Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 941
Filtrar
1.
Curr Gene Ther ; 24(3): 208-216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38676313

RESUMEN

Hearing loss is a prevalent sensory impairment significantly affecting communication and quality of life. Traditional approaches for hearing restoration, such as cochlear implants, have limitations in frequency resolution and spatial selectivity. Optogenetics, an emerging field utilizing light-sensitive proteins, offers a promising avenue for addressing these limitations and revolutionizing hearing rehabilitation. This review explores the methods of introducing Channelrhodopsin- 2 (ChR2), a key light-sensitive protein, into cochlear cells to enable optogenetic stimulation. Viral- mediated gene delivery is a widely employed technique in optogenetics. Selecting a suitable viral vector, such as adeno-associated viruses (AAV), is crucial in efficient gene delivery to cochlear cells. The ChR2 gene is inserted into the viral vector through molecular cloning techniques, and the resulting viral vector is introduced into cochlear cells via direct injection or round window membrane delivery. This allows for the expression of ChR2 and subsequent light sensitivity in targeted cells. Alternatively, direct cell transfection offers a non-viral approach for ChR2 delivery. The ChR2 gene is cloned into a plasmid vector, which is then combined with transfection agents like liposomes or nanoparticles. This mixture is applied to cochlear cells, facilitating the entry of the plasmid DNA into the target cells and enabling ChR2 expression. Optogenetic stimulation using ChR2 allows for precise and selective activation of specific neurons in response to light, potentially overcoming the limitations of current auditory prostheses. Moreover, optogenetics has broader implications in understanding the neural circuits involved in auditory processing and behavior. The combination of optogenetics and gene delivery techniques provides a promising avenue for improving hearing restoration strategies, offering the potential for enhanced frequency resolution, spatial selectivity, and improved auditory perception.


Asunto(s)
Percepción Auditiva , Terapia Genética , Vectores Genéticos , Pérdida Auditiva , Optogenética , Optogenética/métodos , Humanos , Terapia Genética/métodos , Percepción Auditiva/genética , Vectores Genéticos/genética , Pérdida Auditiva/genética , Pérdida Auditiva/terapia , Channelrhodopsins/genética , Dependovirus/genética , Técnicas de Transferencia de Gen , Animales , Implantes Cocleares
2.
Nat Commun ; 15(1): 3480, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658537

RESUMEN

The analysis of neural circuits has been revolutionized by optogenetic methods. Light-gated chloride-conducting anion channelrhodopsins (ACRs)-recently emerged as powerful neuron inhibitors. For cells or sub-neuronal compartments with high intracellular chloride concentrations, however, a chloride conductance can have instead an activating effect. The recently discovered light-gated, potassium-conducting, kalium channelrhodopsins (KCRs) might serve as an alternative in these situations, with potentially broad application. As yet, KCRs have not been shown to confer potent inhibitory effects in small genetically tractable animals. Here, we evaluated the utility of KCRs to suppress behavior and inhibit neural activity in Drosophila, Caenorhabditis elegans, and zebrafish. In direct comparisons with ACR1, a KCR1 variant with enhanced plasma-membrane trafficking displayed comparable potency, but with improved properties that include reduced toxicity and superior efficacy in putative high-chloride cells. This comparative analysis of behavioral inhibition between chloride- and potassium-selective silencing tools establishes KCRs as next-generation optogenetic inhibitors for in vivo circuit analysis in behaving animals.


Asunto(s)
Caenorhabditis elegans , Neuronas , Optogenética , Pez Cebra , Animales , Caenorhabditis elegans/genética , Neuronas/metabolismo , Neuronas/fisiología , Optogenética/métodos , Channelrhodopsins/metabolismo , Channelrhodopsins/genética , Humanos , Drosophila , Canales de Potasio/metabolismo , Canales de Potasio/genética , Cloruros/metabolismo , Animales Modificados Genéticamente , Conducta Animal , Células HEK293 , Drosophila melanogaster
3.
Nat Commun ; 15(1): 3525, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664445

RESUMEN

Soft bioelectronic devices exhibit motion-adaptive properties for neural interfaces to investigate complex neural circuits. Here, we develop a fabrication approach through the control of metamorphic polymers' amorphous-crystalline transition to miniaturize and integrate multiple components into hydrogel bioelectronics. We attain an about 80% diameter reduction in chemically cross-linked polyvinyl alcohol hydrogel fibers in a fully hydrated state. This strategy allows regulation of hydrogel properties, including refractive index (1.37-1.40 at 480 nm), light transmission (>96%), stretchability (139-169%), bending stiffness (4.6 ± 1.4 N/m), and elastic modulus (2.8-9.3 MPa). To exploit the applications, we apply step-index hydrogel optical probes in the mouse ventral tegmental area, coupled with fiber photometry recordings and social behavioral assays. Additionally, we fabricate carbon nanotubes-PVA hydrogel microelectrodes by incorporating conductive nanomaterials in hydrogel for spontaneous neural activities recording. We enable simultaneous optogenetic stimulation and electrophysiological recordings of light-triggered neural activities in Channelrhodopsin-2 transgenic mice.


Asunto(s)
Hidrogeles , Ratones Transgénicos , Optogenética , Polímeros , Alcohol Polivinílico , Animales , Alcohol Polivinílico/química , Ratones , Hidrogeles/química , Optogenética/métodos , Polímeros/química , Nanotubos de Carbono/química , Área Tegmental Ventral/fisiología , Microelectrodos , Masculino , Channelrhodopsins/metabolismo , Channelrhodopsins/química , Channelrhodopsins/genética
4.
Biophys J ; 123(8): 940-946, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38462839

RESUMEN

Anion channelrhodopsin GtACR1 is a powerful optogenetic tool to inhibit nerve activity. Its kinetic mechanism was interpreted in terms of the bacteriorhodopsin photocycle, and the L intermediate was assigned to the open channel state. Here, we report the results of the comparison between the time dependence of the channel currents and the time evolutions of the K-like and L-like spectral forms. Based on the results, we question the current view on GtACR1 kinetics and the assignment of the L intermediate to the open channel state. We report evidence for a red-absorbing intermediate being responsible for channel opening.


Asunto(s)
Optogenética , Channelrhodopsins/metabolismo , Aniones , Cinética , Optogenética/métodos
5.
Angew Chem Int Ed Engl ; 63(11): e202307555, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38226794

RESUMEN

Microbial rhodopsins are retinal membrane proteins that found a broad application in optogenetics. The oligomeric state of rhodopsins is important for their functionality and stability. Of particular interest is the oligomeric state in the cellular native membrane environment. Fluorescence microscopy provides powerful tools to determine the oligomeric state of membrane proteins directly in cells. Among these methods is quantitative photoactivated localization microscopy (qPALM) allowing the investigation of molecular organization at the level of single protein clusters. Here, we apply qPALM to investigate the oligomeric state of the first and most used optogenetic tool Channelrhodopsin-2 (ChR2) in the plasma membrane of eukaryotic cells. ChR2 appeared predominantly as a dimer in the cell membrane and did not form higher oligomers. The disulfide bonds between Cys34 and Cys36 of adjacent ChR2 monomers were not required for dimer formation and mutations disrupting these bonds resulted in only partial monomerization of ChR2. The monomeric fraction increased when the total concentration of mutant ChR2 in the membrane was low. The dissociation constant was estimated for this partially monomerized mutant ChR2 as 2.2±0.9 proteins/µm2 . Our findings are important for understanding the mechanistic basis of ChR2 activity as well as for improving existing and developing future optogenetic tools.


Asunto(s)
Optogenética , Retina , Channelrhodopsins/genética , Membrana Celular/metabolismo , Retina/metabolismo , Mutación , Microscopía Fluorescente
6.
Adv Biol (Weinh) ; 8(3): e2300428, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38015104

RESUMEN

Optogenetics is a powerful approach in neuroscience research. However, other tissues of the body may benefit from controlled ion currents and neuroscience may benefit from more precise optogenetic expression. The present work constructs three subcellularly-targeted optogenetic actuators based on the channelrhodopsin ChR2-XXL, utilizing 5, 10, or 15 tandem repeats (TR) from mucin as N-terminal targeting motifs and evaluates expression in several polarized and non-polarized cell types. The modified channelrhodopsin maintains its electrophysiological properties, which can be used to produce continuous membrane depolarization, despite the expected size of the repeats. This work then shows that these actuators are subcellularly localized in polarized cells. In polarized epithelial cells, all three actuators localize to just the lateral membrane. The TR-tagged constructs also express subcellularly in cortical neurons, where TR5-ChR2XXL and TR10-ChR2XXL mainly target the somatodendrites. Moreover, the transfection efficiencies are shown to be dependent on cell type and tandem repeat length. Overall, this work verifies that the targeting motifs from epithelial cells can be used to localize optogenetic actuators in both epithelia and neurons, opening epithelia processes to optogenetic manipulation and providing new possibilities to target optogenetic tools.


Asunto(s)
Mucinas , Optogenética , Mucinas/metabolismo , Channelrhodopsins/metabolismo , Neuronas/metabolismo , Polaridad Celular
7.
J Mol Biol ; 436(5): 168298, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37802216

RESUMEN

Kalium channelrhodopsin 1 from Hyphochytrium catenoides (HcKCR1) is the first discovered natural light-gated ion channel that shows higher selectivity to K+ than to Na+ and therefore is used to silence neurons with light (optogenetics). Replacement of the conserved cysteine residue in the transmembrane helix 3 (Cys110) with alanine or threonine results in a >1,000-fold decrease in the channel closing rate. The phenotype of the corresponding mutants in channelrhodopsin 2 is attributed to breaking of a specific interhelical hydrogen bond (the "DC gate"). Unlike CrChR2 and other ChRs with long distance "DC gates", the HcKCR1 structure does not reveal any hydrogen bonding partners to Cys110, indicating that the mutant phenotype is likely caused by disruption of direct interaction between this residue and the chromophore. In HcKCR1_C110A, fast photochemical conversions corresponding to channel gating were followed by dramatically slower absorption changes. Full recovery of the unphotolyzed state in HcKCR1_C110A was extremely slow with two time constants 5.2 and 70 min. Analysis of the light-minus-dark difference spectra during these slow processes revealed accumulation of at least four spectrally distinct blue light-absorbing photocycle intermediates, L, M1 and M2, and a UV light-absorbing form, typical of bacteriorhodopsin-like channelrhodopsins from cryptophytes. Our results contribute to better understanding of the mechanistic links between the chromophore photochemistry and channel conductance, and provide the basis for using HcKCR1_C110A as an optogenetic tool.


Asunto(s)
Channelrhodopsins , Activación del Canal Iónico , Optogenética , Rhinosporidium , Channelrhodopsins/química , Channelrhodopsins/genética , Luz , Activación del Canal Iónico/genética , Mutación , Cisteína/química , Cisteína/genética , Conformación Proteica en Hélice alfa , Humanos , Células HEK293 , Secuencia Conservada , Sustitución de Aminoácidos
8.
Science ; 382(6676): 1314-1318, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38096275

RESUMEN

Although there has been long-standing recognition that stimuli-induced cytosolic pH alterations coincide with changes in calcium ion (Ca2+) levels, the interdependence between protons (H+) and Ca2+ remains poorly understood. We addressed this topic using the light-gated channelrhodopsin HcKCR2 from the pseudofungus Hyphochytrium catenoides, which operates as a H+ conductive, Ca2+ impermeable ion channel on the plasma membrane of plant cells. Light activation of HcKCR2 in Arabidopsis guard cells evokes a transient cytoplasmic acidification that sparks Ca2+ release from the endoplasmic reticulum. A H+-induced cytosolic Ca2+ signal results in membrane depolarization through the activation of Ca2+-dependent SLAC1/SLAH3 anion channels, which enabled us to remotely control stomatal movement. Our study suggests a H+-induced Ca2+ release mechanism in plant cells and establishes HcKCR2 as a tool to dissect the molecular basis of plant intracellular pH and Ca2+ signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Señalización del Calcio , Calcio , Channelrhodopsins , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Calcio/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Estomas de Plantas/metabolismo , Protones , Rhinosporidium , Concentración de Iones de Hidrógeno
9.
Biochemistry (Mosc) ; 88(10): 1555-1570, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38105024

RESUMEN

Channelrhodopsins stand out among other retinal proteins because of their capacity to generate passive ionic currents following photoactivation. Owing to that, channelrhodopsins are widely used in neuroscience and cardiology as instruments for optogenetic manipulation of the activity of excitable cells. Photocurrents generated by channelrhodopsins were first discovered in the cells of green algae in the 1970s. In this review we describe this discovery and discuss the current state of research in the field.


Asunto(s)
Optogenética , Fototaxis , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Luz , Transporte Iónico
10.
Mol Brain ; 16(1): 77, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-37950268

RESUMEN

Optogenetics has revolutionised neuroscience research, but at the same time has brought a plethora of new variables to consider when designing an experiment with AAV-based targeted gene delivery. Some concerns have been raised regarding the impact of AAV injection volume and expression time in relation to longitudinal experimental designs. In this study, we investigated the efficiency of optically evoked post-synaptic responses in connection to two variables: the volume of the injected virus and the expression time of the virus. For this purpose, we expressed the blue-shifted ChR2, oChIEF, employing a widely used AAV vector delivery strategy. We found that the volume of the injected virus has a minimal impact on the efficiency of optically-evoked postsynaptic population responses. The expression time, on the other hand, has a pronounced effect, with a gradual reduction in the population responses beyond 4 weeks of expression. We strongly advise to monitor time-dependent expression profiles when planning or conducting long-term experiments that depend on successful and stable channelrhodopsin expression.


Asunto(s)
Terapia Genética , Vectores Genéticos , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Optogenética , Dependovirus/metabolismo
11.
Sci Rep ; 13(1): 19490, 2023 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-37945622

RESUMEN

Optogenetics relies on dynamic spatial and temporal control of light to address emerging fundamental and therapeutic questions in cardiac research. In this work, a compact micro-LED array, consisting of 16 × 16 pixels, is incorporated in a widefield fluorescence microscope for controlled light stimulation. We describe the optical design of the system that allows the micro-LED array to fully cover the field of view regardless of the imaging objective used. Various multicellular cardiac models are used in the experiments such as channelrhodopsin-2 expressing aggregates of cardiomyocytes, termed cardiac bodies, and bioartificial cardiac tissues derived from human induced pluripotent stem cells. The pacing efficiencies of the cardiac bodies and bioartificial cardiac tissues were characterized as a function of illumination time, number of switched-on pixels and frequency of stimulation. To demonstrate dynamic stimulation, steering of calcium waves in HL-1 cell monolayer expressing channelrhodopsin-2 was performed by applying different configurations of patterned light. This work shows that micro-LED arrays are powerful light sources for optogenetic control of contraction and calcium waves in cardiac monolayers, multicellular bodies as well as three-dimensional artificial cardiac tissues.


Asunto(s)
Células Madre Pluripotentes Inducidas , Optogenética , Humanos , Optogenética/métodos , Channelrhodopsins/genética , Miocitos Cardíacos/fisiología
12.
Pflugers Arch ; 475(12): 1409-1419, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987804

RESUMEN

Optogenetics is a technology using light-sensitive proteins to control signaling pathways and physiological processes in cells and organs and has been applied in neuroscience, cardiovascular sciences, and many other research fields. Most commonly used optogenetic actuators are sensitive to blue and green light, but red-light activation would allow better tissue penetration and less phototoxicity. Cyp27c1 is a recently deorphanized cytochrome P450 enzyme that converts vitamin A1 to vitamin A2, thereby red-shifting the spectral sensitivity of visual pigments and enabling near-infrared vision in some aquatic species.Here, we investigated the ability of Cyp27c1-generated vitamin A2 to induce a shift in spectral sensitivity of the light-gated ion channel Channelrhodopsin-2 (ChR2) and its red-shifted homolog ReaChR. We used patch clamp to measure photocurrents at specific wavelengths in HEK 293 cells expressing ChR2 or ReaChR. Vitamin A2 incubation red-shifted the wavelength for half-maximal currents (λ50%) by 6.8 nm for ChR2 and 12.4 nm for ReaChR. Overexpression of Cyp27c1 in HEK 293 cells showed mitochondrial localization, and HPLC analysis showed conversion of vitamin A1 to vitamin A2. Notably, the λ50% of ChR2 photocurrents was red-shifted by 10.5 nm, and normalized photocurrents at 550 nm were about twofold larger with Cyp27c1 expression. Similarly, Cyp27c1 shifted the λ50% of ReaChR photocurrents by 14.3 nm and increased normalized photocurrents at 650 nm almost threefold.Since vitamin A2 incubation is not a realistic option for in vivo applications and expression of Cyp27c1 leads to a greater red-shift in spectral sensitivity, we propose co-expression of this enzyme as a novel strategy for red-shifted optogenetics.


Asunto(s)
Optogenética , Vitamina A , Humanos , Vitamina A/metabolismo , Células HEK293 , Corazón , Channelrhodopsins/genética
13.
J Biol Chem ; 299(11): 105305, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37778732

RESUMEN

Previous research of anion channelrhodopsins (ACRs) has been performed using cytoplasmic domain (CPD)-deleted constructs and therefore have overlooked the native functions of full-length ACRs and the potential functional role(s) of the CPD. In this study, we used the recombinant expression of full-length Guillardia theta ACR1 (GtACR1_full) for pH measurements in Pichia pastoris cell suspensions as an indirect method to assess its anion transport activity and for absorption spectroscopy and flash photolysis characterization of the purified protein. The results show that the CPD, which was predicted to be intrinsically disordered and possibly phosphorylated, enhanced NO3- transport compared to Cl- transport, which resulted in the preferential transport of NO3-. This correlated with the extended lifetime and large accumulation of the photocycle intermediate that is involved in the gate-open state. Considering that the depletion of a nitrogen source enhances the expression of GtACR1 in native algal cells, we suggest that NO3- transport could be the natural function of GtACR1_full in algal cells.


Asunto(s)
Criptófitas , Aniones/metabolismo , Channelrhodopsins/metabolismo , Criptófitas/metabolismo , Transporte Iónico , Nitratos/metabolismo
14.
Pflugers Arch ; 475(12): 1463-1477, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37863976

RESUMEN

Optogenetic actuators are rapidly advancing tools used to control physiology in excitable cells, such as neurons and cardiomyocytes. In neuroscience, these tools have been used to either excite or inhibit neuronal activity. Cell type-targeted actuators have allowed to study the function of distinct cell populations. Whereas the first described cation channelrhodopsins allowed to excite specific neuronal cell populations, anion channelrhodopsins were used to inhibit neuronal activity. To allow for simultaneous excitation and inhibition, opsin combinations with low spectral overlap were introduced. BiPOLES (Bidirectional Pair of Opsins for Light-induced Excitation and Silencing) is a bidirectional optogenetic tool consisting of the anion channel Guillardia theta anion-conducting channelrhodopsin 2 (GtACR2 with a blue excitation spectrum and the red-shifted cation channel Chrimson. Here, we studied the effects of BiPOLES activation in cardiomyocytes. For this, we knocked in BiPOLES into the adeno-associated virus integration site 1 (AAVS1) locus of human-induced pluripotent stem cells (hiPSC), subjected these to cardiac differentiation, and generated BiPOLES expressing engineered heart tissue (EHT) for physiological characterization. Continuous light application activating either GtACR2 or Chrimson resulted in cardiomyocyte depolarization and thus stopped EHT contractility. In contrast, short light pulses, with red as well as with blue light, triggered action potentials (AP) up to a rate of 240 bpm. In summary, we demonstrate that cation, as well as anion channelrhodopsins, can be used to activate stem cell-derived cardiomyocytes with pulsed photostimulation but also to silence cardiac contractility with prolonged photostimulation.


Asunto(s)
Miocitos Cardíacos , Optogenética , Humanos , Optogenética/métodos , Channelrhodopsins/genética , Miocitos Cardíacos/metabolismo , Aniones/metabolismo , Cationes
15.
Elife ; 122023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37801078

RESUMEN

Many channelrhodopsins are permeable to protons. We found that in neurons, activation of a high-current channelrhodopsin, CheRiff, led to significant acidification, with faster acidification in the dendrites than in the soma. Experiments with patterned optogenetic stimulation in monolayers of HEK cells established that the acidification was due to proton transport through the opsin, rather than through other voltage-dependent channels. We identified and characterized two opsins which showed large photocurrents, but small proton permeability, PsCatCh2.0 and ChR2-3M. PsCatCh2.0 showed excellent response kinetics and was also spectrally compatible with simultaneous voltage imaging with QuasAr6a. Stimulation-evoked acidification is a possible source of disruptions to cell health in scientific and prospective therapeutic applications of optogenetics. Channelrhodopsins with low proton permeability are a promising strategy for avoiding these problems.


Asunto(s)
Neuronas , Protones , Channelrhodopsins/genética , Concentración de Iones de Hidrógeno , Optogenética
16.
Biophys J ; 122(20): 4091-4103, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37749886

RESUMEN

The most effective tested optogenetic tools available for neuronal silencing are the light-gated anion channel proteins found in the cryptophyte alga Guillardia theta (GtACRs). Molecular mechanisms of GtACRs, including the photointermediates responsible for the open channel state, are of great interest for understanding their exceptional conductance. In this study, the photoreactions of GtACR1 and its D234N, A75E, and S97E mutants were investigated using multichannel time-resolved absorption spectroscopy. For each of the proteins, the analysis showed two early microsecond transitions between K-like and L-like forms and two late millisecond recovery steps. Spectral forms associated with potential molecular intermediates of the proteins were derived and their evolutions in time were analyzed. The results indicate the presence of isospectral intermediates in the photocycles and expand the range of potential intermediates responsible for the open channel state.


Asunto(s)
Criptófitas , Optogenética , Channelrhodopsins/metabolismo , Aniones/metabolismo , Criptófitas/metabolismo , Optogenética/métodos , Luz
17.
Science ; 381(6665): 1480-1487, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769108

RESUMEN

After heart injury, dead heart muscle is replaced by scar tissue. Fibroblasts can electrically couple with myocytes, and changes in fibroblast membrane potential can lead to myocyte excitability, which suggests that fibroblast-myocyte coupling in scar tissue may be responsible for arrhythmogenesis. However, the physiologic relevance of electrical coupling of myocytes and fibroblasts and its impact on cardiac excitability in vivo have never been demonstrated. We genetically engineered a mouse that expresses the optogenetic cationic channel ChR2 (H134R) exclusively in cardiac fibroblasts. After myocardial infarction, optical stimulation of scar tissue elicited organ-wide cardiac excitation and induced arrhythmias in these animals. Complementing computational modeling with experimental approaches, we showed that gap junctional and ephaptic coupling, in a synergistic yet functionally redundant manner, excited myocytes coupled to fibroblasts.


Asunto(s)
Arritmias Cardíacas , Channelrhodopsins , Cicatriz , Fibroblastos , Miocitos Cardíacos , Animales , Ratones , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Cicatriz/patología , Cicatriz/fisiopatología , Fibroblastos/fisiología , Miocitos Cardíacos/fisiología , Channelrhodopsins/genética , Channelrhodopsins/fisiología , Optogenética , Conexina 43/genética , Conexina 43/fisiología , Técnicas de Inactivación de Genes
18.
Pflugers Arch ; 475(12): 1375-1385, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37670155

RESUMEN

Water transport through water channels, aquaporins (AQPs), is vital for many physiological processes including epithelial fluid secretion, cell migration and adipocyte metabolism. Water flux through AQPs is driven by the osmotic gradient that results from concentration differences of solutes including ions. Here, we developed a novel optogenetic toolkit that combines the light-gated anion channel GtACR1 either with the light-gated K+ channel HcKCR1 or the new Na+ channelrhodopsin HcNCR1 with high Na+ permeability, to manipulate water transport in Xenopus oocytes non-invasively. Water efflux through AQP was achieved by light-activating K+ and Cl- efflux through HcKCR1 and GtACR1. Contrarily, when GtACR1 was co-expressed with HcNCR1, inward movement of Na+ and Cl- was light-triggered, and the resulting osmotic gradient led to water influx through AQP1. In sum, we demonstrate a novel optogenetic strategy to manipulate water movement into or out of Xenopus oocytes non-invasively. This approach provides a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms.


Asunto(s)
Acuaporinas , Agua , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Agua/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Transporte Biológico , Permeabilidad , Oocitos/metabolismo
19.
Cell ; 186(20): 4325-4344.e26, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37652010

RESUMEN

KCR channelrhodopsins (K+-selective light-gated ion channels) have received attention as potential inhibitory optogenetic tools but more broadly pose a fundamental mystery regarding how their K+ selectivity is achieved. Here, we present 2.5-2.7 Å cryo-electron microscopy structures of HcKCR1 and HcKCR2 and of a structure-guided mutant with enhanced K+ selectivity. Structural, electrophysiological, computational, spectroscopic, and biochemical analyses reveal a distinctive mechanism for K+ selectivity; rather than forming the symmetrical filter of canonical K+ channels achieving both selectivity and dehydration, instead, three extracellular-vestibule residues within each monomer form a flexible asymmetric selectivity gate, while a distinct dehydration pathway extends intracellularly. Structural comparisons reveal a retinal-binding pocket that induces retinal rotation (accounting for HcKCR1/HcKCR2 spectral differences), and design of corresponding KCR variants with increased K+ selectivity (KALI-1/KALI-2) provides key advantages for optogenetic inhibition in vitro and in vivo. Thus, discovery of a mechanism for ion-channel K+ selectivity also provides a framework for next-generation optogenetics.


Asunto(s)
Channelrhodopsins , Rhinosporidium , Humanos , Channelrhodopsins/química , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Channelrhodopsins/ultraestructura , Microscopía por Crioelectrón , Canales Iónicos , Potasio/metabolismo , Rhinosporidium/química
20.
Neuropharmacology ; 238: 109651, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37414332

RESUMEN

Disruption of synaptic function is believed to represent a common pathway contributing to cognitive decline during aging. Optogenetics is a prodigious tool for studying relationships between function and synaptic circuitry but models utilizing viral vectors present limitations. Careful characterization of the functionality of channel rhodopsin in transgenic models is crucial for determining whether they can be used across aging. This includes verifying the light sensitivity of the protein and confirming its ability to generate action potentials in response to light stimulation. We combined in vitro optogenetic methodology and a reduced synaptic preparation of acutely isolated neurons to determine if the ChR2(H134R)-eYFP vGAT mouse model is well-suited for aging studies. We used neurons from young (2-6 mo), middle-aged (10-14 mo) and aged (17-25 mo) bacterial artificial chromosome (BAC) transgenic mouse line with stable expression of the channelrhodopsin-2 (ChR2) variant H134R in GABAergic cell populations. Cellular physiology and calcium dynamics were assessed in basal forebrain (BF) neurons using patch-clamp recording and fura-2 microfluorimetry, alongside 470 nm light stimulation of the transgenic ChR2 channel to characterize a wide array of physiological functions known to decline with age. We found ChR2 expression is functionally maintained across aging, while spontaneous and optically evoked inhibitory postsynaptic currents, and quantal content were decreased. Aged mice also showed an increase in intracellular calcium buffering. These results, which are on par with previous observations, demonstrate that the optogenetic vGAT BAC mouse model is well-suited for investigating age-related changes in calcium signaling and synaptic transmission.


Asunto(s)
Optogenética , Rodopsina , Ratones , Animales , Rodopsina/genética , Rodopsina/metabolismo , Optogenética/métodos , Calcio/metabolismo , Transmisión Sináptica , Ratones Transgénicos , Envejecimiento , Homeostasis , Channelrhodopsins/genética , Channelrhodopsins/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...