Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.158
Filtrar
1.
Cell Commun Signal ; 22(1): 315, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849890

RESUMEN

BACKGROUND: Aberrant inflammatory responses drive the initiation and progression of various diseases, and hyperactivation of NLRP3 inflammasome is a key pathogenetic mechanism. Pharmacological inhibitors of NLRP3 represent a potential therapy for treating these diseases but are not yet clinically available. The natural product butein has excellent anti-inflammatory activity, but its potential mechanisms remain to be investigated. In this study, we aimed to evaluate the ability of butein to block NLRP3 inflammasome activation and the ameliorative effects of butein on NLRP3-driven diseases. METHODS: Lipopolysaccharide (LPS)-primed bone-marrow-derived macrophages were pretreated with butein and various inflammasome stimuli. Intracellular potassium levels, ASC oligomerization and reactive oxygen species production were also detected to evaluate the regulatory mechanisms of butein. Moreover, mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis were used to test whether butein has protective effects on these NLRP3-driven diseases. RESULTS: Butein blocks NLRP3 inflammasome activation in mouse macrophages by inhibiting ASC oligomerization, suppressing reactive oxygen species production, and upregulating the expression of the antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2). Importantly, in vivo experiments demonstrated that butein administration has a significant protective effect on the mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis. CONCLUSION: Our study illustrates the connotation of homotherapy for heteropathy, i.e., the application of butein to broaden therapeutic approaches and treat multiple inflammatory diseases driven by NLRP3.


Asunto(s)
Chalconas , Inflamasomas , Lipopolisacáridos , Macrófagos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Chalconas/farmacología , Chalconas/uso terapéutico , Ratones , Especies Reactivas de Oxígeno/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Lipopolisacáridos/farmacología , Masculino , Modelos Animales de Enfermedad , Colitis/inducido químicamente , Colitis/patología , Colitis/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/patología
2.
Phytomedicine ; 130: 155789, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38824826

RESUMEN

BACKGROUND: Bacteria within biofilms are thousand times more resistant to antibiotics. Neuraminidase is a crucial enzyme for bacterial adhesion and biofilm formation, it hydrolyzes glycosidic residue of glycoproteins, glycolipids, and oligosaccharides. Coreopsis lanceolata L. flowers may have a significant potential of bacterial neuraminidase (BNA) inhibition because of high natural abundance of chalcones. PURPOSE: The investigation of bacterial biofilm inhibitors has emerged as a novel therapeutic strategy against antibiotic resistance. Therefore, individual chalcones were isolated from C. lanceolata and their capacity to inhibit BNA and formation of Escherichia coli biofilm were evaluated. METHODS: Different chromatographic techniques were used to isolate the compounds (1-12). Enzyme inhibition and detailed kinetic behavior of compounds was determined by estimation of kinetic parameters (Michaelis-Menten constants (Km), maximum velocity (Vmax), dissociation constant for binding with the free enzyme (KI) and enzyme-substate complex (KIS)). Binding affinities (KSV) and binding modes of inhibitors were elucidated by fluorescence quenching and molecular docking, respectively. The natural abundance of chalcones was established through UPLC-Q-TOF/MS. The most potent inhibitor (1) was tested for its ability to inhibit the formation of E. coli biofilm, which was examined by crystal violet assay, scanning electron microscope (SEM) and confocal laser scanning microscope (CLSM). RESULTS: A series of eight chalcones (1-8) and four chalcone glucosides (9-12), inhibited BNA in a dose-dependent manner with IC50 of 8.3 ∼ 77.0 µM. The most potent chalcones were butein (1, IC50 = 8.3 µM) and its glucoside 9 (IC50 = 13.8 µM). The aglycones (1-8) showed non-competitive inhibition, while chalcone glucosides (9-12) displayed a mixed type I (KI < KIS). Inhibitory behaviors were doubly confirmed by KSV and matched with tendency of IC50. The functional group responsible for BNA inhibition were disclosed as 4'-hydroxyl group on B-ring by structure activity relationship (SAR) and molecular docking experiments. Butein (1) suppressed E. coli biofilm formation by > 50 % at 100 µM according to crystal violet assay, which was confirmed by SEM and CLSM imaging. CONCLUSION: The results showed that chalcones (1-8) and chalcone glucosides (9-12), metabolites isolated from the flowers of C. lanceolata, had BNA inhibitory and antibiofilm formation effect on E. coli.


Asunto(s)
Antibacterianos , Biopelículas , Chalconas , Coreopsis , Escherichia coli , Flores , Simulación del Acoplamiento Molecular , Neuraminidasa , Biopelículas/efectos de los fármacos , Chalconas/farmacología , Chalconas/química , Flores/química , Neuraminidasa/antagonistas & inhibidores , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Coreopsis/química , Cinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Extractos Vegetales/química
3.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891840

RESUMEN

Chalcone synthase (CHS) and chalcone isomerase (CHI) catalyze the first two committed steps of the flavonoid pathway that plays a pivotal role in the growth and reproduction of land plants, including UV protection, pigmentation, symbiotic nitrogen fixation, and pathogen resistance. Based on the obtained X-ray crystal structures of CHS, CHI, and chalcone isomerase-like protein (CHIL) from the same monocotyledon, Panicum virgatum, along with the results of the steady-state kinetics, spectroscopic/thermodynamic analyses, intermolecular interactions, and their effect on each catalytic step are proposed. In addition, PvCHI's unique activity for both naringenin chalcone and isoliquiritigenin was analyzed, and the observed hierarchical activity for those type-I and -II substrates was explained with the intrinsic characteristics of the enzyme and two substrates. The structure of PvCHS complexed with naringenin supports uncompetitive inhibition. PvCHS displays intrinsic catalytic promiscuity, evident from the formation of p-coumaroyltriacetic acid lactone (CTAL) in addition to naringenin chalcone. In the presence of PvCHIL, conversion of p-coumaroyl-CoA to naringenin through PvCHS and PvCHI displayed ~400-fold increased Vmax with reduced formation of CTAL by 70%. Supporting this model, molecular docking, ITC (Isothermal Titration Calorimetry), and FRET (Fluorescence Resonance Energy Transfer) indicated that both PvCHI and PvCHIL interact with PvCHS in a non-competitive manner, indicating the plausible allosteric effect of naringenin on CHS. Significantly, the presence of naringenin increased the affinity between PvCHS and PvCHIL, whereas naringenin chalcone decreased the affinity, indicating a plausible feedback mechanism to minimize spontaneous incorrect stereoisomers. These are the first findings from a three-body system from the same species, indicating the importance of the macromolecular assembly of CHS-CHI-CHIL in determining the amount and type of flavonoids produced in plant cells.


Asunto(s)
Aciltransferasas , Liasas Intramoleculares , Liasas Intramoleculares/metabolismo , Liasas Intramoleculares/química , Aciltransferasas/metabolismo , Aciltransferasas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Flavonoides/metabolismo , Flavonoides/química , Cinética , Flavanonas/química , Flavanonas/metabolismo , Chalconas/química , Chalconas/metabolismo , Especificidad por Sustrato , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular , Modelos Moleculares , Unión Proteica , Conformación Proteica
4.
Int J Mol Sci ; 25(11)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38892288

RESUMEN

This study demonstrated the anticancer efficacy of chalcones with indole moiety (MIPP, MOMIPP) in fibrosarcoma cells for the first time. The results showed that MIPP and MOMIPP reduced the viability of HT-1080 cells in a concentration-dependent manner. MOMIPP was more active than MIPP in HT-1080 cells, showing lower IC50 values (3.67 vs. 29.90 µM). Both compounds at a concentration of 1 µM induced apoptosis in HT-1080 cells, causing death strictly related to caspase activation, as cell viability was restored when the caspase inhibitor Z-VAD was added. Reactive oxygen species production was approximately 3-fold higher than in control cells, and cotreatment with the inhibitor of mitochondrial ATPase oligomycin diminished this effect. Such effects were also reflected in mitochondrial dysfunction, including decreased membrane potential. Interestingly, the compounds that were studied caused massive vacuolization in HT-1080 cells. Immunocytochemical staining and TEM analysis showed that HT-1080 cells exhibited increased expression of the LC3-II protein and the presence of autophagosomes with a double membrane, respectively. Both compounds induced apoptosis, highlighting a promising link between autophagy and apoptosis. This connection could be a new target for therapeutic strategies to overcome chemoresistance, which is a significant cause of treatment failure and tumour recurrence in fibrosarcoma following traditional chemotherapy.


Asunto(s)
Apoptosis , Autofagia , Chalconas , Fibrosarcoma , Indoles , Especies Reactivas de Oxígeno , Humanos , Apoptosis/efectos de los fármacos , Fibrosarcoma/tratamiento farmacológico , Fibrosarcoma/metabolismo , Fibrosarcoma/patología , Autofagia/efectos de los fármacos , Indoles/farmacología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Chalconas/farmacología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antineoplásicos/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
5.
Mol Pharm ; 21(7): 3330-3342, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38875185

RESUMEN

The aberrant assembly of amyloid-ß (Aß) is implicated in Alzheimer's disease (AD). Recent clinical outcomes of Aß-targeted immunotherapy reinforce the notion that clearing Aß burden is a potential therapeutic approach for AD. Herein, to develop drug candidates for chemically driven clearance of Aß aggregates, we synthesized 51 novel polyfunctionalized furo[2,3-b:4,5-b']dipyridine-chalcone hybrid compounds. After conducting two types of cell-free anti-Aß functional assays, Aß aggregation prevention and Aß aggregate clearance, we selected YIAD-0336, (E)-8-((1H-pyrrol-2-yl)methylene)-10-(4-chlorophenyl)-2,4-dimethyl-7,8-dihydropyrido[3',2':4,5]furo[3,2-b]quinolin-9(6H)-one, for further in vivo investigations. As YIAD-0336 exhibited a low blood-brain barrier penetration profile, it was injected along with aggregated Aß directly into the intracerebroventricular region of ICR mice and ameliorated spatial memory in Y-maze tests. Next, YIAD-0336 was orally administered to 5XFAD transgenic mice with intravenous injections of mannitol, and YIAD-0336 significantly removed Aß plaques from the brains of 5XFAD mice. Collectively, YIAD-0336 dissociated toxic aggregates in the mouse brain and hence alleviated cognitive deterioration. Our findings indicate that chemically driven clearance of Aß aggregates is a promising therapeutic approach for AD.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Ratones , Péptidos beta-Amiloides/metabolismo , Chalcona/química , Chalcona/farmacología , Chalcona/análogos & derivados , Chalconas/química , Chalconas/farmacología , Chalconas/administración & dosificación , Masculino , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Humanos , Memoria/efectos de los fármacos , Agregado de Proteínas/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Aprendizaje por Laberinto/efectos de los fármacos , Piridinas/química , Piridinas/farmacología , Piridinas/administración & dosificación
6.
BMC Pharmacol Toxicol ; 25(1): 36, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38943212

RESUMEN

Chalcones and dihydrochalcones (DHCs) are important bioactive natural products (BNPs) isolated from traditional Chinese medicine. In this study, 13 chalcones were designed with the inspiration of Loureirin, a DHC extracted from Resina Draconis, and synthesized by classical Claisen-Schmidt reactions. Afterwards the reduction reactions were carried out to obtain the corresponding DHCs. Cytotoxicity assay indicated chalcones and DHCs possessed selective cytotoxicity against colorectal cancer (CRC) cells. The preliminary structure-activity relationships (SAR) of these compounds suggested the α, ß-unsaturated ketone of the chalcones were crucial for the anticancer activity. Interestingly, compounds 3d and 4c exhibited selective anticancer activity against CRC cell line HCT116 with IC50s of 8.4 and 17.9 µM but not normal cell. Moreover, 4c could also inhibit the migration and invasion of CRC cells. Mechanism investigations showed 4c could induce cell cycle G2/M arrest by regulating cell cycle-associated proteins and could also up-regulate Fas cell surface death receptor. The virtual docking further pointed out that compounds 3d and 4c could nicely bind to the Fas/FADD death domain complex (ID: 3EZQ). Furthermore, silencing of Fas significantly enhanced the proliferation of CRC cells and attenuated the cytotoxicity induced by 4c. These results suggested 4c exerted its anticancer activity possibly regulating cell cycle and Fas death receptor. In summary, this study investigated the anticancer activity and mechanism of Loureirin analogues in CRC, suggesting these compounds may warrant further investigation as promising anticancer drug candidates for the treatment of CRC.


Asunto(s)
Antineoplásicos , Chalconas , Neoplasias Colorrectales , Receptor fas , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Chalconas/farmacología , Chalconas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Receptor fas/metabolismo , Relación Estructura-Actividad , Células HCT116 , Simulación del Acoplamiento Molecular , Movimiento Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral
7.
Top Curr Chem (Cham) ; 382(3): 22, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937401

RESUMEN

Chalcone is a simple naturally occurring α,ß-unsaturated ketone with biological importance, which can also be easily synthesized in laboratories by reaction between two aromatic scaffolds. In plants, chalcones occur as polyphenolic compounds of different frameworks which are bioactive molecules that have been in traditional medicinal practice for many years. Chalcone-based lead molecules have been developed, possessing varied potentials such as antimicrobial, antiviral, anti-inflammatory, anticancer, anti-oxidant, antidiabetic, antihyperurecemic, and anti-ulcer effects. Chalcones contribute considerable fragments to give important heterocyclic molecules with therapeutic utilities targeting various diseases. These characteristic features have made chalcone a topic of interest among researchers and have attracted investigations into this widely applicable structure. This review highlights the extensive exploration carried out on the synthesis, biotransformations, chemical reactions, hybridization, and pharmacological potentials of chalcones, and aims to provide an extensive, thorough, and critical review of their importance, with emphasis on their properties, chemistry, and biomedical applications to boost future investigations into this potential scaffold in medicinal chemistry.


Asunto(s)
Chalcona , Química Farmacéutica , Chalcona/química , Chalcona/farmacología , Humanos , Chalconas/química , Chalconas/farmacología , Estructura Molecular , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinfecciosos/química , Antiinfecciosos/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología
8.
J Biochem Mol Toxicol ; 38(7): e23757, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38937960

RESUMEN

Anticancer strategies using natural products or derivatives are promising alternatives for cancer treatment. Here, we showed that licochalcone D (LCD), a natural flavonoid extracted from Glycyrrhiza uralensis Fisch, suppressed the growth of breast cancer cells, and was less toxic to MCF-10A normal breast cells. LCD-induced DNA damage, cell cycle arrest, and apoptosis in breast cancer cells. Furthermore, LCD potentiated tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced cytotoxicity. Mechanistically, LCD was revealed to reduce survival protein expression and to upregulate death receptor 5 (DR5) expressions. Silencing DR5 blocked the ability of LCD to sensitize cells to TRAIL-mediated apoptosis. LCD increased CCAAT/enhancer-binding protein homologous protein (CHOP) expression in breast cancer cells. Knockdown of CHOP attenuated DR5 upregulation and apoptosis triggered by cotreatment with LCD and TRAIL. Furthermore, LCD suppressed the phosphorylation of extracellular signal-regulated kinase and promoted the phosphorylation of c-Jun amino-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK). Pretreatment with JNK inhibitor SP600125 or p38 MAPK inhibitor SB203580 abolished the upregulation of DR5 and CHOP, and also attenuated LCD plus TRAIL-induced cleavage of poly(ADP-ribose) polymerase. Overall, our results show that LCD exerts cytotoxic effects on breast cancer cells and arguments TRAIL-mediated apoptosis by inhibiting survival protein expression and upregulating DR5 in a JNK/p38 MAPK-CHOP-dependent manner.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Chalconas , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Ligando Inductor de Apoptosis Relacionado con TNF , Factor de Transcripción CHOP , Regulación hacia Arriba , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/genética , Chalconas/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Femenino , Regulación hacia Arriba/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Factor de Transcripción CHOP/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células MCF-7 , Sistema de Señalización de MAP Quinasas/efectos de los fármacos
9.
Molecules ; 29(11)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38893517

RESUMEN

Isoliquiritigenin (ISL) is a chalcone that has shown great potential in the treatment of cancer. However, its relatively weak activity and low water solubility limit its clinical application. In this study, we designed and synthesized 21 amino acid ester derivatives of ISL and characterized the compounds using 1H NMR and 13C NMR. Among them, compound 9 (IC50 = 14.36 µM) had a better inhibitory effect on human cervical cancer (Hela) than ISL (IC50 = 126.5 µM), and it was superior to the positive drug 5-FU (IC50 = 33.59 µM). The mechanism of the action experiment showed that compound 9 could induce Hela cell apoptosis and autophagy through the PI3K/Akt/mTOR pathway.


Asunto(s)
Aminoácidos , Antineoplásicos , Apoptosis , Chalconas , Diseño de Fármacos , Ésteres , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Células HeLa , Aminoácidos/química , Aminoácidos/farmacología , Ésteres/química , Ésteres/farmacología , Ésteres/síntesis química , Apoptosis/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Relación Estructura-Actividad , Fosfatidilinositol 3-Quinasas/metabolismo , Autofagia/efectos de los fármacos , Estructura Molecular
10.
Phytomedicine ; 131: 155752, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38833947

RESUMEN

BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers for which effective drugs are urgently needed. Echinatin, a natural compound extracted from Glycyrrhiza plants, has shown promising antitumour effects. However, the efficacy and the direct target of echinatin in cSCC remain unclear. PURPOSE: This study conducted a systematic investigation of the antitumour effects of echinatin on cSCC and the underlying mechanisms involved. STUDY DESIGN AND METHODS: Three cSCC cell lines, a xenograft model, and a UV-induced cSCC mouse model were used to investigate the potential protective effects of echinatin. The interactions between echinatin and glutathione S-transferase mu3 (GSTM3) and between echinatin and peroxiredoxin-2 (PRDX2) were evaluated by a proteome microarray assay, pull-down LC‒MS/MS analysis, surface plasmon resonance, and molecular docking. The potential mechanisms of GSTM3-mediated echinatin activity were analysed by using western blotting, lentivirus infection and small interfering RNA (siRNA) transfection. RESULTS: In this study, we found that echinatin inhibited the proliferation and migration of cSCC cells but had no cytotoxic effect on primary human keratinocytes. Furthermore, echinatin significantly inhibited tumour growth in vivo. Mechanistically, our data showed that echinatin could directly bind to GSTM3 and PRDX2. Notably, echinatin inhibited GSTM3 and PRDX2 levels by promoting their proteasomal degradation, which led to the disruption of ROS production. We then revealed that echinatin increased mitochondrial ROS production by inhibiting GSTM3. Moreover, echinatin triggered ferroptosis by inhibiting GSTM3-mediated ferroptosis negative regulation (FNR) proteins. In addition, echinatin regulated GSTM3-mediated ROS/MAPK signalling. CONCLUSION: Echinatin has good antitumour effects both in vitro and in vivo. Moreover, our findings indicate that GSTM3 and PRDX2 could function as viable targets of echinatin in cSCC. Consequently, echinatin represents a novel treatment for cSCC through the targeting of GSTM3-mediated ferroptosis.


Asunto(s)
Carcinoma de Células Escamosas , Ferroptosis , Glutatión Transferasa , Neoplasias Cutáneas , Ferroptosis/efectos de los fármacos , Animales , Neoplasias Cutáneas/tratamiento farmacológico , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Línea Celular Tumoral , Ratones , Glutatión Transferasa/metabolismo , Peroxirredoxinas/metabolismo , Antineoplásicos Fitogénicos/farmacología , Ratones Endogámicos BALB C , Proliferación Celular/efectos de los fármacos , Simulación del Acoplamiento Molecular , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Queratinocitos/efectos de los fármacos , Chalconas
11.
Ecotoxicol Environ Saf ; 280: 116560, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38865941

RESUMEN

Marine biofouling remains a huge concern for maritime industries and for environmental health. Although the current biocide-based antifouling coatings can prevent marine biofouling, their use has been associated with toxicity for the marine environment, being urgent to find sustainable alternatives. Previously, our research group has identified a prenylated chalcone (1) with promising antifouling activity against the settlement of larvae of the macrofouling species Mytilus galloprovincialis (EC50 = 16.48 µM and LC50 > 200 µM) and lower ecotoxicity when compared to Econea®, a commercial antifouling agent in use. Herein, a series of chalcone 1 analogues were designed and synthesized in order to obtain optimized antifouling compounds with improved potency while maintaining low ecotoxicity. Compounds 8, 15, 24, and 27 showed promising antifouling activity against the settlement of M. galloprovincialis larvae, being dihydrochalcone 27 the most potent. The effect of compound 24 was associated with the inhibition of acetylcholinesterase activity. Among the synthesized compounds, compound 24 also showed potent complementary activity against Navicula sp. (EC50 = 4.86 µM), similarly to the lead chalcone 1 (EC50 = 6.75 µM). Regarding the structure-activity relationship, the overall results demonstrate that the substitution of the chalcone of the lead compound 1 by a dihydrochalcone scaffold resulted in an optimized potency against the settlement of mussel larvae. Marine polyurethane (PU)-based coatings containing the best performed compound concerning anti-settlement activity (dihydrochalcone 27) were prepared, and mussel larvae adherence was reduced compared to control PU coatings.


Asunto(s)
Incrustaciones Biológicas , Larva , Mytilus , Animales , Incrustaciones Biológicas/prevención & control , Larva/efectos de los fármacos , Mytilus/efectos de los fármacos , Chalconas/farmacología , Chalconas/química , Relación Estructura-Actividad , Chalcona/farmacología , Chalcona/análogos & derivados , Chalcona/química , Desinfectantes/toxicidad , Desinfectantes/farmacología
12.
J Enzyme Inhib Med Chem ; 39(1): 2358934, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38904116

RESUMEN

Novel series of nitric oxide-releasing thiazolidine-2,4-diones (NO-TZD-3a-d,5,6) and 3,4,5-trimethoxychalcone-based multifunctional 1,4-dihydropyrimidines (CDHPM-10a-g) have been designed and synthesised as potent broad-spectrum anticancer agents with potential VEGFR-2 inhibition. The designed analogs were evaluated for their anticancer activities towards a full panel of NCI-60 tumour cell lines and CDHPM-10a-g emerged mean %inhibitions ranging from 76.40 to 147.69%. Among them, CDHPM-10e and CDHPM-10f demonstrated the highest MGI% of 147.69 and 140.24%, respectively. Compounds CDHPM-10a,b,d-f showed higher mean %inhibitory activity than the reference drug sorafenib (MGI% = 105.46%). Superiorly, the hybrid CDHPM-10e displayed the highest potencies towards all the herein tested subpanels of nine types of cancer with MGI50 of 1.83 µM. Also, it revealed potent cytostatic single-digit micromolar activity towards the herein examined cancer cell lines. The designed compounds CDHPM-10a-g were exposed as potent non-selective broad-spectrum anticancer agents over all NCI subpanels with an SI range of 0.66-1.97. In addition, the target analog CDHPM-10e revealed potency towards VEGFR-2 kinase comparable to that of sorafenib with a sub-micromolar IC50 value of 0.11 µM. Also, CDHPM-10e could effectively induce Sub-G1-phase arrest and prompt apoptosis via caspase and p53-dependent mechanisms. Furthermore, CDHPM-10e revealed significant anti-metastatic activity as detected by wound healing assay. The modelling study implies that CDHPM-10e overlaid well with sorafenib and formed a strong H-bond in the DFG binding domain. The ADMET studies hinted out that CDHPM-10e met Pfizer's drug-likeness criteria. The presented novel potent anticancer agent merits further devotion as a new lead product in developing more chalcone-based VEGFR-2 inhibitors.


Asunto(s)
Antineoplásicos , Proliferación Celular , Chalconas , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Proteínas Quinasas , Receptor 2 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Estructura Molecular , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Simulación del Acoplamiento Molecular
13.
Bioorg Med Chem ; 109: 117778, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38870714

RESUMEN

Indole based glycosides belong to the class of pharmacologically active molecules and found in diverse natural compounds. Herein, we report the synthesis of 1,2,3-triazole bridged chirally enriched diverse indole-chalcones based glycohybrids. Three series of glycohybrids were designed and efficiently synthesized using d-glucose, d-galactose and d-mannose derived 1-azido glycosides. The reactions sequence involved were, the synthesis of indole derived chalcones which were formed via Claisen-Schmidt condensation reaction and subsequently N-propargylation which leads to the production of N-propargylated indole-chalcones. The N-propargylated indole-chalcones get transformed into 1,2,3-triazole bridged indole-chalcone based glycohybrids by reacting with 1-azido sugar glycosides under click-chemistry reaction conditions. Further, the biological activity of synthesized glycohybrids (n = 27) was assessed in-vitro against MDA-MB231, MCF-7, MDA-MB453 cancer, and MCF-10A normal cell lines. The selected compounds showed potent anti-oncogenic properties against MCF-7 and MDA-MB231 breast cancer cell line with IC50 values of 1.05 µM and 11.40 µM respectively, with very good selectivity index (SI > 161). The active compounds show better binding affinity as compared to co-crystallized inhibitor 1-(tert-butyl)-3-(p-tolyl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine (PP1) with HCK (PTKs) proteins in molecular docking studies.


Asunto(s)
Antineoplásicos , Chalconas , Ensayos de Selección de Medicamentos Antitumorales , Indoles , Humanos , Indoles/química , Indoles/farmacología , Indoles/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Chalconas/química , Chalconas/farmacología , Chalconas/síntesis química , Relación Estructura-Actividad , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Estructura Molecular , Glicósidos/química , Glicósidos/síntesis química , Glicósidos/farmacología , Simulación del Acoplamiento Molecular , Relación Dosis-Respuesta a Droga
14.
Eur J Pharm Sci ; 199: 106820, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38821248

RESUMEN

Obesity is a global public health problem and is related with fatal diseases such as cancer and cardiovascular and metabolic diseases. Medical and lifestyle-related strategies to combat obesity have their limitations. White adipose tissue (WAT) browning is a promising strategy for increasing energy expenditure in individuals with obesity. Uncoupling protein 1 (UCP1) drives WAT browning. We previously screened natural products that enable induction of Ucp1 and demonstrated that these natural products induced WAT browning and increased energy expenditure in mice with diet-induced obesity. In this study, we aimed to extensively optimise the structure of compound 1, previously shown to promote WAT browning. Compound 3 s exhibited a significantly higher ability to induce Ucp1 in white and brown adipocytes than did compound 1. A daily injection of compound 3 s at 5 mg/kg prevented weight gain by 13.6 % in high-fat diet-fed mice without any toxicological observation. In addition, compound 3 s significantly improved glucose homeostasis, decreased serum triacylglycerol levels, and reduced total cholesterol and LDL cholesterol levels, without altering dietary intake or physical activity. Pharmaceutical properties such as solubility, lipophilicity, and membrane permeability as well as metabolic stability, half-life (T1/2), and blood exposure ratio of i.p to i.v were significantly improved in compound 3 s when compared with those in compound 1. Regarding the mode of action of WAT browning, the induction of Ucp1 and Prdm4 by compounds 1 and 3 s was dependent on Akt1 in mouse embryonic fibroblasts. Therefore, this study suggests the potential of compound 3 s as a therapeutic agent for individuals with obesity and related metabolic diseases, which acts through the induction of WAT browning as well as brown adipose tissue activation.


Asunto(s)
Dieta Alta en Grasa , Metabolismo Energético , Resistencia a la Insulina , Ratones Endogámicos C57BL , Obesidad , Proteína Desacopladora 1 , Animales , Dieta Alta en Grasa/efectos adversos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Metabolismo Energético/efectos de los fármacos , Masculino , Ratones , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Chalconas/farmacología , Ratones Obesos , Fármacos Antiobesidad/farmacología , Células 3T3-L1
15.
Colloids Surf B Biointerfaces ; 240: 113976, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38795585

RESUMEN

In this study, UV-vis spectroscopy was employed to investigate the interaction between formylphenoxyacetic acid (FPAA) and its derivatives (chalcone and flavones) with ionic surfactants (SDS, CTAB, and DTAB) in different physiological environments. Changes in the physiochemical properties of FPAA chalcone and flavones including binding constants, partitioning constants, and Gibbs free energy were observed which were influenced by the presence of ionic surfactants computed using mathematical models. The solubilization of the targeted compounds in the ionic surfactants was determined through the binding constant (Kb). The results of the present study indicated that electrostatic interactions played a significant role in the solubilization of the targeted compounds in SDS, CTAB, and DTAB. At pH 4.1, FPAA chalcone exhibited stronger binding affinity with SDS compared to CTAB and DTAB. However, at pH 7.4, chalcone showed stronger binding with DTAB compared to SDS, while negligible interaction with CTAB was observed at pH 7.4. The flavones demonstrated stronger binding with DTAB at pH 7.4 compared to SDS and CTAB and it exhibited strong bonding with CTAB at pH 4.1. The negative values of the Gibbs free energy for binding (ΔGb˚) and partitioning (ΔGp˚) constants displayed the spontaneity of the process. However, FPAA chalcone with SDS and FPAA flavones with DTAB furnished positive ΔGb˚, indicating a non-spontaneous process.


Asunto(s)
Flavonas , Solubilidad , Tensoactivos , Tensoactivos/química , Flavonas/química , Flavonas/metabolismo , Concentración de Iones de Hidrógeno , Cetrimonio/química , Termodinámica , Iones/química , Chalcona/química , Chalconas/química , Chalconas/metabolismo , Dodecil Sulfato de Sodio/química , Electricidad Estática
16.
Phytochemistry ; 224: 114149, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38763314

RESUMEN

Farnesylated chalcones were favored by researchers due to their different biological activities. However, only five naturally occurring farnesylated chalcones were described in the literature until now. Here, the farnesylation of six chalcones by the Aspergillus terreus aromatic prenyltransferase AtaPT was reported. Fourteen monofarnesylated chalcones (1F1-1F5, 2F1-2F3, 3F1, 3F2, 4F1, 4F2, 5F1, 6F1, and 6F2) and a difarnesylated product (2F3) were obtained, enriching the diversity of natural farnesylated chalcones significantly. Ten of them are C-farnesylated products, which complement O-farnesylated chalcones by chemical synthesis. Fourteen products have not been reported prior to this study. Nine of the produced compounds (1F2-1F5, 2F1-2F3, 5F1, and 6F1) exhibited inhibitory effect on α-glucosidase with IC50 values ranging from 24.08 ± 1.44 to 190.0 ± 0.28 µM. Among them, compounds 2F3 with IC50 value at 24.08 ± 1.44 µM and 1F4 with IC50 value at 30.09 ± 0.59 µM showed about 20 times stronger than the positive control acarbose with an IC50 at 536.87 ± 24.25 µM in α-glucosidase inhibitory assays.


Asunto(s)
Aspergillus , Chalconas , Dimetilaliltranstransferasa , Dimetilaliltranstransferasa/metabolismo , Dimetilaliltranstransferasa/química , Dimetilaliltranstransferasa/antagonistas & inhibidores , Chalconas/química , Chalconas/farmacología , Chalconas/metabolismo , Aspergillus/enzimología , Aspergillus/química , Estructura Molecular , Prenilación , Relación Estructura-Actividad , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , alfa-Glucosidasas/metabolismo , alfa-Glucosidasas/química , Relación Dosis-Respuesta a Droga
17.
Bioorg Chem ; 149: 107498, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38805911

RESUMEN

Chemotherapy toxicity and tumor multidrug resistance remain the main reasons for clinical treatment failure in cervical cancer. In this study, 79 novel chalcone derivatives were designed and synthesized using the principle of active substructure splicing with the parent nucleus of licorice chalcone as the lead compound and VEGFR-2 and P-gp as the target of action and their potentials for anticervical cancer activity were preliminarily evaluated. The results showed that the IC50 values of candidate compound B20 against HeLa and HeLa/DDP cells were 3.66 ± 0.10 and 4.35 ± 0.21 µΜ, respectively, with a resistance index (RI) of 1.18, which was significantly higher than that of the positive drug cisplatin (IC50:13.60 ± 1.63, 100.03 ± 7.94 µΜ, RI:7.36). In addition, B20 showed significant inhibitory activity against VEGFR-2 kinase and P-gp-mediated rhodamine 123 efflux, as well as the ability to inhibit the phosphorylation of VEGFR-2 and downstream PI3K/AKT signaling pathway proteins, inducing apoptosis, blocking cells in the S-phase, and inhibiting invasive migration and tubule generation by HUVEC cells. Acceptable safety was demonstrated in acute toxicity tests when B20 was at 200 mg/kg. In the nude mouse HeLa/DDP cell xenograft tumor model, the inhibition rate of transplanted tumors was 39.2 % and 79.2 % when B20 was at 10 and 20 mg/kg, respectively. These results suggest that B20 is a potent VEGFR-2 and P-gp inhibitor with active potential for treating cisplatin-resistant cervical cancer.


Asunto(s)
Antineoplásicos , Proliferación Celular , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias del Cuello Uterino , Humanos , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/patología , Neoplasias del Cuello Uterino/metabolismo , Femenino , Resistencia a Antineoplásicos/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Proliferación Celular/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química , Animales , Chalcona/química , Chalcona/farmacología , Chalcona/síntesis química , Células HeLa , Apoptosis/efectos de los fármacos , Ratones
18.
Eur J Pharmacol ; 975: 176644, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38754535

RESUMEN

Metabolic dysfunction-associated fatty liver disease is a metabolic disease caused by abnormal lipid accumulation in the liver. Excessive lipid accumulation results in liver inflammation and fibrosis. Previous studies have demonstrated that the chalcone licochalcone D, which is isolated from Glycyrrhiza inflata Batal, has anti-tumor and anti-inflammatory effects. The present study explored whether licochalcone D can regulate lipid accumulation in fatty liver cells. FL83B hepatocytes were incubated with oleic acid to establish a fatty liver cell model, and then treated with licochalcone D to evaluate the molecular mechanisms underlying the regulation of lipid metabolism. In addition, male C57BL/6 mice were fed a methionine/choline-deficient diet to induce an animal model of metabolic dysfunction-associated steatohepatitis (MASH) and given 5 mg/kg licochalcone D by intraperitoneal injection. In cell experiments, licochalcone D significantly reduced lipid accumulation in fatty liver cells and reduced sterol regulatory element-binding protein 1c expression, blocking fatty acid synthase production. Licochalcone D increased adipose triglyceride lipase and carnitine palmitoyltransferase 1 expression, enhancing lipolysis and fatty acid ß-oxidation, respectively. Licochalcone D also significantly increased SIRT-1 and AMPK phosphorylation, reducing acetyl-CoA carboxylase phosphorylation and inhibiting fatty acid synthesis. Licochalcone D also increased the fusion of autophagosomes and lysosomes to promote autophagy, reducing oil droplet accumulation in fatty liver cells. In the animal experiments, licochalcone D effectively reduced the number of lipid vacuoles and degree of fibrosis in liver tissue and inhibited liver inflammation. Thus, licochalcone D can improve MASH by reducing lipid accumulation, inhibiting inflammation, and increasing autophagy.


Asunto(s)
Autofagia , Chalconas , Hepatocitos , Metabolismo de los Lípidos , Lipogénesis , Ratones Endogámicos C57BL , Animales , Autofagia/efectos de los fármacos , Chalconas/farmacología , Lipogénesis/efectos de los fármacos , Masculino , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Ratones , Metabolismo de los Lípidos/efectos de los fármacos , Línea Celular , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado Graso/patología
19.
Nat Commun ; 15(1): 3962, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730247

RESUMEN

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.


Asunto(s)
Chalconas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adiponectina/metabolismo , Adiponectina/sangre , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Chalconas/uso terapéutico , Chalconas/farmacología , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Propionatos , Triglicéridos/sangre , Triglicéridos/metabolismo
20.
J Agric Food Chem ; 72(20): 11804-11819, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717061

RESUMEN

Apples (Malus × domestica Borkh.) and pears (Pyrus communis L.) are valuable crops closely related within the Rosaceae family with reported nutraceutical properties derived from secondary metabolites including phloridzin and arbutin, which are distinctive phenolic metabolites characterizing apples and pears, respectively. Here, we generated a de novo transcriptome assembly of an intergeneric hybrid between apple and pear, accumulating intermediate levels of phloridzin and arbutin. Combining RNA-seq, in silico functional annotation prediction, targeted gene expression analysis, and expression-metabolite correlations, we identified candidate genes for functional characterization, resulting in the identification of active arbutin synthases in the hybrid and parental genotypes. Despite exhibiting an active arbutin synthase in vitro, the natural lack of arbutin in apples is reasoned by the absence of the substrate and broad substrate specificity. Altogether, our study serves as the basis for future assessment of potential physiological roles of identified genes by genome editing of hybrids and pears.


Asunto(s)
Arbutina , Chalconas , Frutas , Malus , Proteínas de Plantas , Pyrus , Transcriptoma , Malus/genética , Malus/metabolismo , Malus/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Pyrus/genética , Pyrus/metabolismo , Pyrus/química , Arbutina/metabolismo , Arbutina/química , Frutas/genética , Frutas/metabolismo , Frutas/química , Chalconas/metabolismo , Chalconas/química , Regulación de la Expresión Génica de las Plantas , Hibridación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...