Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.006
Filtrar
1.
Biochem Biophys Res Commun ; 710: 149883, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38588611

RESUMEN

Congenital heart diseases are the most common birth defects around the world. Emerging evidence suggests that mitochondrial homeostasis is required for normal heart development. In mitochondria, a series of molecular chaperones including heat shock protein 60 (HSP60) are engaged in assisting the import and folding of mitochondrial proteins. However, it remains largely obscure whether and how these mitochondrial chaperones regulate cardiac development. Here, we generated a cardiac-specific Hspd1 deletion mouse model by αMHC-Cre and investigated the role of HSP60 in cardiac development. We observed that deletion of HSP60 in embryonic cardiomyocytes resulted in abnormal heart development and embryonic lethality, characterized by reduced cardiac cell proliferation and thinner ventricular walls, highlighting an essential role of cardiac HSP60 in embryonic heart development and survival. Our results also demonstrated that HSP60 deficiency caused significant downregulation of mitochondrial ETC subunits and induced mitochondrial stress. Analysis of gene expression revealed that P21 that negatively regulates cell proliferation is significantly upregulated in HSP60 knockout hearts. Moreover, HSP60 deficiency induced activation of eIF2α-ATF4 pathway, further indicating the underlying mitochondrial stress in cardiomyocytes after HSP60 deletion. Taken together, our study demonstrated that regular function of mitochondrial chaperones is pivotal for maintaining normal mitochondrial homeostasis and embryonic heart development.


Asunto(s)
Chaperonina 60 , Cardiopatías Congénitas , Animales , Ratones , Chaperonina 60/genética , Chaperonina 60/metabolismo , Cardiopatías Congénitas/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Miocitos Cardíacos/metabolismo
2.
Structure ; 32(5): 575-584.e3, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38412855

RESUMEN

Chaperonins Hsp60s are required for cellular vitality by assisting protein folding in an ATP-dependent mechanism. Although conserved, the human mitochondrial mHsp60 exhibits molecular characteristics distinct from the E. coli GroEL, with different conformational assembly and higher subunit association dynamics, suggesting a different mechanism. We previously found that the pathological mutant mHsp60V72I exhibits enhanced subunit association stability and ATPase activity. To provide structural explanations for the V72I mutational effects, here we determined a cryo-EM structure of mHsp60V72I. Our structural analysis combined with molecular dynamic simulations showed mHsp60V72I with increased inter-subunit interface, binding free energy, and dissociation force, all contributing to its enhanced subunit association stability. The gate to the nucleotide-binding (NB) site in mHsp60V72I mimicked the open conformation in the nucleotide-bound state with an additional open channel leading to the NB site, both promoting the mutant's ATPase activity. Our studies highlight the importance of mHsp60's characteristics in its biological function.


Asunto(s)
Adenosina Trifosfato , Chaperonina 60 , Microscopía por Crioelectrón , Simulación de Dinámica Molecular , Humanos , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/química , Chaperonina 60/metabolismo , Chaperonina 60/química , Chaperonina 60/genética , Unión Proteica , Sitios de Unión , Estabilidad Proteica , Mutación , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Conformación Proteica
3.
Theriogenology ; 217: 83-91, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38262223

RESUMEN

Heat shock proteins are the most evolutionarily conserved protein families induced by stressors including hyperthermia. In the context of pathologies of the male reproductive tract, cryptorchidism is the most common genital defect that compromises the reproductive potential of the male because it induces an increase in intratesticular temperature. In equine species, cryptorchidism affects almost 9 % of newborns and few studies have been carried out on the molecular aspects of the retained testis. In this study, the expression pattern of HSP60, 70, and 90 in abdominal and inguinal testes, in their contralateral descended normally testes, and in testes of normal horses were investigated by Western blot and immunohistochemistry. The histomorphological investigation of retained and scrotal testes was also investigated. The seminiferous epithelium of the retained testes showed a vacuolized appearance and displayed a completely blocked spermatogenesis for lacking meiotic and spermiogenetic cells. On the contrary, the contralateral scrotal testes did not show morphological damage and the seminiferous epithelium displayed all phases of the spermatogenetic cycle as in the normal testes. The morphology of Leydig cells was not affected by the cryptorchid state. Western blot and immunohistochemistry evidenced that equine testis (both scrotal and retained) expresses the three investigated HSPs. More in detail, the Western blot evidenced that HSP70 is the more expressed chaperone and that together with HSP90 it is highly expressed in the retained gonad (P < 0.05). The immunohistochemistry revealed the presence of the three HSPs in the spermatogonia of normal and cryptorchid testes. Spermatogonia of retained testes showed the lowest expression of HSP60 and the highest expression of HSP90. Spermatocytes, spermatids of scrotal testes, and the Sertoli cells of retained and scrotal testes did not display HSP60 whereas expressed HSP70 and HSP90. These two proteins were also localized in the nucleus of the premeiotic cells. The Leydig cells displayed the three HSPs with the higher immunostaining of HSP70 and 90 in the cryptorchid testes. The results indicate that the heat stress condition occurring in the cryptorchid testis influences the expression of HSPs.


Asunto(s)
Criptorquidismo , Enfermedades de los Caballos , Masculino , Animales , Caballos , Testículo/metabolismo , Criptorquidismo/genética , Criptorquidismo/veterinaria , Criptorquidismo/metabolismo , Chaperonina 60/metabolismo , Células de Sertoli/metabolismo , Células Intersticiales del Testículo/metabolismo , Enfermedades de los Caballos/metabolismo
4.
Cancer Biomark ; 39(3): 155-170, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37694354

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is a major histological subtype of lung cancer with a high mortality rate worldwide. Heat shock protein family D member 1 (HSPD1, also known as HSP60) is reported to be increased in tumor tissues of lung cancer patients compared with healthy control tissues. OBJECTIVE: We aimed to investigate the roles of HSPD1 in prognosis, carcinogenesis, and immune infiltration in LUAD using an integrative bioinformatic analysis. METHODS: HSPD1 expression in LUAD was investigated in several transcriptome-based and protein databases. Survival analysis was performed using the KM plotter and OSluca databases, while prognostic significance was independently confirmed through univariate and multivariate analyses. Integrative gene interaction network and enrichment analyses of HSPD1-correlated genes were performed to investigate the roles of HSPD1 in LUAD carcinogenesis. TIMER and TISIDB were used to analyze correlation between HSPD1 expression and immune cell infiltration. RESULTS: The mRNA and protein expressions of HSPD1 were higher in LUAD compared with normal tissues. High HSPD1 expression was associated with male gender and LUAD with advanced stages. High HSPD1 expression was an independent prognostic factor associated with poor survival in LUAD patients. HSPD1-correlated genes with prognostic impact were mainly involved in aberrant ribosome biogenesis, while LUAD patients with high HSPD1 expression had low tumor infiltrations of activated and immature B cells and CD4+ T cells. CONCLUSIONS: HSPD1 may play a role in the regulation of ribosome biogenesis and B cell-mediated immunity in LUAD. It could serve as a predictive biomarker for prognosis and immunotherapy response in LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Chaperonina 60 , Neoplasias Pulmonares , Proteínas Mitocondriales , Ribosomas , Humanos , Masculino , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Carcinogénesis , Chaperonina 60/metabolismo , Biología Computacional , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas Mitocondriales/metabolismo , Pronóstico , Ribosomas/metabolismo
5.
Vet Res Commun ; 48(2): 979-990, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38038815

RESUMEN

The presence of HSPs in female reproductive and their relationship with the steroid hormone fluctuation have been reported in several mammals but not in non-human primates. The present research dealt with the oviductal expression and localization of the more studied HSPs (60, 70, and 90) as well as the morphological changes in the Hamadryas baboon (Papio hamadryas) during the follicular, preovulatory, and luteal phases of the menstrual cycle. Therefore, western blots, histomorphological, and immunohistochemical analyses were carried out. The results of western blot analysis displayed the lowest HSP expression in the luteal phase. The histomorphology showed that the mucosal epithelium consisted of undifferentiated cuboidal cells in follicular and luteal phases and well-distinguishable columnar ciliated and non-ciliated cells during the preovulatory phase. Immunohistochemistry evidenced that the mucosal epithelium contained cytoplasmic and nuclear HSP60, 70, and 90 immunostaining in the follicular and luteal phases. During the preovulatory phase, the non-ciliated cells showed: (i) cytoplasmic HSP60; (ii) nuclear and cytoplasmic HSP90. Ciliated cells showed cytoplasmic and ciliary HSP70 and ciliary HSP90. The stromal cells and myocytes of muscular layer displayed a decreased cytoplasmic HSP60 in the preovulatory phase and nuclear and low cytoplasmic HSP70 throughout the menstrual cycle. Nuclear HSP90 decreased in ampulla stromal cells and the follicular phase myocytes. These findings indicate that the expression pattern of HSP60,70, and 90 is related to the morphofunctional features of the baboon oviductal ampulla during the menstrual cycle and could represent a referent point for further studies in the oviduct of Primates.


Asunto(s)
Chaperonina 60 , Papio hamadryas , Femenino , Animales , Chaperonina 60/metabolismo , Ciclo Menstrual , Trompas Uterinas , Epitelio/metabolismo , Mamíferos , Proteínas HSP70 de Choque Térmico , Proteínas HSP90 de Choque Térmico
6.
Proc Natl Acad Sci U S A ; 120(50): e2308933120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38064510

RESUMEN

The bacterial chaperonin GroEL-GroES promotes protein folding through ATP-regulated cycles of substrate protein binding, encapsulation, and release. Here, we have used cryoEM to determine structures of GroEL, GroEL-ADP·BeF3, and GroEL-ADP·AlF3-GroES all complexed with the model substrate Rubisco. Our structures provide a series of snapshots that show how the conformation and interactions of non-native Rubisco change as it proceeds through the GroEL-GroES reaction cycle. We observe specific charged and hydrophobic GroEL residues forming strong initial contacts with non-native Rubisco. Binding of ATP or ADP·BeF3 to GroEL-Rubisco results in the formation of an intermediate GroEL complex displaying striking asymmetry in the ATP/ADP·BeF3-bound ring. In this ring, four GroEL subunits bind Rubisco and the other three are in the GroES-accepting conformation, suggesting how GroEL can recruit GroES without releasing bound substrate. Our cryoEM structures of stalled GroEL-ADP·AlF3-Rubisco-GroES complexes show Rubisco folding intermediates interacting with GroEL-GroES via different sets of residues.


Asunto(s)
Adenosina Trifosfato , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina 60/metabolismo , Chaperonina 10/química , Pliegue de Proteína , Unión Proteica
7.
Zhongguo Zhong Yao Za Zhi ; 48(19): 5304-5314, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-38114120

RESUMEN

This study aims to observe the effects of diosgenin on the expression of mammalian target of rapamycin(mTOR), sterol regulatory element-binding protein-1c(SREBP-1c), heat shock protein 60(HSP60), medium-chain acyl-CoA dehydrogenase(MCAD), and short-chain acyl-CoA dehydrogenase(SCAD) in the liver tissue of the rat model of non-alcoholic fatty liver disease(NAFLD) and explore the mechanism of diosgenin in alleviating NAFLD. Forty male SD rats were randomized into five groups: a control group, a model group, low-(150 mg·kg~(-1)·d~(-1)) and high-dose(300 mg·kg~(-1)·d~(-1)) diosgenin groups, and a simvastatin(4 mg·kg~(-1)·d~(-1)) group. The rats in the control group were fed with a normal diet, while those in the other four groups were fed with a high-fat diet. After feeding for 8 weeks, the body weight of rats in the high-fat diet groups increased significantly. After that, the rats were administrated with the corresponding dose of diosgenin or simvastatin by gavage every day for 8 weeks. The levels of triglyceride(TG), total cholesterol(TC), alanine transaminase(ALT), and aspartate transaminase(AST) in the serum were determined by the biochemical method. The levels of TG and TC in the liver were measured by the enzyme method. Oil-red O staining was employed to detect the lipid accumulation, and hematoxylin-eosin(HE) staining to detect the pathological changes in the liver tissue. The mRNA and protein levels of mTOR, SREBP-1c, HSP60, MCAD, and SCAD in the liver tissue of rats were determined by real-time fluorescence quantitative polymerase chain reaction(RT-qPCR) and Western blot, respectively. Compared with the control group, the model group showed increased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lipid deposition in the liver, obvious hepatic steatosis, up-regulated mRNA and protein expression levels of mTOR and SREBP-1c, and down-regulated mRNA and protein expression levels of HSP60, MCAD, and SCAD. Compared with the model group, the rats in each treatment group showed obviously decreased body weight, food uptake, liver index, TG, TC, ALT, and AST levels in the serum, TG and TC levels in the liver, lessened lipid deposition in the liver, ameliorated hepatic steatosis, down-regulated mRNA and protein le-vels of mTOR and SREBP-1c, and up-regulated mRNA and protein levels of HSP60, MCAD, and SCAD. The high-dose diosgenin outperformed the low-dose diosgenin and simvastatin. Diosgenin may prevent and treat NAFLD by inhibiting the expression of mTOR and SREBP-1c and promoting the expression of HSP60, MCAD, and SCAD to reduce lipid synthesis, improving mitochondrial function, and promoting fatty acid ß oxidation in the liver.


Asunto(s)
Diosgenina , Enfermedad del Hígado Graso no Alcohólico , Ratas , Masculino , Animales , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Dieta Alta en Grasa/efectos adversos , Diosgenina/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/farmacología , Chaperonina 60/uso terapéutico , Ratas Sprague-Dawley , Hígado , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Triglicéridos , ARN Mensajero/metabolismo , Simvastatina/metabolismo , Simvastatina/farmacología , Simvastatina/uso terapéutico , Peso Corporal , Metabolismo de los Lípidos , Mamíferos/genética , Mamíferos/metabolismo
8.
Toxins (Basel) ; 15(11)2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999486

RESUMEN

GroEL is a chaperonin that helps other proteins fold correctly. However, alternative activities, such as acting as an insect toxin, have also been discovered. This work evaluates the chaperonin and insecticidal activity of different GroEL proteins from entomopathogenic nematodes on G. mellonella. The ability to synergize with the ExoA toxin of Pseudomonas aeruginosa was also investigated. The GroELXn protein showed the highest insecticidal activity among the different GroELs. In addition, it was able to significantly activate the phenoloxidase system of the target insects. This could tell us about the mechanism by which it exerts its toxicity on insects. GroEL proteins can enhance the toxic activity of the ExoA toxin, which could be related to its chaperonin activity. However, there is a significant difference in the synergistic effect that is more related to its alternative activity as an insecticidal toxin.


Asunto(s)
Insecticidas , Mariposas Nocturnas , Nematodos , Animales , Insecticidas/toxicidad , Insecticidas/metabolismo , Chaperonina 60/metabolismo , Chaperonina 60/farmacología , Insectos/metabolismo , Bacterias/metabolismo , Larva/metabolismo
9.
Plant Cell Environ ; 46(11): 3371-3391, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37606545

RESUMEN

The functionality of all metabolic processes in chloroplasts depends on a balanced integration of nuclear- and chloroplast-encoded polypeptides into the plastid's proteome. The chloroplast chaperonin machinery is an essential player in chloroplast protein folding under ambient and stressful conditions, with a more intricate structure and subunit composition compared to the orthologous GroEL/ES chaperonin of Escherichia coli. However, its exact role in chloroplasts remains obscure, mainly because of very limited knowledge about the interactors. We employed the competition immunoprecipitation method for the identification of the chaperonin's interactors in Chlamydomonas reinhardtii. Co-immunoprecipitation of the target complex in the presence of increasing amounts of isotope-labelled competitor epitope and subsequent mass spectrometry analysis specifically allowed to distinguish true interactors from unspecifically co-precipitated proteins. Besides known substrates such as RbcL and the expected complex partners, we revealed numerous new interactors with high confidence. Proteins that qualify as putative substrate proteins differ from bulk chloroplast proteins by a higher content of beta-sheets, lower alpha-helical conformation and increased aggregation propensity. Immunoprecipitations targeted against a subunit of the co-chaperonin lid revealed the ClpP protease as a specific partner complex, pointing to a close collaboration of these machineries to maintain protein homeostasis in the chloroplast.


Asunto(s)
Chaperonina 60 , Cloroplastos , Cloroplastos/metabolismo , Chaperonina 60/análisis , Chaperonina 60/química , Chaperonina 60/metabolismo , Pliegue de Proteína , Proteínas de Cloroplastos/metabolismo
10.
J Mol Endocrinol ; 71(3)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37522854

RESUMEN

Placenta synthesizes hormones that play a vital role in adapting maternal physiology and supporting fetal growth. This study aimed to explore the link between progesterone, a key steroid hormone produced by placenta, and mitochondrial fission and protein kinase R through the use of chemical inhibition in trophoblasts subjected to endotoxin lipopolysaccharide and double-stranded RNA analog polyinosinic:polycytidylic acid stress. Expressions of protein kinase R, dynamin-related protein 1, mitochondrial fission protein 1, and heat shock protein 60 were determined by applying lipopolysaccharide and polyinosinic:polycytidylic acid to BeWo trophoblast cells. Next, cells were treated with protein kinase R inhibitor 2-aminopurine and mitochondrial division inhibitor 1 to examine changes in progesterone levels and expression levels of proteins and mRNAs involved in progesterone biosynthesis. Last, effect of 2-aminopurine on mitochondrial fission was determined by immunoblotting and quantitative PCR (qPCR). Mitochondrial structural changes were also examined by transmission electron microscopy. Lipopolysaccharide and polyinosinic:polycytidylic acid stimulation induced mitochondrial fission and activated protein kinase R but decreased heat shock protein 60 levels and progesterone synthesis. Chemical inhibition of mitochondrial fission elevated progesterone synthesis and protein and mRNA levels of genes involved in progesterone biosynthesis. Inhibition of protein kinase R with 2-aminopurine prevented lipopolysaccharide and polyinosinic:polycytidylic acid induced mitochondrial fission and increased progesterone biosynthesis. Use of chemical inhibitors to treat placental stress caused by pathogens has potential to stabilize the production of progesterone. The study reveals that inhibiting mitochondrial fragmentation and reducing activity of stress kinase protein kinase R in syncytiotrophoblasts leads to an increase in progesterone synthesis when exposed to lipopolysaccharide and polyinosinic:polycytidylic acid.


Asunto(s)
Placenta , Progesterona , Embarazo , Femenino , Humanos , Placenta/metabolismo , Progesterona/metabolismo , Dinámicas Mitocondriales/fisiología , Lipopolisacáridos/farmacología , 2-Aminopurina/metabolismo , 2-Aminopurina/farmacología , Chaperonina 60/metabolismo , Proteínas Quinasas/metabolismo , Poli C/metabolismo , Poli C/farmacología
11.
J Phys Chem Lett ; 14(29): 6513-6521, 2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37440608

RESUMEN

The chaperonin GroEL is a multisubunit molecular machine that assists in protein folding in the Escherichia coli cytosol. Past studies have shown that GroEL undergoes large allosteric conformational changes during its reaction cycle. Here, we report single-molecule Förster resonance energy transfer measurements that directly probe the conformational transitions of one subunit within GroEL and its single-ring variant under equilibrium conditions. We find that four microstates span the conformational manifold of the protein and interconvert on the submillisecond time scale. A unique set of relative populations of these microstates, termed a macrostate, is obtained by varying solution conditions, e.g., adding different nucleotides or the cochaperone GroES. Strikingly, ATP titration studies demonstrate that the partition between the apo and ATP-ligated conformational macrostates traces a sigmoidal response with a Hill coefficient similar to that obtained in bulk experiments of ATP hydrolysis. These coinciding results from bulk measurements for an entire ring and single-molecule measurements for a single subunit provide new evidence for the concerted allosteric transition of all seven subunits.


Asunto(s)
Adenosina Trifosfato , Transferencia Resonante de Energía de Fluorescencia , Adenosina Trifosfato/metabolismo , Conformación Proteica , Escherichia coli/metabolismo , Pliegue de Proteína , Chaperonina 60/metabolismo , Unión Proteica
12.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37175554

RESUMEN

Similar to its bacterial homolog GroEL, Hsp60 in oligomeric conformation is known to work as a folding machine, with the assistance of co-chaperonin Hsp10 and ATP. However, recent results have evidenced that Hsp60 can stabilize aggregation-prone molecules in the absence of Hsp10 and ATP by a different, "holding-like" mechanism. Here, we investigated the relationship between the oligomeric conformation of Hsp60 and its ability to inhibit fibrillization of the Ab40 peptide. The monomeric or tetradecameric form of the protein was isolated, and its effect on beta-amyloid aggregation was separately tested. The structural stability of the two forms of Hsp60 was also investigated using differential scanning calorimetry (DSC), light scattering, and circular dichroism. The results showed that the protein in monomeric form is less stable, but more effective against amyloid fibrillization. This greater functionality is attributed to the disordered nature of the domains involved in subunit contacts.


Asunto(s)
Adenosina Trifosfato , Chaperonina 60 , Chaperonina 60/metabolismo , Adenosina Trifosfato/metabolismo , Chaperonina 10/química , Pliegue de Proteína
13.
J Ovarian Res ; 16(1): 81, 2023 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-37087461

RESUMEN

BACKGROUND: Heat shock protein 60 (HSP60) is essential for the folding and assembly of newly imported proteins to the mitochondria. HSP60 is overexpressed in most types of cancer, but its association with ovarian cancer is still in dispute. SKOV3 and OVCAR3 were used as experimental models after comparing the expression level of mitochondrial HSP60 in a normal human ovarian epithelial cell line and four ovarian cancer cell lines. RESULTS: Low HSPD1 (Heat Shock Protein Family D (HSP60) Member 1) expression was associated with unfavorable prognosis in ovarian cancer patients. Knockdown of HSPD1 significantly promoted the proliferation and migration of ovarian cancer cells. The differentially expressed proteins after HSPD1 knockdown were enriched in the lipoic acid (LA) biosynthesis and metabolism pathway, in which mitochondrial 3-oxoacyl-ACP synthase (OXSM) was the most downregulated protein and responsible for lipoic acid synthesis. HSP60 interacted with OXSM and overexpression of OXSM or LA treatment could reverse proliferation promotion mediated by HSPD1 knockdown. CONCLUSIONS: HSP60 interacted with OXSM and maintained its stability. Knockdown of HSPD1 could promote the proliferation and migration of SKOV3 and OVCAR3 via lowering the protein level of OXSM and LA synthesis.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa , Proliferación Celular , Chaperonina 60 , Neoplasias Ováricas , Ácido Tióctico , Femenino , Humanos , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Apoptosis , Línea Celular Tumoral , Proliferación Celular/genética , Chaperonina 60/genética , Chaperonina 60/metabolismo , Proteínas de Choque Térmico , Proteínas Mitocondriales/genética , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Ácido Tióctico/farmacología
14.
Molecules ; 28(4)2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36838891

RESUMEN

The incorporation of photoproteins into proteins of interest allows the study of either their localization or intermolecular interactions in the cell. Here we demonstrate the possibility of in vivo incorporating the photoprotein Aequorea victoria enhanced green fluorescent protein (EGFP) or Gaussia princeps luciferase (GLuc) into the tetradecameric quaternary structure of GroEL chaperonin and describe some physicochemical properties of the labeled chaperonin. Using size-exclusion and affinity chromatography, electrophoresis, fluorescent and electron transmission microscopy (ETM), small-angle X-ray scattering (SAXS), and bioluminescence resonance energy transfer (BRET), we show the following: (i) The GroEL14-EGFP is evenly distributed within normally divided E. coli cells, while gigantic undivided cells are characterized by the uneven distribution of the labeled GroEL14 which is mainly localized close to the cellular periplasm; (ii) EGFP and likely GLuc are located within the inner cavity of one of the two GroEL chaperonin rings and do not essentially influence the protein oligomeric structure; (iii) GroEL14 containing either EGFP or GLuc is capable of interacting with non-native proteins and the cochaperonin GroES.


Asunto(s)
Chaperoninas , Escherichia coli , Escherichia coli/metabolismo , Proteínas Luminiscentes/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Chaperoninas/metabolismo , Pliegue de Proteína , Chaperonina 60/metabolismo
15.
J Proteome Res ; 22(4): 1339-1346, 2023 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-36852893

RESUMEN

The generation of deoxyinosine (dI) in DNA is one of the most important sources of genetic mutations, which may lead to cancer and other human diseases. A further understanding of the biological consequences of dI necessitates the identification and functional characterizations of dI-binding proteins. Herein, we employed a mass spectrometry-based proteomics approach to detect the cellular proteins that may sense the presence of dI in DNA. Our results demonstrated that human mitochondrial heat shock protein 60 (HSPD1) can interact with dI-bearing DNA. We further demonstrated the involvement of HSPD1 in the sodium nitrite-induced DNA damage response and in the modulation of dI levels in vitro and in human cells. Together, these findings revealed HSPD1 as a novel dI-binding protein that may play an important role in the mitochondrial DNA damage control in human cells.


Asunto(s)
Chaperonina 60 , Proteínas Mitocondriales , Humanos , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , ADN , Reparación del ADN
16.
Eur Geriatr Med ; 14(1): 99-112, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36520371

RESUMEN

OBJECTIVES: Activation of the immune-inflammatory response system (IRS) and a deficiency in the compensatory immunoregulatory system (CIRS), neuronal injuries, and alterations in the glutamate receptor (GlutaR), aquaporin-4 (AQP4) and heat shock protein 60 (HSP60) are involved in delirium. Increased serum levels of neurofilament protein (NFP), glial fibrillary acidic protein (GFAP) and myelin basic protein (MBP) are biomarkers of neuronal injury. This investigation delineates whether elevated IgA/IgG reactivity against those self-antigens is associated with delirium severity and IRS activation. METHODS: We measured peak Delirium Rating Scale (DRS) scores on days 2 and 3 following surgery in 59 hip fractured older adults, and IgA and IgG antibody levels against MBP, NFP, GFAP and myelin oligodendrocyte glycoprotein (MOG), metabotropic glutamate receptors mGluRs 1 and 5, N-Methyl-D-Aspartate receptor (NMDAR) GLU1 (NR1) and GLU2 (NR2), APQ4 and HSP60. RESULTS: The IgA antibody levels against those self-antigens, especially GFAP, MBP and HSP60, strongly predict peak DRS scores on days 2 and 3 post-surgery. IgA reactivity against NMDAR and baseline DRS scores explained 40.6% of the variance in peak DRS scores, while IgA against NMDAR, IgG against MBP and age explained 29.1% of the variance in the IRS/CIRS ratio. There was no correlation between DRS scores and IgG directed against other self-antigens. CONCLUSIONS: Increased IgA levels against neuronal self-antigens, AQP4 and HSP60 are risk factors for delirium. Polyreactive antibody-associated breakdown of immune tolerance, IRS activation and injuries in the neuronal cytoskeleton, oligodendrocytes, astrocytes, glial cells, and myelin sheath are involved in the pathophysiology of delirium.


Asunto(s)
Acuaporina 4 , Delirio , Humanos , Acuaporina 4/metabolismo , Chaperonina 60/metabolismo , Delirio/etiología , Epítopos , Inmunoglobulina A/metabolismo , Inmunoglobulina G/metabolismo , Glicoproteína Mielina-Oligodendrócito/metabolismo , Proteínas de Neurofilamentos/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(48): e2213170119, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36409898

RESUMEN

Confining compartments are ubiquitous in biology, but there have been few experimental studies on the thermodynamics of protein folding in such environments. Recently, we reported that the stability of a model protein substrate in the GroEL/ES chaperonin cage is reduced dramatically by more than 5 kcal mol-1 compared to that in bulk solution, but the origin of this effect remained unclear. Here, we show that this destabilization is caused, at least in part, by a diminished hydrophobic effect in the GroEL/ES cavity. This reduced hydrophobic effect is probably caused by water ordering due to the small number of hydration shells between the cavity and protein substrate surfaces. Hence, encapsulated protein substrates can undergo a process similar to cold denaturation in which unfolding is promoted by ordered water molecules. Our findings are likely to be relevant to encapsulated substrates in chaperonin systems, in general, and are consistent with the iterative annealing mechanism of action proposed for GroEL/ES.


Asunto(s)
Chaperonina 60 , Pliegue de Proteína , Chaperonina 60/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Termodinámica , Agua
18.
J Genet ; 1012022.
Artículo en Inglés | MEDLINE | ID: mdl-36330787

RESUMEN

The pioneering studies carried out on heat shock-induced synthesis of specific proteins in the early 1970s did not identify any Hsp60 family protein in Drosophila. By the early 1980s, although the members of Hsp60 family of heat shock proteins (Hsp) were identified in a wide range of eukaryotes as homologs of the bacterial GroEL, none was known in Drosophila. The existence of the Hsp60 family protein was serendipitously revealed in Drosophila in my laboratory in 1989. Contrary to the earlier reports that all tissues in flies display the canonical heat shock response, the larval Malpighian tubules (MT) did not show induction of any of the major Hsps but synthesis of a putative Hsp60 family protein was found to be the most abundant in this tissue. A few years later, we identified this MTspecific heat shock-induced protein to indeed be a member of the Hsp60/chaperonin family. The Drosophila genome sequence projects subsequently revealed four putative Hsp60 gene sequences in the D. melanogaster genome. The present historical perspective chronicles contributions from my and other laboratories that unraveled several aspects of intriguing biology of the multiple Hsp60 genes in D. melanogaster, and highlights challenging questions awaiting future studies.


Asunto(s)
Chaperonina 60 , Drosophila melanogaster , Animales , Chaperonina 60/genética , Chaperonina 60/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Drosophila/genética , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico , Proteínas HSP70 de Choque Térmico/genética
19.
Sci Rep ; 12(1): 18321, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316435

RESUMEN

Human mitochondrial chaperonin mHsp60 is broadly associated with various human health conditions and the V72I mutation in mHsp60 causes a form of hereditary spastic paraplegia, a neurodegenerative disease. The main function of mHsp60 is to assist folding of mitochondrial proteins in an ATP-dependent manner. In this study, we unexpectedly found that mutant mHsp60V72I was more stable structurally and more active in the ATPase activity than the wildtype. Analysis of our recently solved cryo-EM structure of mHsp60 revealed allosteric roles of V72I in structural stability and ATPase activity, which were supported by studies including those using the V72A mutation. Despite with the increases in structural stability and ATPase activity, mHsp60V72I was less efficient in folding malate dehydrogenase, a putative mHsp60 substrate protein in mitochondria and also commonly used in chaperonin studies. In addition, although mHsp60V72I along with its cochaperonin mHsp10 was able to substitute the E. coli chaperonin system in supporting cell growth under normal temperature of 37 °C, it was unable under heat shock temperature of 42 °C. Our results support the importance of structural dynamics and an optimal ATP turnover that mHsp60 has evolved for its function and physiology. We propose that unproductive energy utilization, or hyperactive ATPase activity and compromised folding function, not mutually exclusive, are responsible for the V72I pathology in neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , Paraplejía Espástica Hereditaria , Humanos , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo , Chaperonina 10/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Mutación , Adenosina Trifosfato/metabolismo , Pliegue de Proteína
20.
mBio ; 13(5): e0143422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36106732

RESUMEN

The maintenance of viral protein homeostasis depends on the machinery of the infected host cells, giving us an insight into the interplay between host and virus. Accumulating evidence suggests that heat shock protein 60 (HSP60), as one molecular chaperone, is involved in regulating virus infection. However, the role of HSP60 during foot-and-mouth disease virus (FMDV) replication and its specific mechanisms have not been reported. We demonstrate that HSP60 modulates the FMDV life cycle. HSP60 plays a role at the postentry stage of the viral life cycle, including RNA replication and mRNA translation; however, HSP60 does not affect viral replication of Seneca Valley virus (SVA) or encephalomyocarditis virus (EMCV). We found that HSP60 is involved in FMDV replication complex (RC) formation. Furthermore, our results indicate that HSP60 interacts with FMDV nonstructural proteins 3A and 2C, key elements of the viral replication complex. We also show that HSP60 regulates the stability of 3A and 2C via caspase-dependent and autophagy-lysosome-dependent degradation, thereby promoting FMDV RNA synthesis and mRNA translation mediated by the RC. Additionally, we determined that the apical domain of HSP60 is responsible for interacting with 3A and 2C. The N terminus of 3A and ATPase domain of 2C are involved in binding to HSP60. Importantly, HSP60 depletion potently reduced FMDV pathogenicity in infected mice. Altogether, this study demonstrates a specific role of HSP60 in promoting FMDV replication. Furthermore, targeting host HSP60 will help us design the FMDV-specific antiviral drugs. IMPORTANCE FMDV is the leading cause of the foot-and-mouth disease (FMD), affecting cloven-hoofed animals with high morbidity and mortality. We determined that HSP60 is required for efficient viral RNA replication and mRNA translation during FMDV infection. Furthermore, we demonstrate that HSP60 interacts with FMDV nonstructural proteins 3A and 2C, the elements of the RC; HSP60 contributes to the stability of 3A and 2C to affect the formation and function of the RC. We also validated the potential role of HSP60 as the antiviral target in vivo using small interfering RNA. These findings deepen the understanding of the host-virus interaction and provide information supporting the design of novel therapeutics for FMDV infection.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Ratones , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Chaperonina 60/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Interferente Pequeño/metabolismo , Línea Celular , Virus de la Fiebre Aftosa/genética , Replicación Viral/fisiología , Antivirales/metabolismo , Caspasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...