Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.302
Filtrar
1.
Nat Commun ; 15(1): 3962, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730247

RESUMEN

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.


Asunto(s)
Chalconas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adiponectina/metabolismo , Adiponectina/sangre , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Chalconas/uso terapéutico , Chalconas/farmacología , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Propionatos , Triglicéridos/sangre , Triglicéridos/metabolismo
2.
Drug Des Devel Ther ; 18: 1531-1546, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737331

RESUMEN

Purpose: Lung adenocarcinoma currently ranks the leading causes of cancer-related mortality worldwide. Many anti-inflammation herbs, like tetramethylpyrazine, have shown their anti-tumor potentials. Here, we evaluated the role of a novel chalcone derivative of tetramethylpyrazine ((E) -1- (E) -1- (2-hydroxy-5-chlorophenyl) -3- (3,5,6-trimethylpyrazin-2-yl) -2-propen-1, HCTMPPK) in lung adenocarcinoma. Methods: The effects of HCTMPPK on cell proliferation, apoptosis, and invasion were investigated by in-vitro assays, including CCK-8, colony formation assay, flow cytometry, transwell assay, and wound-healing assay. The therapeutic potential of HCTMPPK in vivo was evaluated in xenograft mice. To figure out the target molecules of HCTMPPK, a network pharmacology approach and molecular docking studies were employed, and subsequent experiments were conducted to confirm these candidate molecules. Results: HCTMPPK effectively suppressed the proliferative activity and migration, as well as enhanced the apoptosis of A549 cells in a concentration-dependent manner. Consistent with this, tumor growth was inhibited by HCTMPPK significantly in vivo. Regarding the mechanisms, HCTMPPK down-regulated Bcl-2 and MMP-9 and up-regulating Bax and cleaved-caspase-3. Subsequently, we identified 601 overlapping DEGs from LUAD patients in TCGA and GEO database. Then, 15 hub genes were identified by PPI network and CytoHubba. Finally, MELK was verified to be the HCTMPPK targeted site, through the molecular docking studies and validation experiments. Conclusion: Overall, our study indicates HCTMPPK as a potential MELK inhibitor and may be a promising candidate for the therapy of lung cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Regulación hacia Abajo , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Pulmonares , Pirazinas , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pirazinas/farmacología , Pirazinas/química , Proliferación Celular/efectos de los fármacos , Animales , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Chalcona/farmacología , Chalcona/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Ratones Desnudos , Ratones Endogámicos BALB C , Células A549 , Movimiento Celular/efectos de los fármacos , Chalconas/farmacología , Chalconas/química , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Células Tumorales Cultivadas
3.
Brain Res Bull ; 211: 110944, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38604377

RESUMEN

Ischemic stroke is a serious cerebrovascular condition. Isobavachalcone (ISO) has been documented to exhibit an anti-inflammatory effect across a variety of diseases; however, its protective impact on ischemic stroke remains unexplored. In this study, we evaluated the influence of ISO in both transient middle cerebral artery occlusion/reperfusion (tMCAO/R) rat models and oxygen-glucose deprivation/reperfusion (OGD/R) cell models. We observed that pretreatment with 50 mg/kg ISO diminished the volume of brain infarction, reduced brain edema, and ameliorated neurological deficits in rats. A reduction in Nissl bodies was noted in the tMCAO/R group, which was reversed following treatment with 50 mg/kg ISO. TUNEL/NeuN double staining revealed a decrease in TUNEL-positive cells in tMCAO/R rats treated with ISO. Furthermore, ISO treatment suppressed the expression of cleaved caspase-3 and BAX, while elevating the expression of BCL-2 in tMCAO/R rats. The levels of CD86 and iNOS were elevated in tMCAO/R rats; conversely, ISO treatment enhanced the expression of CD206 and Arg-1. Additionally, the expression of TNF-α, IL-6, and IL-1ß was elevated in tMCAO/R rats, whereas ISO treatment counteracted this effect. ISO treatment also increased the expression of TGF-ß and IL-10 in the ischemic penumbra of tMCAO/R rats. It was found that ISO treatment hindered microglial M1 polarization and favored M2 polarization. Histone Deacetylase 1 (HDAC1) is the downstream target protein of ISO, with ISO treatment resulting in decreased HDAC1 expression in both tMCAO/R rats and OGD/R-induced cells. Overexpression of HDAC1 was shown to promote microglial M1 polarization and inhibit M2 polarization in OGD/R+ISO cells. Overall, ISO treatment mitigated brain damage following ischemic stroke by promoting M2 polarization and attenuated ischemic injury by repressing HDAC1 expression.


Asunto(s)
Chalconas , Histona Desacetilasa 1 , Accidente Cerebrovascular Isquémico , Ratas Sprague-Dawley , Animales , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Masculino , Ratas , Histona Desacetilasa 1/metabolismo , Chalconas/farmacología , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Fármacos Neuroprotectores/farmacología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Modelos Animales de Enfermedad
4.
Int J Mol Sci ; 25(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612435

RESUMEN

This study presents the synthesis of four series of novel hybrid chalcones (20,21)a-g and (23,24)a-g and six series of 1,3,5-triazine-based pyrimido[4,5-b][1,4]diazepines (28-33)a-g and the evaluation of their anticancer, antibacterial, antifungal, and cytotoxic properties. Chalcones 20b,d, 21a,b,d, 23a,d-g, 24a-g and the pyrimido[4,5-b][1,4]diazepines 29e,g, 30g, 31a,b,e-g, 33a,b,e-g exhibited outstanding anticancer activity against a panel of 60 cancer cell lines with GI50 values between 0.01 and 100 µM and LC50 values in the range of 4.09 µM to >100 µM, several of such derivatives showing higher activity than the standard drug 5-fluorouracil (5-FU). On the other hand, among the synthesized compounds, the best antibacterial properties against N. gonorrhoeae, S. aureus (ATCC 43300), and M. tuberculosis were exhibited by the pyrimido[4,5-b][1,4]diazepines (MICs: 0.25-62.5 µg/mL). The antifungal activity studies showed that triazinylamino-chalcone 29e and triazinyloxy-chalcone 31g were the most active compounds against T. rubrum and T. mentagrophytes and A. fumigatus, respectively (MICs = 62.5 µg/mL). Hemolytic activity studies and in silico toxicity analysis demonstrated that most of the compounds are safe.


Asunto(s)
Chalconas , Isocianatos , Mycobacterium tuberculosis , Chalconas/farmacología , Antifúngicos/farmacología , Staphylococcus aureus , Antibacterianos/farmacología , Azepinas/farmacología , Fluorouracilo , Neisseria gonorrhoeae , Triazinas/farmacología
5.
Molecules ; 29(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38675640

RESUMEN

Chalcones are polyphenols that belong to the flavonoids family, known for their broad pharmacological properties. They have thus attracted the attention of chemists for their obtention and potential activities. In our study, a library of compounds from 2'-hydroxychalcone's family was first synthesized. A one-step mechanochemical synthesis via Claisen-Schmidt condensation reaction under ball mill conditions was studied, first in a model reaction between a 5'-fluoro-2'-hydroxyacetophenone and 3,4-dimethoxybenzaldehyde. The reaction was optimized in terms of catalysts, ratio of reagents, reaction time, and influence of additives. Among all assays, we retained the best one, which gave the highest yield of 96% when operating in the presence of 1 + 1 eq. of substituted benzaldehyde and 2 eq. of KOH under two grinding cycles of 30 min. Thus, this protocol was adopted for the synthesis of the selected library of 2'-hydroxychalcones derivatives. The biological activities of 17 compounds were then assessed against Plasmodium falciparum, Leishmania donovani parasite development, as well as IGR-39 melanoma cell lines by inhibiting their viability and proliferation. Compounds 6 and 11 are the most potent against L. donovani, exhibiting IC50 values of 2.33 µM and 2.82 µM, respectively, better than the reference drug Miltefosine (3.66 µM). Compound 15 presented the most interesting antimalarial activity against the 3D7 strain, with IC50 = 3.21 µM. Finally, chalcone 12 gave the best result against IGR-39 melanoma cell lines, with an IC50 value of 12 µM better than the reference drug Dacarbazine (IC50 = 25 µM).


Asunto(s)
Chalconas , Plasmodium falciparum , Chalconas/farmacología , Chalconas/química , Chalconas/síntesis química , Humanos , Línea Celular Tumoral , Plasmodium falciparum/efectos de los fármacos , Leishmania donovani/efectos de los fármacos , Leishmania donovani/crecimiento & desarrollo , Antimaláricos/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estructura Molecular
6.
Eur J Pharmacol ; 972: 176557, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38574839

RESUMEN

Cerebral ischemia-reperfusion injury (CIRI) can induce massive death of ischemic penumbra neurons via oxygen burst, exacerbating brain damage. Parthanatos is a form of caspase-independent cell death involving excessive activation of PARP-1, closely associated with intense oxidative stress following CIRI. 4'-O-methylbavachalcone (MeBavaC), an isoprenylated chalcone component in Fructus Psoraleae, has potential neuroprotective effects. This study primarily investigates whether MeBavaC can act on SIRT3 to alleviate parthanatos of ischemic penumbra neurons induced by CIRI. MeBavaC was oral gavaged to the middle cerebral artery occlusion-reperfusion (MCAO/R) rats after occlusion. The effects of MeBavaC on cerebral injury were detected by the neurological deficit score and cerebral infarct volume. In vitro, PC-12 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R), and assessed cell viability and cell injury. Also, the levels of ROS, mitochondrial membrane potential (MMP), and intracellular Ca2+ levels were detected to reflect mitochondrial function. We conducted western blotting analyses of proteins involved in parthanatos and related signaling pathways. Finally, the exact mechanism between the neuroprotection of MeBavaC and parthanatos was explored. Our results indicate that MeBavaC reduces the cerebral infarct volume and neurological deficit scores in MCAO/R rats, and inhibits the decreased viability of PC-12 cells induced by OGD/R. MeBavaC also downregulates the expression of parthanatos-related death proteins PARP-1, PAR, and AIF. However, this inhibitory effect is weakened after the use of a SIRT3 inhibitor. In conclusion, the protective effect of MeBavaC against CIRI may be achieved by inhibiting parthanatos of ischemic penumbra neurons through the SIRT3-PARP-1 axis.


Asunto(s)
Chalconas , Fármacos Neuroprotectores , Parthanatos , Ratas Sprague-Dawley , Daño por Reperfusión , Sirtuinas , Animales , Ratas , Masculino , Chalconas/farmacología , Chalconas/uso terapéutico , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/patología , Daño por Reperfusión/metabolismo , Parthanatos/efectos de los fármacos , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células PC12 , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/patología , Neuronas/metabolismo , Calcio/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Infarto de la Arteria Cerebral Media/complicaciones , Supervivencia Celular/efectos de los fármacos , Sirtuina 3/metabolismo , Sirtuina 3/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo
7.
Phytochemistry ; 222: 114094, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604325

RESUMEN

Safflopentsides A-C (1-3), three highly oxidized rearranged derivatives of quinochalcone C-glycosides, were isolated from the safflower yellow pigments. Their structures were determined based on a detailed spectroscopic analysis (UV, IR, HR-ESI-MS, 1D and 2D NMR), and the absolute configurations were confirmed by the comparison of experimental ECD spectra with calculated ECD spectra. Compounds 1-3 have an unprecedented cyclopentenone or cyclobutenolide ring A containing C-glucosyl group, respectively. The plausible biosynthetic pathways of compounds have been presented. At 10 µM, 2 showed strong inhibitory activity against rat cerebral cortical neurons damage induced by glutamate and oxygen sugar deprivation.


Asunto(s)
Carthamus tinctorius , Glicósidos , Oxidación-Reducción , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Animales , Carthamus tinctorius/química , Ratas , Estructura Molecular , Neuronas/efectos de los fármacos , Relación Estructura-Actividad , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Corteza Cerebral/efectos de los fármacos , Chalconas/farmacología , Chalconas/química , Chalconas/aislamiento & purificación
8.
Oncol Res ; 32(5): 943-953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686052

RESUMEN

Breast and lung cancers are the leading causes of mortality and most frequently diagnosed cancers in women and men, respectively, worldwide. Although the antitumor activity of chalcones has been extensively studied, the molecular mechanisms of isoliquiritigenin analog 2', 4', 4-trihydroxychalcone (metochalcone; TEC) against carcinomas remain less well understood. In this study, we found that TEC inhibited cell proliferation of breast cancer BT549 cells and lung cancer A549 cells in a concentration-dependent manner. TEC induced cell cycle arrest in the S-phase, cell migration inhibition in vitro, and reduced tumor growth in vivo. Moreover, transcriptomic analysis revealed that TEC modulated the activity of the JAK2/STAT3 and P53 pathways. TEC triggered the senescence-associated secretory phenotype (SASP) by repressing the JAK2/STAT3 axis. The mechanism of metochalcone against breast cancer depended on the induction of SASP via deactivation of the JAK2/STAT3 pathway, highlighting the potential of chalcone in senescence-inducing therapy against carcinomas.


Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Senescencia Celular , Chalconas , Janus Quinasa 2 , Factor de Transcripción STAT3 , Transducción de Señal , Humanos , Factor de Transcripción STAT3/metabolismo , Janus Quinasa 2/metabolismo , Janus Quinasa 2/genética , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Femenino , Chalconas/farmacología , Proliferación Celular/efectos de los fármacos , Ratones , Transducción de Señal/efectos de los fármacos , Animales , Senescencia Celular/efectos de los fármacos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Movimiento Celular/efectos de los fármacos , Fenotipo
9.
Biomed Pharmacother ; 174: 116598, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615609

RESUMEN

Angiopoietin-like 3 (ANGPTL3) acts as an inhibitor of lipoprotein lipase (LPL), impeding the breakdown of triglyceride-rich lipoproteins (TGRLs) in circulation. Targeting ANGPTL3 is considered a novel strategy for improving dyslipidemia and atherosclerotic cardiovascular diseases (ASCVD). Hops (Humulus lupulus L.) contain several bioactive prenylflavonoids, including xanthohumol (Xan), isoxanthohumol (Isoxan), 6-prenylnaringenin (6-PN), and 8-prenylnaringenin (8-PN), with the potential to manage lipid metabolism. The aim of this study was to investigate the lipid-lowering effects of Xan, the effective prenylated chalcone in attenuating ANGPTL3 transcriptional activity, both in vitro using hepatic cells and in vivo using zebrafish models, along with exploring the underlying mechanisms. Xan (10 and 20 µM) significantly reduced ANGPTL3 mRNA and protein expression in HepG2 and Huh7 cells, leading to a marked decrease in secreted ANGPTL3 proteins via hepatic cells. In animal studies, orally administered Xan significantly alleviated plasma triglyceride (TG) and cholesterol levels in zebrafish fed a high-fat diet. Furthermore, it reduced hepatic ANGPTL3 protein levels and increased LPL activity in zebrafish models, indicating its potential to modulate lipid profiles in circulation. Furthermore, molecular docking results predicted that Xan exhibits a higher binding affinity to interact with liver X receptor α (LXRα) and retinoic acid X receptor (RXR) than their respective agonists, T0901317 and 9-Cis-retinoic acid (9-Cis-RA). We observed that Xan suppressed hepatic ANGPTL3 expression by antagonizing the LXRα/RXR-mediated transcription. These findings suggest that Xan ameliorates dyslipidemia by modulating the LXRα/RXR-ANGPTL3-LPL axis. Xan represents a novel potential inhibitor of ANGPTL3 for the prevention or treatment of ASCVD.


Asunto(s)
Proteína 3 Similar a la Angiopoyetina , Dieta Alta en Grasa , Flavonoides , Metabolismo de los Lípidos , Lipoproteína Lipasa , Receptores X del Hígado , Propiofenonas , Pez Cebra , Animales , Receptores X del Hígado/metabolismo , Propiofenonas/farmacología , Humanos , Metabolismo de los Lípidos/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Flavonoides/farmacología , Lipoproteína Lipasa/metabolismo , Receptores X Retinoide/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Chalconas/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo
10.
Chem Biodivers ; 21(5): e202400389, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38457745

RESUMEN

A very interesting foundation for this study is the creation of new methods for modifying compounds with a 1,2,3-triazole and chalcone scaffolds, as these compounds are significant in organic synthesis, particularly in the synthesis of bioactive organic compounds. To contribute to the development of an efficient method for the conversion of antimicrobial and antituberculosis heterocyclics, a novel series of cyclohepta pyridinone fused 1,2,3-triazolyl chalcones were designed and synthesized. All the newly prepared scaffolds were characterized by FT-IR, NMR (1H & 13C) and mass spectrometry. Among the tested compounds, hybrids 8b, 8d, and 8f exhibited exceptional antibacterial susceptibilities with zone of inhibition 27.84±0.04, 32.27±0.02, and 38.26±0.01 mm against the tested E. faecalis bacteria, whereas 8d had better antitubercular potency against M. tuberculosis H37Rv strain with MIC value 5.25 µg/mL, compared to Streptomycin [MIC=5.01 µg/mL]. All the synthesized compounds were initially assessed in silico against the targeted protein i. e., DprE1 that indicated compound 8d, 8f and 8h along with several other 1,2,3-triazole compounds as possible inhibitors. Based on docking results, 8d showed that the amino acids His74(A), Lys76(A), Cys332(A), Asp331(A), Val307(A), Tyr357(A), Met226(A), Gln276(A), Gly75(A), Peo58(A), Leu259(A), and Lys309(A) exhibited highly stable binding to DprE1 receptor of Mycobacterium tuberculosis (PDB: 4G3 U). Moreover, these scaffolds physicochemical characteristics, filtration molecular properties, assessment of toxicity, and bioactivity scores were assessed in relation to ADME (absorption, distribution, metabolism, and excretion).


Asunto(s)
Antituberculosos , Diseño de Fármacos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis , Triazoles , Antituberculosos/farmacología , Antituberculosos/síntesis química , Antituberculosos/química , Mycobacterium tuberculosis/efectos de los fármacos , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Relación Estructura-Actividad , Enterococcus faecalis/efectos de los fármacos , Estructura Molecular , Chalcona/química , Chalcona/farmacología , Chalcona/síntesis química , Chalconas/química , Chalconas/farmacología , Chalconas/síntesis química
11.
J Biochem Mol Toxicol ; 38(4): e23679, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38486411

RESUMEN

Normoxic inactivation of prolyl hydroxylase-2 (PHD-2) in tumour microenvironment paves the way for cancer cells to thrive under the influence of HIF-1α and NF-κB. Henceforth, the present study is aimed to identify small molecule activators of PHD-2. A virtual screening was conducted on a library consisting of 265,242 chemical compounds, with the objective of identifying molecules that exhibit structural similarities to the furan chalcone scaffold. Further, PHD-2 activation potential of screened compound was determined using in vitro 2-oxoglutarate assay. The cytotoxic activity and apoptotic potential of screened compound was determined using various staining techniques, including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, 4',6-diamidino-2-phenylindole (DAPI), 1,1',3,3'-tetraethylbenzimi-dazolylcarbocyanine iodide (JC-1), and acridine orange/ethidium bromide (AO/EB), against MCF-7 cells. 7,12-Dimethylbenz[a]anthracene (DMBA) model of mammary gland cancer was used to study the in vivo antineoplastic efficacy of screened compound. [(E)-1-(4-fluorophenyl)-3-(furan-2-yl) prop-2-en-1-one] (BBAP-7) was screened and validated as a PHD-2 activator by an in vitro 2-oxo-glutarate assay. The IC50 of BBAP-7 on MCF-7 cells is 18.84 µM. AO/EB and DAPI staining showed nuclear fragmentation, blebbing and condensation in MCF-7 cells following BBAP-7 treatment. The red-to-green intensity ratio of JC-1 stained MCF-7 cells decreased after BBAP-7 treatment, indicating mitochondrial-mediated apoptosis. DMBA caused mammary gland dysplasia, duct hyperplasia and ductal carcinoma in situ. Carmine staining, histopathology, and scanning electron microscopy demonstrated that BBAP-7, alone or with tirapazamine, restored mammary gland surface morphology and structural integrity. Additionally, BBAP-7 therapy significantly reduced oxidative stress and glycolysis. The findings reveal that BBAP-7 activates PHD-2, making it a promising anticancer drug.


Asunto(s)
Antineoplásicos , Bencimidazoles , Carbocianinas , Carcinoma , Chalcona , Chalconas , Humanos , Prolil Hidroxilasas , Chalconas/farmacología , Antineoplásicos/farmacología , Naranja de Acridina , Apoptosis , Microambiente Tumoral
12.
J Cancer Res Clin Oncol ; 150(3): 117, 2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38460052

RESUMEN

PURPOSE: This study investigated the potential applicability and the underlying mechanisms of flavokawain C, a natural compound derived from kava extracts, in liver cancer treatment. METHODS: Drug distribution experiment used to demonstrate the preferential tissues enrichment of flavokawain C. Cell proliferation, apoptosis and migration effect of flavokawain C were determined by MTT, colony formation, EdU staining, cell adhesion, transwell, flow cytometry and western blot assay. The mechanism was explored by comet assay, immunofluorescence assay, RNA-seq-based Kyoto encyclopedia of genes and genomes analysis, molecular dynamics, bioinformatics analysis and western blot assay. The anticancer effect of flavokawain C was further confirmed by xenograft tumor model. RESULTS: The studies first demonstrated the preferential enrichment of flavokawain C within liver tissues in vivo. The findings demonstrated that flavokawain C significantly inhibited proliferation and migration of liver cancer cells, induced cellular apoptosis, and triggered intense DNA damage along with strong DNA damage response. The findings from RNA-seq-based KEGG analysis, molecular dynamics, bioinformatics analysis, and western blot assay mechanistically indicated that treatment with flavokawain C notably suppressed the FAK/PI3K/AKT signaling pathway in liver cancer cells. This effect was attributed to the induction of gene changes and the binding of flavokawain C to the ATP sites of FAK and PI3K, resulting in the inhibition of their phosphorylation. Additionally, flavokawain C also displayed the strong capacity to inhibit Huh-7-derived xenograft tumor growth in mice with minimal adverse effects. CONCLUSIONS: These findings identified that flavokawain C is a promising anticancer agent for liver cancer treatment.


Asunto(s)
Chalconas , Neoplasias Hepáticas , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratones , Apoptosis , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Chalconas/farmacología , Chalconas/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína-Tirosina Quinasas de Adhesión Focal/antagonistas & inhibidores , Proteína-Tirosina Quinasas de Adhesión Focal/efectos de los fármacos
13.
J Mol Model ; 30(4): 103, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38478122

RESUMEN

CONTEXT: Monoamine oxidase B (MAO-B), an enzyme of significant relevance in the realm of neurodegenerative disorders, has garnered considerable attention as a potential target for therapeutic intervention. Natural compounds known as chalcones have shown potential as MAO-B inhibitors. In this particular study, we employed a multimodal computational method to evaluate the inhibitory effects of chalcones on MAO-B. METHODS: Molecular docking methods were used to study and assess the complicated binding interactions that occur between chalcones and MAO-B. This extensive analysis provided a valuable and deep understanding of possible binding methods as well as the key residues implicated in the inhibition process. Furthermore, the ADME investigation gave valuable insights into the pharmacokinetic properties of chalcones. This allowed them to be assessed in terms of drug-like attributes. The use of MD simulations has benefited in the research of ligand-protein interactions' dynamic behaviour and temporal stability. MM-PBSA calculations were also done to estimate the binding free energies and acquire a better knowledge and understanding of the binding affinity between chalcones and MAO-B. Our thorough method gives a thorough knowledge of chalcones' potential as MAO-B inhibitors, which will be useful for future experimental validation and drug development efforts in the context of neurodegenerative illnesses.


Asunto(s)
Chalconas , Monoaminooxidasa , Monoaminooxidasa/química , Monoaminooxidasa/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de la Monoaminooxidasa/farmacología , Inhibidores de la Monoaminooxidasa/química , Chalconas/farmacología , Chalconas/química , Relación Estructura-Actividad
14.
Chem Biodivers ; 21(4): e202400077, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38359316

RESUMEN

New chalcones were synthesized and evaluated to serve as p38-α type of mitogen-activated protein kinase (MAPK) inhibitors. According to the National Cancer Institute, the findings indicated that at a 10 µM dosage, compounds 3a and 6 were the most active among all the compounds examined, with mean growth inhibition% of 94.83 and 58.49, respectively. In 5-dose testing, they showed anticancer activity in the micro-molar range with GI50 in the range of 1.41-46.1 and 2.07-31.3 µM, respectively. Besides, powerful activity, especially against the leukaemia cell lines and good selectivity to cancer cells compared to normal PCS-800-017 with a selectivity index=12.41 and 23.77, respectively. Compounds 3a and 6 inhibited p38α MAPK with IC50 values of 0.1462±0.0063 and 0.4356±0.0189 µM, correspondingly. 3a showed good inhibition for HL-60(TB) cells and induced cell cycle arrest in HL-60(TB) cells at the G2/M phase. Besides, it elevated the total apoptosis by 14.68-fold and increased the caspase-3 level by 3.52-fold compared with doxorubicin, which raised it by 4.30-fold, inducing apoptosis by acting as caspase-dependent inducers. These results suggest that 3a is a promising antiproliferative and p38α MAPK inhibitor, confirmed by molecular docking with high compatibility 3a with the p38α MAPK binding site.


Asunto(s)
Antineoplásicos , Chalconas , Proteína Quinasa 14 Activada por Mitógenos , Humanos , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Simulación del Acoplamiento Molecular , Chalconas/farmacología , Puntos de Control del Ciclo Celular , Doxorrubicina/farmacología , Inhibidores de Proteínas Quinasas/química , Apoptosis , Estructura Molecular , Proliferación Celular , Antineoplásicos/química , Relación Estructura-Actividad , Línea Celular Tumoral
15.
Chem Biodivers ; 21(4): e202301820, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38372508

RESUMEN

As a part of novel discovery of drugs from natural resources, present study was undertaken to explore the antibacterial potential of chalcone Indl-2 in combination with different group of antibiotics. MIC of antibiotics was reduced up to eight folds against the different cultures of E. coli by both chalcones. Among the two compounds, the i. e. 1-(3', 4,'5'-trimethoxyphenyl)-3-(3-Indyl)-prop-2-enone (6, Indl-2), a chalcone derivative of gallic acid (Indl-2) was better along with tetracycline (TET) worked synergistically and was found to inhibit efflux transporters as obvious by ethidium bromide efflux confirmed by ATPase assays and docking studies. In combination, Indl-2 kills the MDREC-KG4 cells, post-antibiotic effect (PAE) of TET was prolonged and mutant prevention concentration (MPC) of TET was also decreased. In-vivo studies revealed that Indl-2 reduces the concentration of TNF-α. In acute oral toxicity study, Indl-2 was non-toxic and well tolerated up-to dose of 2000 mg/kg. Perhaps, the study is going to report gallic acid derived chalcone as synergistic agent acting via inhibiting the primary efflux pumps.


Asunto(s)
Chalcona , Chalconas , Chalcona/farmacología , Chalconas/farmacología , Escherichia coli , Ácido Gálico/farmacología , Antibacterianos/farmacología , Tetraciclina/farmacología , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Proteínas Bacterianas/metabolismo
16.
Chem Biodivers ; 21(4): e202301564, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373281

RESUMEN

The development of novel phytotoxic compounds has been an important aim of weed control research. In this study, we synthesized fluorinated chalcone derivatives featuring both electron-donating and electron-withdrawing groups. These compounds were evaluated both as inhibitors of the photosystem II (PSII) electron chain as well as inhibitors of the germination and seedling growth of Amaranthus plants. Chlorophyll a (Chl a) fluorescence assay was employed to evaluate their effects on PSII, while germination experiments were conducted to assess their impact on germination and seedling development. The results revealed promising herbicidal activity for (E)-3-(4-bromophenyl)-1-(4-fluorophenyl)prop-2-en-1-one (7 a) and (E)-1-(4-fluorophenyl)-3-phenylprop-2-en-1-one (7 e). Compounds 7 a and 7 e exhibited a reduction in Chl a parameters associated with performance indexes and electron transport per reaction center. This reduction suggests a decrease in PSII activity, attributed to the blockage of electron flow at the quinone pool. Molecular docking analyses of chalcone derivatives with the D1 protein of PSII revealed a stable binding conformation, wherein the carbonyl and fluorine groups interacted with Phe265 and His215 residues, respectively. Additionally, at a concentration of 100 µM, compound 7 e demonstrated pre- and post-emergent herbicidal activity, resulting in a reduction of the seed germination index, radicle and hypocotyl lengths of Amaranthus weeds.


Asunto(s)
Amaranthus , Chalconas , Herbicidas , Plantones , Complejo de Proteína del Fotosistema II , Chalconas/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Crecimiento/farmacología , Clorofila A , Herbicidas/química , Malezas , Clorofila
17.
J Microbiol ; 62(2): 75-89, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38383881

RESUMEN

The emergence of carbapenem-resistant Pseudomonas aeruginosa, a multi-drug-resistant bacteria, is becoming a serious public health concern. This bacterium infects immunocompromised patients and has a high fatality rate. Both naturally and synthetically produced chalcones are known to have a wide array of biological activities. The antibacterial properties of synthetically produced chalcone were studied against P. aeruginosa. In vitro, study of the compound (chalcone derivative named DKO1), also known as (2E)-1-(5-methylfuran-2-yl)-3-(4-nitrophenyl) prop-2-en-1-one, had substantial antibacterial and biofilm disruptive action. DKO1 effectively shielded against P. aeruginosa-induced inflammation, oxidative stress, lipid peroxidation, and apoptosis in zebrafish larvae. In adult zebrafish, the treatment enhanced the chances of survivability and reduced the sickness-like behaviors. Gene expression, biochemical analysis, and histopathology studies found that proinflammatory cytokines (TNF-α, IL-1ß, IL-6, iNOS) were down regulated; antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) levels increased, and histoarchitecture was restored in zebrafish. The data indicate that DKO1 is an effective antibacterial agent against P. aeruginosa demonstrated both in vitro and in vivo.


Asunto(s)
Chalcona , Chalconas , Adulto , Animales , Humanos , Pez Cebra , Pseudomonas aeruginosa/metabolismo , Chalcona/metabolismo , Chalcona/farmacología , Chalconas/metabolismo , Chalconas/farmacología , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias , Pruebas de Sensibilidad Microbiana
18.
Biomolecules ; 14(2)2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38397453

RESUMEN

The purpose of the current investigation was to produce cinammaldehyde-based chalcone derivatives (3a-k) to evaluate their potential effectiveness as antioxidant and inhibitory agents versus human Caco-2 cancer cells. The findings obtained using the DPPH assay showed that compound 3e had the highest effective antioxidant activity with the best IC50 value compared with the other compounds. Moreover, the cytotoxic findings revealed that compound 3e was the best compound for inhibiting Caco-2 development in contrast to all other produced derivatives, with the lowest IC50 concentration (32.19 ± 3.92 µM), and it also had no detrimental effects on healthy human lung cells (wi38 cells). Exposure of Caco-2 cells with this IC50 value of compound 3e resulted in a substantial rise in the number of early and late cells that are apoptotic with a significant comet nucleus when compared with control cells employing the annexin V/PI and comet evaluations, respectively. Furthermore, qRT-PCR and ELISA examinations indicated that compound 3e significantly altered the expression of genes and their relative proteins related to apoptosis in the treated Caco-2 cells, thus significantly inhibiting Caco-2 growth through activating Caspase-3 via an intrinsic apoptotic pathway. As a result, compound 3e could serve as an effective therapy for human colon cancer.


Asunto(s)
Acroleína/análogos & derivados , Antineoplásicos , Chalcona , Chalconas , Neoplasias del Colon , Humanos , Relación Estructura-Actividad , Antioxidantes/farmacología , Chalconas/farmacología , Línea Celular Tumoral , Células CACO-2 , Chalcona/farmacología , Chalcona/química , Proliferación Celular , Antineoplásicos/química , Neoplasias del Colon/tratamiento farmacológico , Apoptosis , Estructura Molecular
19.
Nutrients ; 16(4)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38398837

RESUMEN

2'-Hydroxychalcone is a hydroxyl derivative of chalcones, which are biosynthetic precursors of flavonoids and rich in the human diet. The anticancer activity of 2'-hydroxychalcone has been reported in several cancers but remains to be investigated in breast cancer. In the current study, 2'-hydroxychalcone showed significant cytotoxicity against breast cancer cell lines MCF-7 and CMT-1211. It could inhibit breast cancer cell proliferation, migration, and invasion in vitro and suppress tumor growth and metastasis in vivo. Mechanistic investigation revealed that the NF-κB pathway was significantly inhibited by 2'-hydroxychalcone treatment accompanied by an excessive intracellular accumulation of reactive oxygen species, induction of endoplasmic reticulum stress, and activation of JNK/MAPK. In addition, 2'-hydroxychalcone elevated the autophagic levels in breast cancer cells equipped with increasing numbers of autophagy vesicles and complete autophagic flux. Finally, autophagy-dependent apoptosis was observed in 2'-hydroxychalcone-induced cell death. In conclusion, 2'-hydroxychalcone enhances the autophagic levels and induces apoptosis in breast cancer cells, which could be contributed to the inhibition of the pro-survival NF-κB signaling, indicating a promising potential for 2'-hydroxychalcone in future anticancer drug development.


Asunto(s)
Neoplasias de la Mama , Chalconas , Humanos , Femenino , FN-kappa B/metabolismo , Chalconas/farmacología , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Transducción de Señal , Apoptosis , Autofagia , Especies Reactivas de Oxígeno/metabolismo
20.
Arch Pharm (Weinheim) ; 357(5): e2300626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38297894

RESUMEN

Two new series of quinazoline-chalcone hybrids were designed, synthesized as histone deacetylase (HDAC)/epidermal growth factor receptor (EGFR) dual inhibitors, and screened in vitro against the NCI 60 human cancer cell line panel. The most potent derivative, compound 5e bearing a 3,4,5-trimethoxyphenyl chalcone moiety, showed the most effective growth inhibition value against the panel of NCI 60 human cancer cell lines. Thus, it was selected for further investigation for NCI 5 log doses. Interestingly, this trimethoxy-substituted analog inhibited the proliferation of Roswell Park Memorial Institute (RPMI)-8226 cells by 96%, at 10 µM with IC50 = 9.09 ± 0.34 µM and selectivity index = 7.19 against normal blood cells. To confirm the selectivity of this compound, it was evaluated against a panel of tyrosine kinase enzymes. Mechanistically, it successfully and selectively inhibited HDAC6, HDAC8, and EGFR with IC50 = 0.41 ± 0.015, 0.61 ± 0.027, and 0.09 ± 0.004 µM, respectively. Furthermore, the selected derivative induced apoptosis via the mitochondrial apoptotic pathway by raising the Bax/Bcl-2 ratio and activating caspases 3, 7, and 9. Also, the flow cytometry analysis of RPMI-8226 cells showed that the trimethoxy-substituted analog produced cell cycle arrest in the G1 and S phases at 55.82%. Finally, an in silico study was performed to explore the binding interaction of the most active compound within the zinc-containing binding site of HDAC6 and HDAC8.


Asunto(s)
Antineoplásicos , Apoptosis , Proliferación Celular , Chalconas , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Receptores ErbB , Inhibidores de Histona Desacetilasas , Quinazolinas , Humanos , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Quinazolinas/farmacología , Quinazolinas/síntesis química , Quinazolinas/química , Relación Estructura-Actividad , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Chalconas/farmacología , Chalconas/síntesis química , Chalconas/química , Estructura Molecular , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Histona Desacetilasas/metabolismo , Chalcona/farmacología , Chalcona/química , Chalcona/síntesis química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...