Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
1.
J Med Entomol ; 61(3): 756-763, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38470211

RESUMEN

Biting midges in the genus Culicoides Latreille (Diptera: Ceratopogonidae) are known to transmit many pathogens of veterinary and medical concern. Although much work has been done globally and in certain regions of North America, Culicoides spp. research in rural Appalachia is limited. To begin characterizing the distribution and community structure of Culicoides spp. in Appalachia, we surveyed 2 distinct sites in the Ridge and Valley ecoregion of northeastern Tennessee, USA, from April 2021-September 2021. Culicoides spp. were sampled using 2 methods: Centers for Disease Control ultraviolet LED light traps and potential larval habitat substrate collection (coupled with water chemistry values). Site 1 was dominated by natural features, and Site 2 was a beef cattle operation. During 96 trap nights, a total of 1,568 Culicoides were collected, representing 24 species. Site 1 yielded the highest diversity, with 24 species, while Site 2 yielded 12 species. Overall, the most abundant species in light traps were C. stellifer Coquillett (44%), C. bergi Cochrane (18%), C. haematopotus Malloch (12%), and C. debilipalpis Lutz (11%). From substrate sampling, 8 species were identified. Culicoides haematopotus was the most abundant and was collected during each sampling period. Water chemistry values taken at the time of substrate collection were not significantly related to which Culicoides spp. emerged from a given substrate. Our results indicate a diverse community of Culicoides spp. in our study area, however, further work is needed to identify Culicoides species composition across a variety of landscapes in Appalachia and inform research on vector presence and associated vector disease dynamics.


Asunto(s)
Ceratopogonidae , Animales , Ceratopogonidae/clasificación , Tennessee , Distribución Animal , Biodiversidad
2.
Sci Rep ; 12(1): 1730, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110675

RESUMEN

The inability to distinguish between species can be a serious problem in groups responsible for pathogen transmission. Culicoides biting midges transmit many pathogenic agents infecting wildlife and livestock. In North America, the C. variipennis species complex contains three currently recognized species, only one of which is a known vector, but limited species-specific characters have hindered vector surveillance. Here, genomic data were used to investigate population structure and genetic differentiation within this species complex. Single nucleotide polymorphism data were generated for 206 individuals originating from 17 locations throughout the United States and Canada. Clustering analyses suggest the occurrence of two additional cryptic species within this complex. All five species were significantly differentiated in both sympatry and allopatry. Evidence of hybridization was detected in three different species pairings indicating incomplete reproductive isolation. Additionally, COI sequences were used to identify the hybrid parentage of these individuals, which illuminated discordance between the divergence of the mitochondrial and nuclear datasets.


Asunto(s)
Ceratopogonidae/genética , ADN Mitocondrial/genética , Evolución Molecular , Especiación Genética , Polimorfismo de Nucleótido Simple , Simpatría , Animales , Ceratopogonidae/clasificación , Genética de Población , Haplotipos , Especificidad de la Especie
3.
J Med Entomol ; 59(1): 240-247, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34632513

RESUMEN

Biting midges are widespread in Brazilian natural ecosystems. However, deforestation and other activities that impact the environment are reducing natural habitats where biting midges proliferate. The objective of this study was to verify whether there is variation in the composition, richness, abundance, and seasonality of biting midges between wild and rural environments, in a forest area with intense deforestation. Biting midges were captured using 6 traps installed at an average height of 1.5 m in the peridomicile, intradomicile, and deciduous seasonal forests, once a month from May 2012 to April 2013. In total, 2,182 specimens of 13 species of the genus Culicoides were captured. Species richness was similar in the intradomicile (13 species), forest (12), and peridomicile (11), but species diversity was greater in the peridomicile (H' = 0.803) compared with the intradomicile (H' = 0.717) and forest (H' = 0.687). The order of species dominance varied between the forest (Culicoides paucienfuscatus Barbosa > Culicoides leopodoi Ortiz > Culicoides foxi Ortiz > Culicoides ignacioi Forattini) and peridomicile + intradomicile habitats (C. paucienfuscatus > C. foxi > C. filariferus Hoffman > C. ignacioi). The activity of these dipterans was strongly influenced by meteorological variables, as biting midges are predominant in the rainy season (80.7% of specimens), when higher rainfall, relative humidity, and lower temperatures prevail. The abundance of biting midges was higher in the peridomicile + intradomicile (83.7% of specimens) compared with the degraded forest (16.3%), a result that reflects the loss of forest habitat due to intense and progressive deforestation.


Asunto(s)
Ceratopogonidae/clasificación , Clasificación , Animales , Brasil , Ecosistema , Bosques , Insectos Vectores/clasificación , Población Rural , Estaciones del Año
4.
Parasit Vectors ; 14(1): 607, 2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922599

RESUMEN

BACKGROUND: Culicoides kingi and Culicoides oxystoma belong to the Schultzei group of biting midges. These two species are vectors of disease in livestock of economic importance. As described in the literature, morphological identification for discrimination between them is still unclear. However, species-specific identification is necessary to solve taxonomic challenges between species and to understand their roles in disease transmission and epidemiology. This study aims to develop accurate tools to discriminate C. oxystoma from C. kingi using traditional morphometry and polymerase chain reaction-restriction fragment length polymorphism (PCR RFLP) assays for use in developing countries. METHODS: Specimens were collected from the region of Kairouan in central Tunisia. A total of 446 C. oxystoma/C. kingi individuals were identified using traditional morphometric analyses combined with PCR-RFLP of the cytochrome c oxidase subunit I gene. Thirteen morphometric measurements were performed from the head, wings, and abdomen of slide-mounted specimens, and six ratios were calculated between these measurements. Multivariate analyses of the morphometric measurements were explored to identify which variables could lead to accurate species identification. RESULTS: Four variables, namely antennae, wings, spermathecae, and palpus length, were suitable morphometric characteristics to differentiate between the species. Digestion with the SspI restriction enzyme of the PCR product led to good discriminative ability. Molecular procedures and phylogenetic analysis confirmed the efficiency of this simple and rapid PCR-RFLP method. CONCLUSIONS: This study highlights for the first time in Tunisia the presence of C. oxystoma and its discrimination from C. kingi using abdominal measurements and the PCR-RFLP method. This approach could be applied in future epidemiological studies at the national and international levels.


Asunto(s)
Distribución Animal , Ceratopogonidae/anatomía & histología , Ceratopogonidae/genética , ADN/genética , Animales , Ceratopogonidae/clasificación , Ceratopogonidae/fisiología , Genoma , Genómica , Especificidad de la Especie , Túnez
5.
PLoS Negl Trop Dis ; 15(12): e0010014, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34910720

RESUMEN

Biting midges of genus Culicoides (Diptera: Ceratopogonidae) are the vectors of several pathogenic arboviruses and parasites of humans and animals. Several reports have suggested that biting midges might be a potential vector of Leishmania parasites. In this study, we screened for Leishmania and Trypanosoma DNA in biting midges collected from near the home of a leishmaniasis patient in Lamphun province, northern Thailand by using UV-CDC light traps. The identification of biting midge species was based on morphological characters and confirmed using the Cytochrome C oxidase subunit I (COI) gene. The detection of Leishmania and Trypanosoma DNA was performed by amplifying the internal transcribed spacer 1 (ITS1) and small subunit ribosomal RNA (SSU rRNA) genes, respectively. All the amplified PCR amplicons were cloned and sequenced. The collected 223 biting midges belonged to seven species (Culicoides mahasarakhamense, C. guttifer, C. innoxius, C. sumatrae, C. huffi, C. oxystoma, and C. palpifer). The dominant species found in this study was C. mahasarakhamense (47.53%). Leishmania martiniquensis DNA was detected in three samples of 106 specimens of C. mahasarakhamense tested indicating a field infection rate of 2.83%, which is comparable to reported rates in local phlebotomines. Moreover, we also detected Trypanosoma sp. DNA in one sample of C. huffi. To our knowledge, this is the first molecular detection of L. martiniquensis in C. mahasarakhamense as well as the first detection of avian Trypanosoma in C. huffi. Blood meal analysis of engorged specimens of C. mahasarakhamense, C. guttifer, and C. huffi revealed that all specimens had fed on avian, however, further studies of the host ranges of Culicoides are needed to gain a better insight of potential vectors of emerging leishmaniasis. Clarification of the vectors of these parasites is also important to provide tools to establish effective disease prevention and control programs in Thailand.


Asunto(s)
Ceratopogonidae/parasitología , Insectos Vectores/parasitología , Leishmania/genética , Trypanosoma/genética , Animales , Ceratopogonidae/anatomía & histología , Ceratopogonidae/clasificación , ADN Protozoario/genética , Femenino , Especificidad del Huésped , Humanos , Leishmania/aislamiento & purificación , Leishmania/patogenicidad , Técnicas de Amplificación de Ácido Nucleico , Tailandia , Trypanosoma/aislamiento & purificación , Trypanosoma/patogenicidad
6.
Parasit Vectors ; 14(1): 432, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34454575

RESUMEN

BACKGROUND: Tibet Orbivirus (TIBOV) is a recently discovered Orbivirus known to infect cattle, Asian buffalo and goats in south-western China. It was first isolated from mosquitoes and subsequently from biting midges (Culicoides spp.) in Yunnan, China, indicating that it is an arbovirus. Little is known of its potential to cause disease, but the economic importance of related viruses promoted an investigation of potential Culicoides spp. vectors of TIBOV. METHODS: Biting midges were collected approximately once per week between May and December 2020, at a cattle farm in Wulong village, Shizong County, Yunnan Province, China. Approximately 3000 specimens of nine species were subsequently used in attempts to isolate virus, and a further 2000 specimens of six species were tested for the presence of bluetongue virus (BTV) and TIBOV using a RT-qPCR test. RESULTS: Virus isolation attempts resulted in the isolation of three viruses. One isolate from a pool of Culicoides jacobsoni was identified as TIBOV, while the other two viruses from C. orientalis and C. tainanus remain unidentified but are not BTV or TIBOV. RT-qPCR analysis did not detect BTV in any specimens, but a single pool containing five specimens of C. jacobsoni and another containing five specimens of C. tainanus produced PCR quantification cycle (Cq) values of around 28 that may indicate infection with TIBOV. CONCLUSIONS: The isolation of TIBOV from C. jacobsoni satisfies one criterion required to prove its status as a vector of this virus. This isolation is supported by a low Cq value produced from a different pool of this species in the RT-qPCR test. The low Cq value obtained from a pool of C. tainanus suggests that this species may also be able to satisfy this criterion. Both of these species are widespread throughout Asia, with C. jacobsoni extending into the Pacific region, which raises the possibility that TIBOV may be more widespread than is currently known.


Asunto(s)
Ceratopogonidae/virología , Insectos Vectores/virología , Orbivirus/genética , Orbivirus/aislamiento & purificación , Infecciones por Reoviridae/transmisión , Animales , Anticuerpos Antivirales/sangre , Bovinos , Ceratopogonidae/clasificación , China , Femenino , Orbivirus/inmunología , Filogenia , ARN Viral/genética , Infecciones por Reoviridae/inmunología , Tibet
7.
Parasit Vectors ; 14(1): 351, 2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34217330

RESUMEN

BACKGROUND: The Culicoides obsoletus species complex (henceforth 'Obsoletus complex') is implicated in the transmission of several arboviruses that can cause severe disease in livestock, such as bluetongue, African horse sickness, epizootic hemorrhagic disease and Schmallenberg disease. Thus, this study aimed to increase our knowledge of the composition and genetic diversity of the Obsoletus complex by partial sequencing of the cytochrome c oxidase I (cox1) gene in poorly studied areas of Spain. METHODS: A study of C. obsoletus populations was carried out using a single-tube multiplex polymerase chain reaction (PCR) assay that was designed to differentiate the Obsoletus complex sibling species Culicoides obsoletus and Culicoides scoticus, based on the partial amplification of the cox1 gene, as well as cox1 georeferenced sequences from Spain available at GenBank. We sampled 117 insects of the Obsoletus complex from six locations and used a total of 238 sequences of C. obsoletus (ss) individuals (sampled here, and from GenBank) from 14 sites in mainland Spain, the Balearic Islands and the Canary Islands for genetic diversity and phylogenetic analyses. RESULTS: We identified 90 C. obsoletus (ss), 19 Culicoides scoticus and five Culicoides montanus midges from the six collection sites sampled, and found that the genetic diversity of C. obsoletus (ss) were higher in mainland Spain than in the Canary Islands. The multiplex PCR had limitations in terms of specificity, and no cryptic species within the Obsoletus complex were identified. CONCLUSIONS: Within the Obsoletus complex, C. obsoletus (ss) was the predominant species in the analyzed sites of mainland Spain. Information about the species composition of the Obsoletus complex could be of relevance for future epidemiological studies when specific aspects of the vector competence and capacity of each species have been identified. Our results indicate that the intraspecific divergence is higher in C. obsoletus (ss) northern populations, and demonstrate the isolation of C. obsoletus (ss) populations of the Canary Islands.


Asunto(s)
Ceratopogonidae/clasificación , Ceratopogonidae/genética , Variación Genética , Insectos Vectores/genética , Filogenia , Animales , Femenino , Insectos Vectores/clasificación , España
8.
Acta Trop ; 220: 105941, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33951420

RESUMEN

Fully understanding biodiversity often requires an integrated approach especially for small insects because species diagnostic morphological characters are limited. In this study, morphological characters and DNA barcodes were used to examine previously recognized genetically divergent lineages detected in the biting midge, Culicoides arakawae (Arakawa), from Thailand. Morphological examinations revealed that specimens belonging to one lineage are morphologically different from C. arakawae in shape of the paramere in males, and in the leg color pattern of both sexes. Therefore, a formal description is provided for this new species, Culicoides mahasarakhamense sp. nov. Based on morphological characters including a large and shallow palpal pit, one sac like spermatheca and male with parameres bent at base with large basal knob, the new species was assigned into the subgenus Meijerehelea Wirth and Hubert. Morphological differentiation including wing pattern and shape of spermatheca of the new species are discussed and compared with other members of this subgenus. Mitochondrial cytochrome c oxidase I sequence analysis indicated that this new species is different from other members of the subgenus Meijerehelea with minimum interspecific genetic divergence of 3.92%. Automatic Barcode Gap Discovery species delimitation analysis also supported the recognition of a new species. Phylogenetic analyses revealed that the new species is closely related to C. arakawae, consistent with morphological similarity of these species. Results of this study highlight the necessity of using integrated approach for Culicoides taxonomy.


Asunto(s)
Ceratopogonidae/genética , Animales , Biodiversidad , Ceratopogonidae/clasificación , Código de Barras del ADN Taxonómico , Femenino , Masculino , Filogenia , Tailandia
9.
Parasit Vectors ; 14(1): 288, 2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34044880

RESUMEN

BACKGROUND: Reunion Island regularly faces outbreaks of bluetongue and epizootic hemorrhagic diseases, two insect-borne orbiviral diseases of ruminants. Hematophagous midges of the genus Culicoides (Diptera: Ceratopogonidae) are the vectors of bluetongue (BTV) and epizootic hemorrhagic disease (EHDV) viruses. In a previous study, statistical models based on environmental and meteorological data were developed for the five Culicoides species present in the island to provide a better understanding of their ecology and predict their presence and abundance. The purpose of this study was to couple these statistical models with a Geographic Information System (GIS) to produce dynamic maps of the distribution of Culicoides throughout the island. METHODS: Based on meteorological data from ground weather stations and satellite-derived environmental data, the abundance of each of the five Culicoides species was estimated for the 2214 husbandry locations on the island for the period ranging from February 2016 to June 2018. A large-scale Culicoides sampling campaign including 100 farms was carried out in March 2018 to validate the model. RESULTS: According to the model predictions, no husbandry location was free of Culicoides throughout the study period. The five Culicoides species were present on average in 57.0% of the husbandry locations for C. bolitinos Meiswinkel, 40.7% for C. enderleini Cornet & Brunhes, 26.5% for C. grahamii Austen, 87.1% for C. imicola Kieffer and 91.8% for C. kibatiensis Goetghebuer. The models also showed high seasonal variations in their distribution. During the validation process, predictions were acceptable for C. bolitinos, C. enderleini and C. kibatiensis, with normalized root mean square errors (NRMSE) of 15.4%, 13.6% and 16.5%, respectively. The NRMSE was 27.4% for C. grahamii. For C. imicola, the NRMSE was acceptable (11.9%) considering all husbandry locations except in two specific areas, the Cirque de Salazie-an inner mountainous part of the island-and the sea edge, where the model overestimated its abundance. CONCLUSIONS: Our model provides, for the first time to our knowledge, an operational tool to better understand and predict the distribution of Culicoides in Reunion Island. As it predicts a wide spatial distribution of the five Culicoides species throughout the year and taking into consideration their vector competence, our results suggest that BTV and EHDV can circulate continuously on the island. As further actions, our model could be coupled with an epidemiological model of BTV and EHDV transmission to improve risk assessment of Culicoides-borne diseases on the island.


Asunto(s)
Distribución Animal , Ceratopogonidae/clasificación , Insectos Vectores/clasificación , Animales , Lengua Azul/transmisión , Virus de la Lengua Azul , Bovinos , Ciervos , Brotes de Enfermedades , Cabras , Virus de la Enfermedad Hemorrágica Epizoótica , Caballos , Océano Índico , Insectos Vectores/virología , Modelos Estadísticos , Reunión , Medición de Riesgo , Estaciones del Año , Ovinos , Especificidad de la Especie
10.
Acta Trop ; 219: 105913, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33831346

RESUMEN

Biting midges in the genus Culicoides (Diptera; Ceratopogonidae) are vectors of pathogens that can cause diseases of major economic importance in humans and animals. Identifying host ranges of these biting midges might aid in understanding the complex epidemiology of such diseases, often involving reservoir hosts and multiple species. In this study, we aim to identify bloodmeal origin from engorged female Culicoides biting midges. All bloodfed females were opportunistically collected as part of an ongoing surveillance programme using Onderstepoort light traps in two provinces in South Africa. DNA of individuals was extracted and subjected to PCR targeting the cytochrome B (CytB) gene region of mammals and avians as well as cytochrome oxidase I (COI) for species identification. In total, 21 new reference barcodes were generated for C. bedfordi, C imicola, C. leucosticus, C. magnus, and C. pycnostictus. Seventy-four blood meals were identified, originating from 12 mammal and three avian species. COI sequence data performed well for species delimitation and 54 Culicoides specimens were identified with C. imicola the predominant species identified (41.8%). Generally, Culicoides species feed on a variety of hosts and host availability might be an important factor when selecting a host. Culicoides species thus appear to be opportunistic feeders rather than specialists. This implicates Culicoides as transfer vectors and demonstrates possible transmission routes of arboviruses and other pathogens from wildlife onwards to domestic animals and humans.


Asunto(s)
Sangre/parasitología , Ceratopogonidae/clasificación , Citocromos b/genética , Código de Barras del ADN Taxonómico , Complejo IV de Transporte de Electrones/genética , Animales , Arbovirus/fisiología , Ceratopogonidae/genética , Femenino , Especificidad del Huésped , Humanos , Insectos Vectores/genética , Sudáfrica
11.
Parasitol Res ; 120(7): 2323-2332, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33893548

RESUMEN

Culicoides biting midges are small dipterous insects (Diptera: Ceratopogonidae) which are known to be vectors of arboviruses, bacteria, protozoan and helminth parasites that can cause disease and mortality in livestock and poultry globally. Detailed knowledge of the Culicoides species composition and biology is essential to assess the risk of the introduction and transmission of pathogens. The aim of this study was to obtain data on Culicoides species composition and flying activity in southeastern Lithuania and to determine the meteorological variables related to the abundance of Culicoides biting midges. Biting midges were collected in Verkiai Regional Park, southeastern Lithuania, using an Onderstepoort trap once a week from April to October 2016 and 2018, and from April to July 2019; 7332 Culicoides females belonging to 22 species were identified. Both morphology and DNA barcoding were used for identification. The number of specimens trapped was highest for the Obsoletus Group, followed by Culicoides kibunensis and Culicoides impunctatus. The highest relative abundance and diversity of biting midges were found in May and June. The number of trapped biting midges correlated positively with the mean air temperature. The first biting midges in spring were caught when the mean daily temperature rose higher than 10 °C. No Culicoides were detected when the air temperature dropped below 5 °C in autumn. Wind speed and air humidity had no statistically significant effect on Culicoides abundance.


Asunto(s)
Ceratopogonidae/fisiología , Vuelo Animal/fisiología , Insectos Vectores/fisiología , Animales , Ceratopogonidae/clasificación , Análisis por Conglomerados , Femenino , Insectos Vectores/clasificación , Lituania , Estaciones del Año , Temperatura
12.
Zootaxa ; 4952(2): zootaxa.4952.2.4, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33903368

RESUMEN

Three new species of Atrichopogon with spotted wings of the family Ceratopogonidae (Diptera: Culicomorpha) from the Amazonas State of Brazil are described and illustrated. Male and female specimens of Atrichopogon janseni sp. nov., A. riopardensis sp. nov., and A. sergioluzi sp. nov. were associated by wing pigmentation patterns: with two darker spots, one over r-m and the other one in cell r3, posterior to the apex of R3. Male A. janseni sp. nov. have tergite 9 that is 2.5 × as broad as long, not extending to the apex of gonocoxite, and sternite 9 stout, sub-trapezoidal, with distal margin with a row of stout spines; gonostylus of A. janseni sp. nov. is spatulate, with distinct middle notch. Atrichopogon riopardensis sp. nov. is separated from other species with similar wing patterns and forked gonostylus, with gonostylus forked near midlength, with longitudinal furrow, inner portion short and fingernail-like, outer portion elongate and apically curved directed mesally; outer portion is 4 × longer than inner, with one long seta in basal 1/3. Contrastingly, A. sergioluzi sp. nov. has a small fork at the apex of gonostylus, and cercus broad basally with rounded tip. Females of the three new species are very similar (as are other females in this group), and it is probably not possible to distinguish them using the morphological features described. With the addition of the three new species described here, there are now known 15 Neotropical species of Atrichopogon with pigmented wings.


Asunto(s)
Ceratopogonidae , Animales , Brasil , Ceratopogonidae/clasificación , Dípteros , Femenino , Masculino
13.
Acta Trop ; 217: 105866, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33607064

RESUMEN

Biting midges of the genus Culicoides Latreille are blood sucking insects of medical and veterinary importance. Many species are vectors of disease agents transmitted to humans and other animals. Therefore, rapid and accurate species identification is essential for appreciation of all aspects of these insects. In this study, DNA barcode efficacy and molecular identification of host blood sources were examined in biting midges from Thailand. A total of 203 barcoding sequences were obtained from 16 Culicoides taxa. Intraspecific genetic divergence varied from 0.28% to 9.90% for specimens collected in Thailand. Despite this high level of genetic variation, DNA barcode identifications in the Barcoding of Life Data System had a considerable success rate (90%). Phylogenetic analyses and distance-based species delimitation methods indicated the possibility of cryptic species in four taxa, namely, Culicoides actoni Smit, C. arakawae Arakawa, C. huffi Causey and C. jacobsoni Macfie. Further investigations will be required to examine the species status of these lineages. Host blood meal identifications from 42 blood engorged females of 10 Culicoides taxa revealed three animal hosts: chicken, cattle and buffalo. Most of this information agrees with previous knowledge but this is the first report of C. actoni, C. fulvus and C. huffi feeding on chicken.


Asunto(s)
Ceratopogonidae/clasificación , Ceratopogonidae/genética , Código de Barras del ADN Taxonómico , Variación Genética , Animales , Bovinos , Análisis Mutacional de ADN , Femenino , Insectos Vectores/genética , Filogenia , Tailandia
14.
Sci Rep ; 11(1): 521, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441647

RESUMEN

Biting midges are widespread around the world and play an essential role in the epidemiology of over 100 veterinary and medical diseases. For taxonomists, it is difficult to correctly identify species because of affinities among cryptic species and species complexes. In this study, species boundaries were examined for C. clastrieri and C. festivipennis and compared with six other Culicoides species. The classifiers are partial least squares discriminant analysis (PLS-DA) and sparse partial least squares discriminant analysis (sPLS-DA).The performance of the proposed method was evaluated using four models: (i) geometric morphometrics applied to wings; (ii) morphological wing characters, (iii) "Full wing" (landmarks and morphological characters) and (iv)  "Full model" (morphological characters-wing, head, abdomen, legs-and wing landmarks). Double cross-validation procedures were used to validate the predictive ability of PLS-DA and sPLS-DA models. The AUC (area under the ROC curve) and the balanced error rate showed that the sPLS-DA model performs better than the PLS-DA model. Our final sPLS-DA analysis on the full wing and full model, with nine and seven components respectively, managed to perfectly classify our specimens. The C. clastrieri and C. festivipennis sequences, containing both COI and 28S genes, revealed our markers' weak discrimination power, with an intraspecific and interspecific divergence of 0.4% and 0.1% respectively. Moreover, C. clastrieri and C. festivipennis are grouped in the same clade. The morphology and wing patterns of C. clastrieri and C. festivipennis can be used to clearly distinguish them. Our study confirms C. clastrieri and C. festivipennis as two distinct species. Our results show that caution should be applied when relying solely on DNA barcodes for species identification or discovery.


Asunto(s)
Ceratopogonidae/genética , Código de Barras del ADN Taxonómico , Filogenia , Animales , Ceratopogonidae/anatomía & histología , Ceratopogonidae/clasificación , Especificidad de la Especie
15.
Parasit Vectors ; 14(1): 68, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33482882

RESUMEN

BACKGROUND: Culicoides (Diptera: Ceratopogonidae) are vectors for many arboviruses. At least 20 species are considered as vectors or potential vectors of bluetongue virus (BTV) which cause bluetongue disease in ruminants. A BTV prevalence of 30-50% among cattle and goats in tropical southern Yunnan Province, China, prompted an investigation of the potential BTV vectors in this area. METHODS: Culicoides were collected by light trapping at three sites in the tropical region of Yunnan Province. Species were identified based on morphology and DNA sequences of cytochrome c oxidase subunit 1 (cox1). PCR and quantitative PCR following reverse transcription were used to test for the presence of BTV RNA in these specimens. Phylogenetic analysis was used to analyze the cox1 sequences of Culicoides specimens infected with BTV. RESULTS: Approximately 67,000 specimens of Culicoides were collected, of which 748 were tested for the presence of BTV. Five specimens, including two of Culicoides jacobsoni, one of C. tainanus and two of C. imicola, were identified as infected with BTV. No specimens of C. (subgenus Trithecoides) or C. oxystoma tested were positive for BTV infection. CONCLUSIONS: To our knowledge this is the first report of C. jacobsoni as a potential BTV vector and the fourth report of an association between C. tainanus and BTV, as well as the first direct evidence of an association between BTV and C. imicola in Asia. A fourth potential cryptic species within C. tainanus was identified in this study. Further analysis is required to confirm the importance of C. jacobsoni and C. tainanus in BTV epidemiology in Asia.


Asunto(s)
Virus de la Lengua Azul/genética , Virus de la Lengua Azul/aislamiento & purificación , Lengua Azul/transmisión , Ceratopogonidae/virología , Insectos Vectores/virología , Animales , Lengua Azul/epidemiología , Bovinos/virología , Ceratopogonidae/clasificación , Ceratopogonidae/genética , China/epidemiología , Ciclooxigenasa 1/genética , Femenino , Cabras/virología , Insectos Vectores/clasificación , ARN Viral/genética , Serogrupo
16.
PLoS One ; 15(11): e0241798, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33147271

RESUMEN

Fast and accurate identification of biting midges is crucial in the study of Culicoides-borne diseases. In this work, we propose a two-stage method for automatically analyzing Culicoides (Diptera: Ceratopogonidae) species. First, an image preprocessing task composed of median and Wiener filters followed by equalization and morphological operations is used to improve the quality of the wing image in order to allow an adequate segmentation of particles of interest. Then, the segmentation of the zones of interest inside the biting midge wing is made using the watershed transform. The proposed method is able to produce optimal feature vectors that help to identify Culicoides species. A database containing wing images of C. obsoletus, C. pusillus, C. foxi, and C. insignis species was used to test its performance. Feature relevance analysis indicated that the mean of hydraulic radius and eccentricity were relevant for the decision boundary between C. obsoletus and C. pusillus species. In contrast, the number of particles and the mean of the hydraulic radius was relevant for deciding between C. foxi and C. insignis species. Meanwhile, for distinguishing among the four species, the number of particles and zones, and the mean of circularity were the most relevant features. The linear discriminant analysis classifier was the best model for the three experimental classification scenarios previously described, achieving averaged areas under the receiver operating characteristic curve of 0.98, 0.90, and 0.96, respectively.


Asunto(s)
Ceratopogonidae/clasificación , Alas de Animales/anatomía & histología , Animales , Área Bajo la Curva , Automatización , Teorema de Bayes , Bases de Datos Factuales , Análisis Discriminante , Femenino , Procesamiento de Imagen Asistido por Computador , Curva ROC , Máquina de Vectores de Soporte
17.
Parasit Vectors ; 13(1): 463, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32912306

RESUMEN

BACKGROUND: The Culicoides fauna of Algeria has been historically investigated, leading to the description of many new species by Kieffer in the 1920s, Clastrier in the 1950s or Callot in the 1960s and to a comprehensive inventory by Szadziewski in the 1980s. The emergence of bluetongue in the late 1990s enhanced Culicoides collections made in the country over the last two decades, but information remained mostly unpublished. The aim of this study is therefore to provide a comprehensive and updated checklist of Culicoides biting midge species in Algeria. METHODS: The literature (published and grey, in French and in English) from 1920 to date on Culicoides collections in Algeria was collected and analyzed in the light of the current taxonomic and systematic knowledge and methods. Fresh Culicoides material was also analyzed using light/suction trap collections carried out from November 2015 to September 2018 in nine localities of the 'wilayah' of Tiaret (northwestern Algeria). Slide mounted specimens were identified morphologically using the interactive identification key IIKC and original descriptions. Specimens were then compared with non-type material originating from different countries and partly with type material. RESULTS: A total of 13,709 Culicoides, belonging to at least 36 species within 10 subgenera, were examined leading to 10 new records in Algeria, including C. chiopterus, C. dewulfi, C. navaiae, C. grisescens, C. paradoxalis, C. shaklawensis, C. simulator, C. univittatus, C. achrayi and C. picturatus. These new records and all previous records provided by the literature review were discussed. CONCLUSIONS: We propose a Culicoides checklist for the Algerian fauna of 59 valid species, including species mainly with a large Palaearctic distribution and a specific Mediterranean distribution, and only a few species from the Afrotropical region. Among them, several species, mainly of the subgenera Avaritia and Culicoides, are confirmed or probable vectors of arboviruses important in animal health.


Asunto(s)
Ceratopogonidae/clasificación , Insectos Vectores/clasificación , Argelia , Distribución Animal , Animales , Lengua Azul/transmisión , Virus de la Lengua Azul/fisiología , Bovinos , Enfermedades de los Bovinos/transmisión , Enfermedades de los Bovinos/virología , Ceratopogonidae/anatomía & histología , Ceratopogonidae/fisiología , Lista de Verificación , Femenino , Insectos Vectores/anatomía & histología , Insectos Vectores/fisiología , Masculino
18.
Parasit Vectors ; 13(1): 393, 2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32746908

RESUMEN

BACKGROUND: Culicoides biting midges are vectors involved in the biological transmission cycle of important animal diseases such as bluetongue and African horse sickness. In Romania, the first outbreaks of bluetongue were reported in 2014, leading to increased activities within the existing entomological surveillance network. The main goals of the surveillance activities were the establishment of the vector free period in relation to animal trade and the identification of Culicoides species involved in the transmission of the pathogen. This study was conducted on the composition and relative abundance of the species belonging to the genus Culicoides (Diptera: Ceratopogonidae) in certain regions of Romania and provided the opportunity to update the existing checklist of Culicoides species of this country. METHODS: The study was conducted in 33 of the 42 administrative units (counties), including a total of 659 catches, in 102 locations. The collections were carried out with UV blacklight suction traps (OVI type). The collected insects were preserved in 70% ethanol. Morphological insect identification was carried out using a stereomicroscope, according to established identification keys. In ten localities the relative abundance of the cryptic species of the Obsoletus complex was determined by multiplex PCR assay based on the ITS2 segment. The identification of the Culicoides chiopterus (Meigen) species by morphological examination was confirmed by PCR assay based on the ITS1 segment. RESULTS: Eleven species were identified using morphological and PCR tools. The rest of the individuals were separated into five taxa. The species of the Obsoletus complex (grouping Culicoides obsoletus (Meigen) and Culicoides scoticus Downes & Kettle) were the most abundant, accounting for 59% of the total number of captured Culicoides spp. Three of the identified species are mentioned, according to our knowledge, for the first time in Romania: Culicoides newsteadi Austen, Culicoides flavipulicaris Dzhafarov and Culicoides bysta Sarvasová, Kocisová, Candolfi & Mathieu. CONCLUSIONS: Our study demonstrates that the Culicoides species most commonly cited as being involved in the transmission of arboviruses in Europe (i.e. bluetongue and Schmallenberg viruses) make up a high proportion of adult Culicoides trapped in Romania.


Asunto(s)
Ceratopogonidae/clasificación , Enfermedad Equina Africana/transmisión , Animales , Lengua Azul/transmisión , Insectos Vectores/clasificación , Rumanía
19.
Viruses ; 12(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854272

RESUMEN

Community dynamics are embedded in hierarchical spatial-temporal scales that connect environmental drivers with species assembly processes. Culicoides species are hematophagous arthropod vectors of orbiviruses that impact wild and domestic ruminants. A better sense of Culicoides dynamics over time is important because sympatric species can lengthen the seasonality of virus transmission. We tested a putative departure from the four seasons calendar in the phenology of Culicoides and the vector subassemblage in the Florida panhandle. Two years of weekly abundance data, temporal scales, persistence and environmental thresholds were analyzed using a tripartite Culicoides ß-diversity based modeling approach. Culicoides phenology followed a two-season regime and was explained by stream flow and temperature, but not rainfall. Species richness fit a nested pattern where the species recruitment was maximized during spring months. Midges were active year-round, and two suspected vectors species, Culicoides venustus and Culicoides stellifer, were able to sustain and connect the seasonal modules. Persistence suggests that Orbivirus maintenance does not rely on overwintering and that viruses are maintained year-round, with the seasonal dynamics resembling subtropical Culicoides communities with temporal-overlapping between multivoltine species. Viewing Culicoides-borne orbiviruses as a time-sensitive community-based issue, our results help to recommend when management operations should be delivered.


Asunto(s)
Ceratopogonidae/fisiología , Insectos Vectores/fisiología , Animales , Biodiversidad , Ceratopogonidae/clasificación , Ceratopogonidae/virología , Florida , Insectos Vectores/clasificación , Insectos Vectores/virología , Orbivirus/aislamiento & purificación , Dinámica Poblacional , Estaciones del Año , Temperatura , Movimientos del Agua
20.
Acta Trop ; 211: 105628, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32659282

RESUMEN

Culicoides biting midges (Diptera: Ceratopogonidae) are a highly successful group of small (1-3 mm) hematophagous flies, infamous for the role they play as biological vectors for numerous pathogens of veterinary significance. The principal aim of the national animal disease surveillance program of Israel is to be able to rapidly sort and identify live field-captured insects including Culicoides for arbovirus screening. In this exploratory study, three identification methods-classical morphology, DNA barcoding, and MALDI-TOF MS-were applied simultaneously to individuals of 10 Culicoides species that commonly attack livestock in Israel. The strengths and limitations of the three methods are compared and evaluated. In essence, the CO1 barcoding and MALDI-TOF MS results closely matched those of classical morphology. Furthermore, at a higher level and in strong accordance with recognized subgenera, the 10 species, in the reconstructed phylogenies, coalesced into multiple deeper-branched monophyletic clades. However, some discrepancies between the molecular and protein profiling results did occur and proved difficult to assess in terms of taxonomic significance. This difficulty underscores how tricky it is to establish clear species limits when methods involving borderline cutoff values and similarity indices are used as a taxonomic aid. An added shortcoming of the pluralistic triple-method approach is that a significant percentage of the species-level depositions in the GenBank and BOLD databases are misidentified, hindering structured comparison and interpretation of the morphological and molecular results obtained. Aspects of the unresolved taxonomy of various biting midge assemblages within the Mediterranean basin, including minor changes to the Israeli Culicoides checklist, are discussed in light of the methods applied. It is observed that the direct access that classical morphology provides to the external environment (or species niche) is indispensable to the full and correct interpretation (and application) of concomitant molecular and protein profiling results. The Culicoides taxonomy of the future ought to be fully integrative, during which the assimilation of modern methodological advances should strengthen-rather than undermine-the morphological foundations laid down during the 260-year Linnaean epoch.


Asunto(s)
Ceratopogonidae/clasificación , Código de Barras del ADN Taxonómico , ADN Mitocondrial/genética , Proteínas de Insectos/química , Filogenia , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Ceratopogonidae/anatomía & histología , Ceratopogonidae/genética , Proteínas de Insectos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...