Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Struct Biol ; 183(3): 429-440, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23876978

RESUMEN

We present a map-restrained self-guided Langevin dynamics (MapSGLD) simulation method for efficient targeted conformational search. The targeted conformational search represents simulations under restraints defined by experimental observations and/or by user specified structural requirements. Through map-restraints, this method provides an efficient way to maintain substructures and to set structure targets during conformational searching. With an enhanced conformational searching ability of self-guided Langevin dynamics, this approach is suitable for simulating large-scale conformational changes, such as the formation of macromolecular assemblies and transitions between different conformational states. Using several examples, we illustrate the application of this method in flexible fitting of atomic structures into density maps derived from cryo-electron microscopy.


Asunto(s)
Modelos Moleculares , Algoritmos , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Chaperonina 60/química , Chaperonina 60/ultraestructura , Simulación por Computador , Microscopía por Crioelectrón/métodos , Interpretación Estadística de Datos , Chaperoninas del Grupo II/química , Chaperoninas del Grupo II/ultraestructura , Pliegue de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Termodinámica
2.
Structure ; 19(5): 633-9, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21565698

RESUMEN

Chaperonins are large ATP-driven molecular machines that mediate cellular protein folding. Group II chaperonins use their "built-in lid" to close their central folding chamber. Here we report the structure of an archaeal group II chaperonin in its prehydrolysis ATP-bound state at subnanometer resolution using single particle cryo-electron microscopy (cryo-EM). Structural comparison of Mm-cpn in ATP-free, ATP-bound, and ATP-hydrolysis states reveals that ATP binding alone causes the chaperonin to close slightly with a ∼45° counterclockwise rotation of the apical domain. The subsequent ATP hydrolysis drives each subunit to rock toward the folding chamber and to close the lid completely. These motions are attributable to the local interactions of specific active site residues with the nucleotide, the tight couplings between the apical and intermediate domains within the subunit, and the aligned interactions between two subunits across the rings. This mechanism of structural changes in response to ATP is entirely different from those found in group I chaperonins.


Asunto(s)
Adenosina Trifosfato/metabolismo , Chaperoninas del Grupo II/química , Methanococcus/química , Subunidades de Proteína/química , Sitios de Unión , Microscopía por Crioelectrón/métodos , Chaperoninas del Grupo II/metabolismo , Chaperoninas del Grupo II/ultraestructura , Hidrólisis , Methanococcus/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Subunidades de Proteína/metabolismo
3.
Nat Protoc ; 5(10): 1697-708, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20885381

RESUMEN

With single-particle electron cryomicroscopy (cryo-EM), it is possible to visualize large, macromolecular assemblies in near-native states. Although subnanometer resolutions have been routinely achieved for many specimens, state of the art cryo-EM has pushed to near-atomic (3.3-4.6 Å) resolutions. At these resolutions, it is now possible to construct reliable atomic models directly from the cryo-EM density map. In this study, we describe our recently developed protocols for performing the three-dimensional reconstruction and modeling of Mm-cpn, a group II chaperonin, determined to 4.3 Å resolution. This protocol, utilizing the software tools EMAN, Gorgon and Coot, can be adapted for use with nearly all specimens imaged with cryo-EM that target beyond 5 Å resolution. Additionally, the feature recognition and computational modeling tools can be applied to any near-atomic resolution density maps, including those from X-ray crystallography.


Asunto(s)
Microscopía por Crioelectrón/métodos , Chaperoninas del Grupo II/ultraestructura , Programas Informáticos , Algoritmos , Cristalografía por Rayos X , Sustancias Macromoleculares , Modelos Moleculares , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
4.
Nature ; 463(7279): 379-83, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20090755

RESUMEN

Group II chaperonins are essential mediators of cellular protein folding in eukaryotes and archaea. These oligomeric protein machines, approximately 1 megadalton, consist of two back-to-back rings encompassing a central cavity that accommodates polypeptide substrates. Chaperonin-mediated protein folding is critically dependent on the closure of a built-in lid, which is triggered by ATP hydrolysis. The structural rearrangements and molecular events leading to lid closure are still unknown. Here we report four single particle cryo-electron microscopy (cryo-EM) structures of Mm-cpn, an archaeal group II chaperonin, in the nucleotide-free (open) and nucleotide-induced (closed) states. The 4.3 A resolution of the closed conformation allowed building of the first ever atomic model directly from the single particle cryo-EM density map, in which we were able to visualize the nucleotide and more than 70% of the side chains. The model of the open conformation was obtained by using the deformable elastic network modelling with the 8 A resolution open-state cryo-EM density restraints. Together, the open and closed structures show how local conformational changes triggered by ATP hydrolysis lead to an alteration of intersubunit contacts within and across the rings, ultimately causing a rocking motion that closes the ring. Our analyses show that there is an intricate and unforeseen set of interactions controlling allosteric communication and inter-ring signalling, driving the conformational cycle of group II chaperonins. Beyond this, we anticipate that our methodology of combining single particle cryo-EM and computational modelling will become a powerful tool in the determination of atomic details involved in the dynamic processes of macromolecular machines in solution.


Asunto(s)
Chaperoninas del Grupo II/química , Chaperoninas del Grupo II/metabolismo , Methanococcus/química , Pliegue de Proteína , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Regulación Alostérica , Sitios de Unión , Microscopía por Crioelectrón , Chaperoninas del Grupo II/ultraestructura , Hidrólisis/efectos de los fármacos , Modelos Moleculares , Unión Proteica , Conformación Proteica/efectos de los fármacos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA