Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Inorg Chem ; 63(7): 3359-3365, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38315811

RESUMEN

The Fe(II) oxidation mechanism in the ferroxidase center of heavy chain ferritin has been studied extensively. However, the actual production of H2O2 was found to be substantially lower than expected at low flux of Fe(II) to ferritin subunits. Here, we demonstrated that H2O2 could interact with the di-iron nuclear center, leading to the production of hydroxyl radicals and oxygen. Two reaction intermediates were captured in the ferroxidase center by using the time-lapse crystallographic techniques in a shellfish ferritin. The crystal structures revealed the binding of H2O2 as a µ -1,2-peroxo-diferric species and the binding of O2 to the diferric structure. This investigation sheds light on the reaction between the di-iron nuclear center and H2O2 and provides insights for the exploitation of metalloenzymes.


Asunto(s)
Ferritinas , Hierro , Hierro/química , Ferritinas/química , Peróxido de Hidrógeno/química , Ceruloplasmina/química , Oxidación-Reducción , Compuestos Ferrosos/química
2.
Angew Chem Int Ed Engl ; 63(16): e202401379, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38407997

RESUMEN

Ferritins are multimeric cage-forming proteins that play a crucial role in cellular iron homeostasis. All H-chain-type ferritins harbour a diiron site, the ferroxidase centre, at the centre of a 4 α-helical bundle, but bacterioferritins are unique in also binding 12 hemes per 24 meric assembly. The ferroxidase centre is known to be required for the rapid oxidation of Fe2+ during deposition of an immobilised ferric mineral core within the protein's hollow interior. In contrast, the heme of bacterioferritin is required for the efficient reduction of the mineral core during iron release, but has little effect on the rate of either oxidation or mineralisation of iron. Thus, the current view is that these two cofactors function in iron uptake and release, respectively, with no functional overlap. However, rapid electron transfer between the heme and ferroxidase centre of bacterioferritin from Escherichia coli was recently demonstrated, suggesting that the two cofactors may be functionally connected. Here we report absorbance and (magnetic) circular dichroism spectroscopies, together with in vitro assays of iron-release kinetics, which demonstrate that the ferroxidase centre plays an important role in the reductive mobilisation of the bacterioferritin mineral core, which is dependent on the heme-ferroxidase centre electron transfer pathway.


Asunto(s)
Ceruloplasmina , Hierro , Hierro/química , Ceruloplasmina/química , Escherichia coli/metabolismo , Ferritinas/química , Proteínas Bacterianas/metabolismo , Grupo Citocromo b/química , Minerales , Oxidación-Reducción , Hemo/metabolismo
3.
J Am Chem Soc ; 145(24): 13284-13301, 2023 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294874

RESUMEN

In multicopper oxidases (MCOs), the type 1 (T1) Cu accepts electrons from the substrate and transfers these to the trinuclear Cu cluster (TNC) where O2 is reduced to H2O. The T1 potential in MCOs varies from 340 to 780 mV, a range not explained by the existing literature. This study focused on the ∼350 mV difference in potential of the T1 center in Fet3p and Trametes versicolor laccase (TvL) that have the same 2His1Cys ligand set. A range of spectroscopies performed on the oxidized and reduced T1 sites in these MCOs shows that they have equivalent geometric and electronic structures. However, the two His ligands of the T1 Cu in Fet3p are H-bonded to carboxylate residues, while in TvL they are H-bonded to noncharged groups. Electron spin echo envelope modulation spectroscopy shows that there are significant differences in the second-sphere H-bonding interactions in the two T1 centers. Redox titrations on type 2-depleted derivatives of Fet3p and its D409A and E185A variants reveal that the two carboxylates (D409 and E185) lower the T1 potential by 110 and 255-285 mV, respectively. Density functional theory calculations uncouple the effects of the charge of the carboxylates and their difference in H-bonding interactions with the His ligands on the T1 potential, indicating 90-150 mV for anionic charge and ∼100 mV for a strong H-bond. Finally, this study provides an explanation for the generally low potentials of metallooxidases relative to the wide range of potentials of the organic oxidases in terms of different oxidized states of their TNCs involved in catalytic turnover.


Asunto(s)
Ceruloplasmina , Histidina , Ceruloplasmina/química , Ligandos , Cobre/química , Trametes , Electricidad Estática , Lacasa/metabolismo
4.
Inorg Chem ; 62(1): 178-191, 2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36525578

RESUMEN

The self-assembled ferritin nanocages, nature's solution to iron toxicity and its low solubility, scavenge free iron to synthesize hydrated ferric oxyhydroxide mineral inside their central cavity by protein-mediated ferroxidase and hydrolytic/nucleation reactions. These complex processes in ferritin commence with the rapid influx of Fe2+ ions via the inter-subunit contact points (i.e., pores/channels). Investigation of these pores as Fe2+ uptake routes in ferritins remains a subject of intense research, in iron metabolism, toxicity, and bacterial pathogenesis, which are yet to be established in the bacterioferritin (BfrA) from Mycobacterium tuberculosis (Mtb). The electrostatic properties of this protein indicate that the 4-fold and B-pores might serve as potential Fe2+ entry routes. Therefore, in the current work, electrostatics at/along these pores was altered by site-directed mutagenesis to establish their role in Fe2+ uptake/oxidation (ferroxidase activity) in Mtb BfrA. Despite forming self-assembled protein nanocompartment, these 4-fold and B-pore variants exhibited partial loss of ferroxidase activity and lower accumulation of transient species, which not only indicated their role in Fe2+ entry but also suggested the existence of multiple pathways. Although the B-pore variants inhibited the rapid ferroxidase activity to a larger extent, they had minimal impact on their cage stability. The current work revealed the relative contribution of these pores toward rapid Fe2+ uptake/oxidation and cage stability, possibly as consequences of their differential symmetry, number of modified residues (at each pore), and heme content. Therefore, these findings may help to understand the role of these pores in iron acquisition and Mtb proliferation under iron-limiting conditions to control its pathogenesis.


Asunto(s)
Mycobacterium tuberculosis , Ceruloplasmina/química , Ferritinas/química , Hierro/química , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción , Oxidorreductasas/metabolismo
5.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948458

RESUMEN

Coppers play crucial roles in the maintenance homeostasis in living species. Approximately 20 enzyme families of eukaryotes and prokaryotes are known to utilize copper atoms for catalytic activities. However, small-molecule inhibitors directly targeting catalytic centers are rare, except for those that act against tyrosinase and dopamine-ß-hydroxylase (DBH). This study tested whether known tyrosinase inhibitors can inhibit the copper-containing enzymes, ceruloplasmin, DBH, and laccase. While most small molecules minimally reduced the activities of ceruloplasmin and DBH, aside from known inhibitors, 5 of 28 tested molecules significantly inhibited the function of laccase, with the Ki values in the range of 15 to 48 µM. Enzyme inhibitory kinetics classified the molecules as competitive inhibitors, whereas differential scanning fluorimetry and fluorescence quenching supported direct bindings. To the best of our knowledge, this is the first report on organic small-molecule inhibitors for laccase. Comparison of tyrosinase and DBH inhibitors using cheminformatics predicted that the presence of thione moiety would suffice to inhibit tyrosinase. Enzyme assays confirmed this prediction, leading to the discovery of two new dual tyrosinase and DBH inhibitors.


Asunto(s)
Ceruloplasmina/metabolismo , Cobre/química , Dopamina beta-Hidroxilasa/metabolismo , Hongos/enzimología , Lacasa/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Agaricales/enzimología , Biocatálisis , Dominio Catalítico , Ceruloplasmina/química , Quimioinformática , Dopamina beta-Hidroxilasa/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Humanos , Lacasa/química , Modelos Moleculares , Conformación Proteica , Bibliotecas de Moléculas Pequeñas/química
6.
Microbiology (Reading) ; 167(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34825885

RESUMEN

Ferritins are proteins forming 24meric rhombic dodecahedral cages that play a key role in iron storage and detoxification in all cell types. Their function requires the transport of Fe2+ from the exterior of the protein to buried di-iron catalytic sites, known as ferroxidase centres, where Fe2+ is oxidized to form Fe3+-oxo precursors of the ferritin mineral core. The route of iron transit through animal ferritins is well understood: the Fe2+ substrate enters the protein via channels at the threefold axes and conserved carboxylates on the inner surface of the protein cage have been shown to contribute to transient binding sites that guide Fe2+ to the ferroxidase centres. The routes of iron transit through prokaryotic ferritins are less well studied but for some, at least, there is evidence that channels at the twofold axes are the major route for Fe2+ uptake. SynFtn, isolated from the cyanobacterium Synechococcus CC9311, is an atypical prokaryotic ferritin that was recently shown to take up Fe2+ via its threefold channels. However, the transfer site carboxylate residues conserved in animal ferritins are absent, meaning that the route taken from the site of iron entry into SynFtn to the catalytic centre is yet to be defined. Here, we report the use of a combination of site-directed mutagenesis, absorbance-monitored activity assays and protein crystallography to probe the effect of substitution of two residues potentially involved in this pathway. Both Glu141 and Asp65 play a role in guiding the Fe2+ substrate to the ferroxidase centre. In the absence of Asp65, routes for Fe2+ to, and Fe3+ exit from, the ferroxidase centre are affected resulting in inefficient formation of the mineral core. These observations further define the iron transit route in what may be the first characterized example of a new class of ferritins peculiar to cyanobacteria.


Asunto(s)
Ferritinas , Hierro , Synechococcus , Animales , Dominio Catalítico , Ceruloplasmina/química , Ceruloplasmina/genética , Ferritinas/química , Ferritinas/genética , Hierro/metabolismo , Minerales/química , Oxidación-Reducción , Synechococcus/química
7.
Inorg Chem ; 60(10): 7207-7216, 2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-33852289

RESUMEN

Here, we present a 1.9 Å resolution crystal structure of Mycoplasma Penetrans ferritin, which reveals that its ferroxidase center is located on the inner surface of ferritin but not buried within the four-helix of each subunit. Such a ferroxidase center exhibits a lower iron oxidation activity as compared to the reported ferritin. More importantly, we found that Fe2+ enters into the center via the rarely reported B-channels rather than the normal 3- or 4-fold channels. All these findings may provide the structural bases to explore the new iron oxidation mechanism adopted by this special ferritin, which is beneficial for understanding the relationship between the structure and function of ferritin.


Asunto(s)
Ceruloplasmina/metabolismo , Ferritinas/metabolismo , Compuestos Ferrosos/metabolismo , Mycoplasma/química , Ceruloplasmina/química , Ferritinas/química , Compuestos Ferrosos/química , Simulación de Dinámica Molecular , Mycoplasma/metabolismo , Oxidación-Reducción
8.
Bioelectrochemistry ; 140: 107794, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33744681

RESUMEN

High-performance autotolerant bioelectrodes should be ideally suited to design implantable bioelectronic devices. Because of its high redox potential and ability to reduce oxygen directly to water, human ceruloplasmin, HCp, the only blue multicopper oxidase present in human plasma, appears to be the ultimate biocatalyst for oxygen biosensors and also biocathodes in biological power sources. In comparison to fungal and plant blue multicopper oxidases, e.g. Myrothecium verrucaria bilirubin oxidase and Rhus vernicifera laccase, respectively, the inflammatory response to HCp in human blood is significantly reduced. Partial purification of HCp allowed to preserve the native conformation of the enzyme and its biocatalytic activity. Therefore, electrochemical studies were carried out with the partially purified enzyme immobilised on nanostructured graphite electrodes at physiological pH and temperature. Amperometric investigations revealed low reductive current densities, i.e. about 1.65 µA cm-2 in oxygenated electrolyte and in the absence of any mediator, demonstrating nevertheless direct electron transfer based O2 bioelectroreduction by HCp for the first time. The reductive current density obtained in the mediated system was about 12 µA cm-2. Even though the inflammatory response of HCp is diminished in human blood, inadequate bioelectrocatalytic performance hinders its use as a cathodic bioelement in a biofuel cell.


Asunto(s)
Materiales Biocompatibles/química , Ceruloplasmina/química , Enzimas Inmovilizadas/química , Fuentes de Energía Bioeléctrica , Electrodos , Transporte de Electrón , Grafito/química , Humanos , Ensayo de Materiales , Modelos Moleculares , Oxidación-Reducción , Oxígeno/química , Prótesis e Implantes
9.
Angew Chem Int Ed Engl ; 60(15): 8361-8369, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33482043

RESUMEN

Both O2 and H2 O2 can oxidize iron at the ferroxidase center (FC) of Escherichia coli bacterioferritin (EcBfr) but mechanistic details of the two reactions need clarification. UV/Vis, EPR, and Mössbauer spectroscopies have been used to follow the reactions when apo-EcBfr, pre-loaded anaerobically with Fe2+ , was exposed to O2 or H2 O2 . We show that O2 binds di-Fe2+ FC reversibly, two Fe2+ ions are oxidized in concert and a H2 O2 molecule is formed and released to the solution. This peroxide molecule further oxidizes another di-Fe2+ FC, at a rate circa 1000 faster than O2 , ensuring an overall 1:4 stoichiometry of iron oxidation by O2 . Initially formed Fe3+ can further react with H2 O2 (producing protein bound radicals) but relaxes within seconds to an H2 O2 -unreactive di-Fe3+ form. The data obtained suggest that the primary role of EcBfr in vivo may be to detoxify H2 O2 rather than sequester iron.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ceruloplasmina/metabolismo , Grupo Citocromo b/metabolismo , Escherichia coli/química , Ferritinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Oxígeno/metabolismo , Proteínas Bacterianas/química , Ceruloplasmina/química , Grupo Citocromo b/química , Escherichia coli/metabolismo , Ferritinas/química , Peróxido de Hidrógeno/química , Hierro/química , Modelos Moleculares , Oxidación-Reducción , Oxígeno/química
10.
Int J Mol Sci ; 22(2)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440850

RESUMEN

Neurodegenerative disorders can induce modifications of several proteins; one of which is ceruloplasmin (Cp), a ferroxidase enzyme found modified in the cerebrospinal fluid (CSF) of neurodegenerative diseases patients. Cp modifications are caused by the oxidation induced by the pathological environment and are usually associated with activity loss. Together with oxidation, deamidation of Cp was found in the CSF from Alzheimer's and Parkinson's disease patients. Protein deamidation is a process characterized by asparagine residues conversion in either aspartate or isoaspartate, depending on protein sequence/structure and cellular environment. Cp deamidation occurs at two Asparagine-Glycine-Arginine (NGR)-motifs which, once deamidated to isoAspartate-Glycine-Arginine (isoDGR), bind integrins, a family of receptors mediating cell adhesion. Therefore, on the one hand, Cp modifications lead to loss of enzymatic activity, while on the other hand, these alterations confer gain of function to Cp. In fact, deamidated Cp binds to integrins and triggers intracellular signaling on choroid plexus epithelial cells, changing cell functioning. Working in concert with the oxidative environment, Cp deamidation could reach different target cells in the brain, altering their physiology and causing detrimental effects, which might contribute to the pathological mechanism.


Asunto(s)
Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Susceptibilidad a Enfermedades , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Secuencias de Aminoácidos , Aminoácidos/metabolismo , Animales , Encéfalo/metabolismo , Ceruloplasmina/química , Mutación con Ganancia de Función , Predisposición Genética a la Enfermedad , Humanos , Integrinas/metabolismo , Mutación con Pérdida de Función , Oligopéptidos/química
11.
Angew Chem Int Ed Engl ; 60(15): 8376-8379, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33460502

RESUMEN

The iron redox cycle in ferritins is not completely understood. Bacterioferritins are distinct from other ferritins in that they contain haem groups. It is acknowledged that the two iron motifs in bacterioferritins, the di-nuclear ferroxidase centre and the haem B group, play key roles in two opposing processes, iron sequestration and iron mobilisation, respectively, and the two redox processes are independent. Herein, we show that in Escherichia coli bacterioferritin, there is an electron transfer pathway from the haem to the ferroxidase centre suggesting a new role(s) haem might play in bacterioferritins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ceruloplasmina/metabolismo , Grupo Citocromo b/metabolismo , Ferritinas/metabolismo , Hemo/metabolismo , Proteínas Bacterianas/química , Ceruloplasmina/química , Grupo Citocromo b/química , Transporte de Electrón , Escherichia coli/química , Escherichia coli/metabolismo , Ferritinas/química , Hemo/química
12.
J Biol Chem ; 295(46): 15511-15526, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-32878987

RESUMEN

Encapsulated ferritins belong to the universally distributed ferritin superfamily, whose members function as iron detoxification and storage systems. Encapsulated ferritins have a distinct annular structure and must associate with an encapsulin nanocage to form a competent iron store that is capable of holding significantly more iron than classical ferritins. The catalytic mechanism of iron oxidation in the ferritin family is still an open question because of the differences in organization of the ferroxidase catalytic site and neighboring secondary metal-binding sites. We have previously identified a putative metal-binding site on the inner surface of the Rhodospirillum rubrum encapsulated ferritin at the interface between the two-helix subunits and proximal to the ferroxidase center. Here we present a comprehensive structural and functional study to investigate the functional relevance of this putative iron-entry site by means of enzymatic assays, MS, and X-ray crystallography. We show that catalysis occurs in the ferroxidase center and suggest a dual role for the secondary site, which both serves to attract metal ions to the ferroxidase center and acts as a flow-restricting valve to limit the activity of the ferroxidase center. Moreover, confinement of encapsulated ferritins within the encapsulin nanocage, although enhancing the ability of the encapsulated ferritin to undergo catalysis, does not influence the function of the secondary site. Our study demonstrates a novel molecular mechanism by which substrate flux to the ferroxidase center is controlled, potentially to ensure that iron oxidation is productively coupled to mineralization.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ceruloplasmina/metabolismo , Metales/metabolismo , Rhodospirillum rubrum/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Dominio Catalítico , Ceruloplasmina/química , Ceruloplasmina/genética , Cristalografía por Rayos X , Hierro/química , Hierro/metabolismo , Metales/química , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Conformación Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Zinc/química , Zinc/metabolismo
13.
Biochim Biophys Acta Gen Subj ; 1864(11): 129700, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32798636

RESUMEN

BACKGROUND: The mechanism of iron oxidation and core formation in homopolymeric H-type ferritins has been extensively studied in-vitro, so has the reductive mobilization of iron from the inorganic iron(III) core. However, neither process is well-understood in-vivo despite recent scientific advances. SCOPE OF REVIEW: Here, we provide a summary of our current understanding of iron mineralization and iron core dissolution in homopolymeric H-type ferritins and highlight areas of interest and further studies that could answer some of the outstanding questions of iron metabolism. MAJOR CONCLUSIONS: The overall iron oxidation mechanism in homopolymeric H-type ferritins from vertebrates (i.e. human H and frog M ferritins) is similar, despite nuances in the individual oxidation steps due to differences in the iron ligand environments inside the three fold channels, and at the dinuclear ferroxidase centers. Ferrous cations enter the protein shell through hydrophilic channels, followed by their rapid oxidization at di­iron centers. Hydrogen peroxide produced during iron oxidation can react with additional iron(II) at ferroxidase centers, or at separate sites, or possibly on the surface of the mineral core. In-vitro ferritin iron mobilization can be achieved using a variety of reducing agents, but in-vivo iron retrieval may occur through a variety of processes, including proteolytic degradation, auxiliary iron mobilization mechanisms involving physiological reducing agents, and/or oxidoreductases. GENERAL SIGNIFICANCE: This review provides important insights into the mechanisms of iron oxidation and mobilization in homopolymeric H-type ferritins, and different strategies in maintaining iron homeostasis.


Asunto(s)
Apoferritinas/metabolismo , Hierro/metabolismo , Animales , Apoferritinas/química , Transporte Biológico , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Ferritinas/química , Ferritinas/metabolismo , Humanos , Modelos Moleculares , Oxidación-Reducción , Proteolisis
14.
Chemistry ; 26(22): 4884, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32297426

RESUMEN

Invited for the cover of this issue is the group of Ulrich Schwaneberg at the Institute of Biotechnology, RWTH-Aachen University and DWI Lebniz Institute of Interactive Materials. The picture calls for special attention to be paid to the extra Cu binding site of Copper efflux Oxidase (CueO), due to its predominant function in tuning the electrocatalytic kinetics towards oxygen reduction. Read the full text of the article at 10.1002/chem.201905598.


Asunto(s)
Ceruloplasmina/metabolismo , Lacasa/química , Oxidorreductasas/química , Sitios de Unión , Ceruloplasmina/química , Transporte de Electrón , Proteínas de Escherichia coli/química , Cinética , Oxidación-Reducción , Oxidorreductasas/metabolismo
15.
FEBS Open Bio ; 10(7): 1219-1229, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32170832

RESUMEN

The DNA-binding protein from starved cells (Dps) is found in a wide range of microorganisms, and it has been well characterized. However, little is known about Dps proteins from nonheterocystous filamentous cyanobacteria. In this study, a Dps protein from the thermophilic nonheterocystous filamentous cyanobacterium Thermoleptolyngbya sp. O-77 (TlDps1) was purified and characterized. PAGE and CD analyses of TlDps1 demonstrated that it had higher thermostability than previously reported Dps proteins. X-ray crystallographic analysis revealed that TlDps1 possessed His-type ferroxidase centers within the cavity and unique metal-binding sites located on the surface of the protein, which presumably contributed to its exceedingly high thermostability.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ceruloplasmina/metabolismo , Cianobacterias/química , Proteínas de Unión al ADN/metabolismo , Histidina/metabolismo , Oligoelementos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Sitios de Unión , Ceruloplasmina/química , Cristalografía por Rayos X , Cianobacterias/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Histidina/química , Modelos Moleculares , Conformación Proteica , Temperatura , Oligoelementos/química
16.
Chem Commun (Camb) ; 56(23): 3417-3420, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32090213

RESUMEN

Encapsulated ferritins (EncFtn) are a recently characterised member of the ferritin superfamily. EncFtn proteins are sequestered within encapsulin nanocompartments and form a unique biological iron storage system. Here, we use native mass spectrometry and hydrogen-deuterium exchange mass spectrometry to elucidate the metal-mediated assembly pathway of EncFtn.


Asunto(s)
Ceruloplasmina/química , Ferritinas/química , Espectrometría de Masas/métodos , Myxococcales/enzimología , Multimerización de Proteína
17.
Chemistry ; 26(22): 4974-4979, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-31985091

RESUMEN

Copper efflux oxidase (CueO) from Escherichia coli is a special bacterial laccase due to its fifth copper binding site. Herein, it is discovered that the fifth Cu occupancy plays a crucial and favorable role of electron relay in bioelectrocatalytic oxygen reduction. By substituting the residues at the four coordinated positions of the fifth Cu, 11 beneficial variants are identified with ≥2.5-fold increased currents at -250 mV (up to 6.13 mA cm-2 ). Detailed electrocatalytic characterization suggests the microenvironment of the fifth Cu binding site governs the electrocatalytic current of CueO. Additionally, further electron transfer analysis assisted by molecular dynamics (MD) simulation demonstrates that an increase in localized structural stability and a decrease of distance between the fifth Cu and the T1 Cu are two main factors contributing to the improved kinetics of CueO variants. It may guide a novel way to tailor laccases and perhaps other oxidoreductases for bioelectrocatalytic applications.


Asunto(s)
Ceruloplasmina/metabolismo , Lacasa/química , Oxidorreductasas/química , Sitios de Unión , Ceruloplasmina/química , Transporte de Electrón , Proteínas de Escherichia coli/química , Cinética , Oxidación-Reducción , Oxidorreductasas/metabolismo
18.
Dalton Trans ; 49(5): 1545-1554, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31930254

RESUMEN

Ferritins are multimers comprised of 4 α-helical bundle monomers that co-assemble to form protein shells surrounding an approximately spherical internal cavity. The assembled multimers acquire Fe2+ from their surroundings by utilising channels that penetrate the protein for the transportation of iron to diiron catalytic centres buried within the monomeric units. Here oxidation of the substrate to Fe3+ is coupled to the reduction of O2 and/or peroxide to yield the precursor to a ferric oxy hydroxide mineral that is stored within the internal cavity. The rhombic dodecahedral quaternary structure results in channels of 4-fold and 3-fold symmetry, located at the vertices, which are common to all 24mer-ferritins. Ferritins isolated from higher eukaryotes have been demonstrated to take up Fe2+via the 3-fold channels. One of the defining features of ferritins isolated from prokaryotes is the presence of a further 24 channels, the B-channels, and these are thought to play an important role in Fe2+ uptake in this sub-family. SynFtn is an unusual ferritin isolated from the marine cyanobacterium Synechococcus CC9311. The reported structure of SynFtn derived from Fe2+ soaked crystals revealed the presence of a fully hydrated Fe2+ associated with three aspartate residues (Asp137 from each of the three symmetry related subunits) within each three-fold channel, suggesting that it might be the route for Fe2+ entry. Here, we present structural and spectro-kinetic data on two variants of SynFtn, D137A and E62A, designed to assess this possibility. Glu62 is equivalent to residues demonstrated to be important in the transfer of iron from the inner exit of the 3-fold channel to the catalytic centre in animal ferritins. As expected replacing Asp137 with a non-coordinating residue eliminated rapid iron oxidation by SynFtn. In contrast the rate of mineral core formation was severely impaired whilst the rate of iron transit into the catalytic centre was largely unaffected upon introducing a non-coordinating residue in place of Glu62 suggesting a role for this residue in release of the oxidised product. The identification of these two residues in SynFtn maps out major routes for Fe2+ entry to, and exit from, the catalytic ferroxidase centres.


Asunto(s)
Ceruloplasmina/metabolismo , Ferritinas/metabolismo , Compuestos Ferrosos/metabolismo , Células Procariotas/metabolismo , Synechococcus/química , Biocatálisis , Dominio Catalítico , Ceruloplasmina/química , Espectroscopía de Resonancia por Spin del Electrón , Ferritinas/química , Ferritinas/aislamiento & purificación , Compuestos Ferrosos/química , Modelos Moleculares , Células Procariotas/química , Synechococcus/metabolismo
19.
Rev. Fac. Cienc. Méd. Univ. Cuenca ; 37(3): 53-62, dic. 2019. ilus, tab
Artículo en Español | LILACS | ID: biblio-1100437

RESUMEN

La enfermedad de Wilson es una condición genética autosómica recesiva poco frecuente. Se ha identificado el gen ATP7B como el que codifica la proteína transportadora de cobre y su deficiencia lleva al acúmulo del metal en el cerebro, hígado y otros órganos vitales. Su diagnóstico clínico precoz es esencial para mejorar la calidad de vida del paciente. A continuación, se presenta el caso de un paciente de 20 años, masculino, con un cuadro clínico de 2 años de evolución de desinhibición, impulsividad, anartria y apraxia de la marcha, movimientos distónicos faciales y en 4 extremidades. Al examen físico se evidenció el anillo de Kayser Flescher a nivel ocular. En Resonancia Magnética Encefálica hiperintensidad en ganglios de la base y mesencéfalo en T2. Ceruloplasmina en suero 4.08 mg/dL. Cobre sérico 26.03ug/dL y cobre en orina de 24 horas 224.30ug/ 24h. Se confirma el diagnóstico de Enfermedad de Wilson, tratándose con D- Penicilamina, evidenciándose una evolución adecuada, con mejoría notable del cuadro neurológico. El tratamiento precoz permite una evolución favorable temprana del paciente, disminuyendo las secuelas neurológicas secundarias a la enfermedad; de ahí la importancia del reporte del presente caso.(AU)


BackgroundWilson's disease is a rare autosomal recessive genetic condition. The ATP7B gene has been identified as the one that encodes the copper transport protein and its deficiency leads to the accumulation of metal in the brain, liver and other vital organs. Your early clinical diagnosis is essential to improve the quality of life of the patient. Following we present the clinical case of a 20-year-old male patient who since 2 years ago, presented disinhibition, impulsivity, anartria and gait apraxia, facial dystonic movements and in extremities. To the physical exam, Kayser Flescher ring was present. In Brain Magnetic Resonance hyperintensity in Basal Ganglia and Midbrain. Serum Ceruloplasmin 4.08. Serum Copper 26.03. Urinary Cupper 224.30. The diagnosis of Wilson's disease is confirmed, treating with D-Penicillamine, evidencing an adequate evolution, with notable improvement of the neurological symptoms. Early treatment allows a favorable early evolution of the patient, reducing the neurological sequelae secondary to the disease; so that the importance of the report of this case.(AU)


Asunto(s)
Humanos , Masculino , Adulto , ATPasas Transportadoras de Cobre/análisis , Degeneración Hepatolenticular/complicaciones , Degeneración Hepatolenticular/diagnóstico por imagen , Ceruloplasmina/química
20.
PLoS One ; 14(8): e0218300, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31369577

RESUMEN

Dps proteins (DNA-binding proteins from starved cells) have been found to detoxify H2O2. At their catalytic centers, the ferroxidase center (FOC), Dps proteins utilize Fe2+ to reduce H2O2 and therefore play an essential role in the protection against oxidative stress and maintaining iron homeostasis. Whereas most bacteria accommodate one or two Dps, there are five different Dps proteins in Nostoc punctiforme, a phototrophic and filamentous cyanobacterium. This uncommonly high number of Dps proteins implies a sophisticated machinery for maintaining complex iron homeostasis and for protection against oxidative stress. Functional analyses and structural information on cyanobacterial Dps proteins are rare, but essential for understanding the function of each of the NpDps proteins. In this study, we present the crystal structure of NpDps4 in its metal-free, iron- and zinc-bound forms. The FOC coordinates either two iron atoms or one zinc atom. Spectroscopic analyses revealed that NpDps4 could oxidize Fe2+ utilizing O2, but no evidence for its use of the oxidant H2O2 could be found. We identified Zn2+ to be an effective inhibitor of the O2-mediated Fe2+ oxidation in NpDps4. NpDps4 exhibits a FOC that is very different from canonical Dps, but structurally similar to the atypical one from DpsA of Thermosynechococcus elongatus. Sequence comparisons among Dps protein homologs to NpDps4 within the cyanobacterial phylum led us to classify a novel FOC class: the His-type FOC. The features of this special FOC have not been identified in Dps proteins from other bacterial phyla and it might be unique to cyanobacterial Dps proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ceruloplasmina/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Hierro/metabolismo , Nostoc/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Ceruloplasmina/química , Cristalografía por Rayos X , Modelos Moleculares , Nostoc/crecimiento & desarrollo , Oxidación-Reducción , Estrés Oxidativo , Conformación Proteica , Multimerización de Proteína , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA