyma of the fourth ventricular floor into the subjacent neuropil with a disruption of axonal pathways. CONCLUSIONS: Respiratory neuronal network components lying within 2 mm of the area postrema may well have been disrupted by the caudal tears producing permanent apnea. A similar phenomenon could account for the transient or permanent postinjury apnea seen in humans with severe head injury.


Asunto(s)
Ventrículos Cerebrales/ultraestructura , Corteza Motora/lesiones , Corteza Somatosensorial/lesiones , Animales , Apnea/etiología , Axones/ultraestructura , Acueducto del Mesencéfalo/lesiones , Acueducto del Mesencéfalo/ultraestructura , Ventrículos Cerebrales/lesiones , Líquido Cefalorraquídeo/fisiología , Presión del Líquido Cefalorraquídeo/fisiología , Duramadre/lesiones , Epéndimo/lesiones , Epéndimo/ultraestructura , Masculino , Bulbo Raquídeo/lesiones , Bulbo Raquídeo/ultraestructura , Microscopía Electrónica de Rastreo , Corteza Motora/ultraestructura , Ratas , Ratas Sprague-Dawley , Trastornos Respiratorios/etiología , Centro Respiratorio/lesiones , Centro Respiratorio/ultraestructura , Corteza Somatosensorial/ultraestructura
8.
J Neurosurg ; 53(2): 249-51, 1980 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-7431064

RESUMEN

Pontine gaze paresis is frequently due to tumor of the brain stem. Occasionally it may be caused by inflammation or ischemia. Two cases are reported, each with pontine gaze paresis and other signs of lower brain-stem injury, basal skull fractures, and second cervical vertebra fractures. This pattern of injuries is believed to be the result of craniocervical hyperextension with stretch injury to the brain stem at the junction of the medulla and pons.


Asunto(s)
Lesiones Encefálicas/complicaciones , Oftalmoplejía/etiología , Puente/lesiones , Heridas no Penetrantes/complicaciones , Accidentes de Tránsito , Adulto , Femenino , Humanos , Bulbo Raquídeo/lesiones , Centro Respiratorio/lesiones , Formación Reticular/lesiones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA