Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.419
Filtrar
1.
Bioresour Technol ; 401: 130714, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641299

RESUMEN

This study established and investigated continuous macular pigment (MP) production with a lutein (L):zeaxanthin (Z) ratio of 4-5:1 by an MP-rich Chlorella sp. CN6 mutant strain in a continuous microalgal culture module. Chlorella sp. CN6 was cultured in a four-stage module for 10 days. The microalgal culture volume increased to 200 L in the first stage (6 days). Biomass productivity increased to 0.931 g/L/day with continuous indoor white light irradiation during the second stage (3 days). MP content effectively increased to 8.29 mg/g upon continuous, indoor white light and blue light-emitting diode irradiation in the third stage (1 day), and the microalgal biomass and MP concentrations were 8.88 g/L and 73.6 mg/L in the fourth stage, respectively. Using a two-step MP extraction process, 80 % of the MP was recovered with a high purity of 93 %, and its L:Z ratio was 4-5:1.


Asunto(s)
Biomasa , Chlorella , Pigmento Macular , Microalgas , Microalgas/metabolismo , Chlorella/metabolismo , Chlorella/crecimiento & desarrollo , Pigmento Macular/metabolismo , Luteína/metabolismo , Luz , Técnicas de Cultivo de Célula/métodos , Zeaxantinas/metabolismo , Xantófilas/metabolismo
2.
Bioprocess Biosyst Eng ; 47(5): 725-736, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582779

RESUMEN

The global energy crisis has spurred a shift from conventional to clean and sustainable energy sources. Biomass derived from microalgae is emerging as an alternative energy source with diverse applications. Despite the numerous advantages of microalgae, large-scale biomass harvesting is not economical and convenient. Self-flocculation is considered an effective phenomenon facilitated by extracting the flocculating substances from microalgae that assist aggregation of algal cells into flocs. A novel cellulose-based bioflocculant has been synthesized from sewage water grown Chlorella sorokiniana and Scenedesmus abundans for harvesting application. The produced bioflocculant amounted to 38.5% and 19.38% of the dry weight of S. abundans and C. sorokiniana, respectively. Analysis via FTIR, XRD, and FESEM-EDX revealed the presence of cellulose hydroxyapatite (HA) in algae-derived cellulose. Harvesting efficiencies of 95.3% and 89.16% were attained for S. abundans and C. sorokiniana, respectively, at a dosage of 0.5 g/L. Furthermore, the bioflocculant was recovered, enabling its reuse with recovery efficiencies of 52% and 10% for S. abundans and C. sorokiniana, respectively. This simple and efficient approach has the potential to replace other harvesting methods, thereby contributing to the economic algal biofuel production.


Asunto(s)
Celulosa , Chlorella , Floculación , Scenedesmus , Aguas del Alcantarillado , Chlorella/crecimiento & desarrollo , Chlorella/metabolismo , Scenedesmus/crecimiento & desarrollo , Scenedesmus/metabolismo , Celulosa/química , Biomasa , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo
3.
J Hazard Mater ; 470: 134241, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608594

RESUMEN

Artemisinin, a novel plant allelochemical, has attracted attention for its potential selective inhibitory effects on algae, yet to be fully explored. This study compares the sensitivity and action targets of Microcystis aeruginosa (M. aeruginosa) and Chlorella pyrenoidosa (C. pyrenoidosa) to artemisinin algaecide (AMA), highlighting their differences. Results indicate that at high concentrations, AMA displaces the natural PQ at the QB binding site within M. aeruginosa photosynthetic system, impairing the D1 protein repair function. Furthermore, AMA disrupts electron transfer from reduced ferredoxin (Fd) to NADP+ by interfering with the iron-sulfur clusters in the ferredoxin-NADP+ reductases (FNR) domain of Fd. Moreover, significant reactive oxygen species (ROS) accumulation triggers oxidative stress and interrupts the tricarboxylic acid cycle, hindering energy acquisition. Notably, AMA suppresses arginine synthesis in M. aeruginosa, leading to reduced microcystins (MCs) release. Conversely, C. pyrenoidosa counters ROS accumulation via photosynthesis protection, antioxidant defenses, and by regulating intracellular osmotic pressure, accelerating damaged protein degradation, and effectively repairing DNA for cellular detoxification. Additionally, AMA stimulates the expression of DNA replication-related genes, facilitating cell proliferation. Our finding offer a unique approach for selectively eradicating cyanobacteria while preserving beneficial algae, and shed new light on employing eco-friendly algicides with high specificity.


Asunto(s)
Artemisininas , Chlorella , Microcystis , Fotosíntesis , Especies Reactivas de Oxígeno , Microcystis/efectos de los fármacos , Microcystis/metabolismo , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Artemisininas/farmacología , Fotosíntesis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Microcistinas/metabolismo
4.
J Hazard Mater ; 470: 134279, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613960

RESUMEN

The application of antibiotics in freshwater aquaculture leads to increased contamination of aquatic environments. However, limited information is available on the co-metabolic biodegradation of antibiotics by microalgae in aquaculture. Feedstuffs provide multiple organic substrates for microalgae-mediated co-metabolism. Herein, we investigated the co-metabolism of sulfamethoxazole (SMX) by Chlorella pyrenoidosa when adding main components of feedstuff (glucose and lysine). Results showed that lysine had an approximately 1.5-fold stronger enhancement on microalgae-mediated co-metabolism of SMX than glucose, with the highest removal rate (68.77% ± 0.50%) observed in the 9-mM-Lys co-metabolic system. Furthermore, we incorporated reactive sites predicted by density functional theory calculations, 14 co-metabolites identified by mass spectrometry, and the roles of 18 significantly activated enzymes to reveal the catalytic reaction mechanisms underlying the microalgae-mediated co-metabolism of SMX. In lysine- and glucose-treated groups, five similar co-metabolic pathways were proposed, including bond breaking on the nucleophilic sulfur atom, ring cleavage and hydroxylation at multiple free radical reaction sites, together with acylation and glutamyl conjugation on electrophilic nitrogen atoms. Cytochrome P450, serine hydrolase, and peroxidase play crucial roles in catalyzing hydroxylation, bond breaking, and ring cleavage of SMX. These findings provide theoretical support for better utilization of microalgae-driven co-metabolism to reduce sulfonamide antibiotic residues in aquaculture.


Asunto(s)
Acuicultura , Chlorella , Glucosa , Microalgas , Sulfametoxazol , Contaminantes Químicos del Agua , Sulfametoxazol/metabolismo , Sulfametoxazol/química , Microalgas/metabolismo , Chlorella/metabolismo , Glucosa/metabolismo , Contaminantes Químicos del Agua/metabolismo , Lisina/metabolismo , Lisina/química , Biodegradación Ambiental , Redes y Vías Metabólicas , Antibacterianos/metabolismo , Antibacterianos/química
5.
Artículo en Inglés | MEDLINE | ID: mdl-38643813

RESUMEN

Antibiotics are ubiquitously present in aquatic environments, posing a serious ecological risk to aquatic ecosystems. However, the effects of antibiotics on the photosynthetic light reactions of freshwater algae and the underlying mechanisms are relatively less understood. In this study, the effects of 4 representative antibiotics (clarithromycin, enrofloxacin, tetracycline, and sulfamethazine) on a freshwater alga (Chlorella pyrenoidosa) and the associated mechanisms, primarily focusing on key regulators of the photosynthetic light reactions, were evaluated. Algae were exposed to different concentrations of clarithromycin (0.0-0.3 mg/L), enrofloxacin (0.0-30.0 mg/L), tetracycline (0.0-10.0 mg/L), and sulfamethazine (0.0-50.0 mg/L) for 7 days. The results showed that the 4 antibiotics inhibited the growth, the photosynthetic pigment contents, and the activity of antioxidant enzymes. In addition, exposure to clarithromycin caused a 118.4 % increase in malondialdehyde (MDA) levels at 0.3 mg/L. Furthermore, the transcripts of genes for the adenosine triphosphate (ATP) - dependent chloroplast proteases (ftsH and clpP), genes in photosystem II (psbA, psbB, and psbC), genes related to ATP synthase (atpA, atpB, and atpH), and petA (related to cytochrome b6/f complex) were altered by clarithromycin. This study contributes to a better understanding of the risk of antibiotics on primary producers in aquatic environment.


Asunto(s)
Antibacterianos , Chlorella , Fotosíntesis , Contaminantes Químicos del Agua , Chlorella/efectos de los fármacos , Chlorella/metabolismo , Fotosíntesis/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Tetraciclina/farmacología , Tetraciclina/toxicidad , Claritromicina/farmacología , Enrofloxacina/farmacología , Enrofloxacina/toxicidad , Sulfametazina/toxicidad , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/efectos de los fármacos , Luz , Clorofila/metabolismo
6.
Environ Pollut ; 349: 123881, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580063

RESUMEN

Microalgae and macrophytes are commonly used as human and animal food supplements. We examined the cultivation of the microalgae Chlorella sorokiniana and the duckweed Lemna minor in thermal waters under batch and sequencing batch conditions and we characterized the produced biomass for the presence of essential nutrients as well as for heavy metals and radioisotope content. The highest specific growth rate for the microalgae was observed when 5 or 15 mg/L N were supplemented while the optimal conditions for Lemna minor were observed in the co-presence of 5 mg/L N and 1.7 mg/L P. Lemna minor presented higher concentrations of proteins and lipids comparing to the studied microalgae. Both organisms contained high amounts of lutein (up to 1378 mg/kg for Lemna minor) and chlorophyll (up to 1518 mg/kg for Lemna minor) while ß-carotene and tocopherols were found at lower concentrations, not exceeding a few tens of mg/kg. The heavy metal content varied between the two species. Lemna minor accumulated more Cd, Cu, K, Mn, Na, Ni, and Zn whereas Al, Ca and Mg were higher in Chlorella sorokiniana. Both organisms could be a significant source of essential metals but the occasional exceedance of the statutory levels of toxic metals in food products raises concern for potential risk to either humans or animals. Application of gamma-spectroscopy to quantify the effective dose to humans from 228Ra, 226Ra and 40K showed that Chlorella sorokiniana was well under the radiological limits while the collected mass of Lemna minor was too small for radiological measurements with confidence.


Asunto(s)
Araceae , Biomasa , Chlorella , Metales Pesados , Microalgas , Radioisótopos , Metales Pesados/análisis , Metales Pesados/metabolismo , Chlorella/crecimiento & desarrollo , Chlorella/metabolismo , Araceae/metabolismo , Microalgas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/análisis , Clorofila/metabolismo
7.
Bioresour Technol ; 400: 130651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570100

RESUMEN

Excessive proliferation of algae in water depletes dissolved oxygen, resulting in the demise of aquatic life and environmental damage. This study delves into the effectiveness of the dielectric barrier discharge (DBD) plasma activated peracetic acid (PAA) system in deactivating Chlorella. Within 15 min, the algae removal effectiveness reached 89 % under ideal trial conditions. DBD plasma activation of PAA augmented the concentration of reactive species such as ·OH, 1O2, and organic radicals (RO·) in the solution, which are involved in the process of cell inactivation. Reactive oxygen species (ROS) within Chlorella cells continued to rise as a result of treatment-induced damage to the morphological structure and cell membrane of the organism. DNA and chlorophyll-a (Chl-a), were oxidized and destroyed by these invasive active compounds. This study presents an efficient advanced oxidation method to destroy algal cells and adds an alternative strategy for algal control in areas where eutrophication occurs.


Asunto(s)
Chlorella , Ácido Peracético , Gases em Plasma , Especies Reactivas de Oxígeno , Chlorella/metabolismo , Chlorella/efectos de los fármacos , Ácido Peracético/farmacología , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo
8.
Bioresour Technol ; 400: 130697, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38614145

RESUMEN

Effects of a phosphorus-solubilizing bacteria (PSB) Bacillus megatherium on growth and lipid production of Chlorella sorokiniana were investigated in synthesized swine wastewater with dissolved inorganic phosphorus (DIP), insoluble inorganic phosphorus (IIP), and organic phosphorus (OP). The results showed that the PSB significantly promoted the algal growth in OP and IIP, by 1.10 and 1.78-fold, respectively. The algal lipid accumulation was also greatly triggered, respectively by 4.39, 1.68, and 1.38-fold in DIP, IIP, and OP. Moreover, compared with DIP, OP improved the oxidation stability of algal lipid by increasing the proportion of saturated fatty acids (43.8 % vs 27.9 %), while the PSB tended to adjust it to moderate ranges (30.2-41.6 %). Further, the transcriptome analysis verified the OP and/or PSB-induced up-regulated genes involving photosynthesis, lipid metabolism, signal transduction, etc. This study provided novel insights to enhance microalgae-based nutrient removal combined with biofuel production in practical wastewater, especially with complex forms of phosphorus.


Asunto(s)
Chlorella , Lípidos , Fosfatos , Aguas Residuales , Aguas Residuales/microbiología , Animales , Chlorella/metabolismo , Chlorella/crecimiento & desarrollo , Porcinos , Fosfatos/metabolismo , Lípidos/biosíntesis , Fósforo/metabolismo , Metabolismo de los Lípidos , Solubilidad , Bacillus/metabolismo
9.
World J Microbiol Biotechnol ; 40(5): 151, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38553582

RESUMEN

The ubiquity of hexavalent chromium (Cr(VI)) from industrial activities poses a critical environmental threat due to its persistence, toxicity and mutagenic potential. Traditional physico-chemical methods for its removal often entail significant environmental drawbacks. Recent advancements in remediation strategies have emphasized nano and bioremediation techniques as promising avenues for cost-effective and efficient Cr(VI) mitigation. Bioremediation harnesses the capabilities of biological agents like microorganisms, and algae to mitigate heavy metal contamination, while nano-remediation employs nanoparticles for adsorption purposes. Various microorganisms, including E. coli, Byssochlamys sp., Pannonibacter phragmitetus, Bacillus, Aspergillus, Trichoderma, Fusarium, and Chlorella utilize bioreduction, biotransformation, biosorption and bioaccumulation mechanisms to convert Cr(VI) to Cr(III). Their adaptability to different environments and integration with nanomaterials enhance microbial activity, offering eco-friendly solutions. The study provides a brief overview of metabolic pathways involved in Cr(VI) bioreduction facilitated by diverse microbial species. Nitroreductase and chromate reductase enzymes play key roles in nitrogen and chromium removal, with nitroreductase requiring nitrate and NADPH/NADH, while the chromium reductase pathway relies solely on NADPH/NADH. This review investigates the various anthropogenic activities contributing to Cr(VI) emissions and evaluates the efficacy of conventional, nano-remediation, and bioremediation approaches in curbing Cr(VI) concentrations. Additionally, it scrutinizes the mechanisms underlying nano-remediation techniques for a deeper understanding of the remediation process. It identifies research gaps and offers insights into future directions aimed at enhancing the real-time applicability of bioremediation methods for mitigating with Cr(VI) pollution and pave the way for sustainable remediation solutions.


Asunto(s)
Chlorella , Escherichia coli , Escherichia coli/metabolismo , Chlorella/metabolismo , NAD , NADP , Cromo/toxicidad , Biodegradación Ambiental , Nitrorreductasas
10.
Genes (Basel) ; 15(3)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38540424

RESUMEN

Fatty acid desaturases (Fads), as key enzymes in the biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), catalyze the desaturation between defined carbons of fatty acyl chains and control the degree of unsaturation of fatty acids. In the present study, two Fads genes, designated MulFadsA and MulFadsB, were identified from the genome of the dwarf surf clam Mulinia lateralis (Mollusca, Mactridae), and their spatiotemporal expression was examined. MulFadsA and MulFadsB contained the corresponding conserved functional domains and clustered closely with their respective orthologs from other mollusks. Both genes were expressed in the developmental stages and all tested adult tissues of M. lateralis, with MulFadsA exhibiting significantly higher expression levels in adult tissues than MulFadsB. Subsequently, the effects of dietary microalgae on Fads expressions in the dwarf surf clam were investigated by feeding clams with two types of unialgal diets varying in fatty acid content, i.e., Chlorella pyrenoidosa (Cp) and Platymonas helgolandica (Ph). The results show that the expressions of MulFads were significantly upregulated among adult tissues in the Cp group compared with those in the Ph group. In addition, we observed the desaturation activity of MulFadsA via heterologous expression in yeasts, revealing Δ5 desaturation activity toward PUFA substrates. Taken together, these results provide a novel perspective on M. lateralis LC-PUFA biosynthesis, expanding our understanding of fatty acid synthesis in marine mollusks.


Asunto(s)
Bivalvos , Chlorella , Animales , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/genética , Ácidos Grasos Insaturados/metabolismo , Chlorella/metabolismo , Bivalvos/genética , Bivalvos/metabolismo , Ácidos Grasos/metabolismo
11.
Sci Total Environ ; 927: 171888, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38531442

RESUMEN

Lignocellulosic biomass is a pivotal renewable resource in biorefinery process, requiring pretreatment, primarily chemical pretreatment, for effective depolymerization and subsequent transformation. This process yields solid residue for saccharification and lignocellulosic pretreatment wastewater (LPW), which comprises sugars and inhibitors such as phenols and furans. This study explored the microalgal capacity to treat LPW, focusing on two key hydrolysate inhibitors: furfural and vanillin, which impact the growth of six green microalgae. Chlorella sorokiniana exhibited higher tolerance to furfural and vanillin. However, both inhibitors hindered the growth of C. sorokiniana and disrupted algal photosynthetic system, with vanillin displaying superior inhibition. A synergistic inhibitory effect (Q < 0.85) was observed with furfural and vanillin on algal growth. Furfural transformation to low-toxic furfuryl alcohol was rapid, yet the addition of vanillin hindered this process. Vanillin stimulated carbohydrate accumulation, with 50.48 % observed in the 0.1 g/L furfural + 0.1 g/L vanillin group. Additionally, vanillin enhanced the accumulation of C16: 0 and C18: 2, reaching 21.71 % and 40.36 %, respectively, with 0.1 g/L vanillin. This study proposed a microalgae-based detoxification and resource utilization approach for LPW, enhancing the comprehensive utilization of lignocellulosic components. The observed biomass modifications also suggested potential applications for biofuel production, contributing to the evolving landscape of sustainable biorefinery processes.


Asunto(s)
Lignina , Microalgas , Eliminación de Residuos Líquidos , Aguas Residuales , Aguas Residuales/química , Lignina/metabolismo , Eliminación de Residuos Líquidos/métodos , Benzaldehídos/metabolismo , Furaldehído/metabolismo , Biomasa , Contaminantes Químicos del Agua , Chlorella/metabolismo
12.
Bioresour Technol ; 398: 130512, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437960

RESUMEN

The reuse of wastewater after seawater cultivation is critically important. In this study, a phosphorus-supplemented seawater-wastewater cyclic system (PSSWCS) based on Chlorella pyrenoidosa SDEC-35 was developed. With the addition of phosphorus, the algal biomass and the ability to assimilate nitrogen and carbon were improved. At the nitrogen to phosphorus ratio of 20:1, the biomass productivity per mass of nitrogen reached 3.6 g g-1 (N) day-1 in the second cycle. After the third cycle the protein content reached 35.7% of dry mass, and the major metabolic substances in PSSWCS reached the highest content level of 89.5% (35.7% protein, 38.3% lipid, and 15.5% carbohydrate). After the fourth cycle the lipid content maintained at 40.1%. Furthermore, 100.0% recovery of wastewater in PSSWCS increased the nitrogen and carbon absorption to 15.0 and 396.8 g per tonne of seawater. This study achieved seawater-wastewater recycle and produced high-lipid and high-protein algae by phosphorus addition.


Asunto(s)
Chlorella , Microalgas , Aguas Residuales , Chlorella/metabolismo , Microalgas/metabolismo , Biomasa , Nitrógeno/metabolismo , Agua de Mar , Fósforo/metabolismo , Lípidos , Carbono/metabolismo
13.
Photosynth Res ; 159(2-3): 303-320, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466456

RESUMEN

Photosystem II (PSII) is one of the main pigment-protein complexes of photosynthesis which is highly sensitive to unfavorable environmental factors. The heterogeneity of PSII properties is essential for the resistance of autotrophic organisms to stress factors. Assessment of the PSII heterogeneity may be used in environmental monitoring for on-line detection of contamination of the environment. We propose an approach to assess PSII oxygen-evolving complex and light-harvesting antenna heterogeneity that is based on mathematical modeling of the shape of chlorophyll a fluorescence rise of 3-(3,4-dichlorophenyl)-1,1-dimethylurea-treated samples. The hierarchy of characteristic times of the processes considered in the model makes it possible to reduce the model to a system of three ordinary differential equations. The analytic solution of the reduced three-state model is expressed as a sum of two exponential functions, and it exactly reproduces the solution of the complete system within the time range from microseconds to hundreds of milliseconds. The combination of several such models for reaction centers with different properties made it possible to use it as an instrument to study PSII heterogeneity. PSII heterogeneity was studied for Chlamydomonas at different intensities of actinic light, for Scenedesmus under short-term heating, and for Chlorella grown in nitrate-enriched and nitrate-depleted media.


Asunto(s)
Chlorella , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila A , Diurona , Clorofila , Chlorella/metabolismo , Nitratos , Fotosíntesis , Modelos Teóricos , Complejos de Proteína Captadores de Luz/metabolismo , Luz
14.
Bioresour Technol ; 399: 130566, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467262

RESUMEN

The low-cost carbon source, acetate, was utilized to feed a linoleic acid-rich Chlorella sorokiniana for microalgal biomass and lipid accumulation. Remarkably high tolerance capability to high acetate dosage up to 30 g/L was observed, with heterotrophy being the preferred trophic mode for algal growth and lipogenesis when supplemented 20 g/L acetate. Transcriptome analysis revealed a marked activation of pathways involved in acetate bioconversion and lipogenesis upon exposure to high-level of acetate. However, the enhancement of photorespiration inhibited photosynthesis, which ultimately led to a decrease in biomass and lipid under mixotrophy. Heterotrophic acetate-feeding generated more superior amino acid profiling of algal biomass and a predominant linoleic acid content (50 %). Heterotrophic repeat fed-batch strategy in 5 L fermenter significantly increased the growth performance and lipid titer, with the highest levels achieved being 23.4 g/L and 7.0 g/L, respectively. This work provides a viable approach for bio-products production through acetate-based heterotrophic algal cultivation.


Asunto(s)
Chlorella , Microalgas , Chlorella/metabolismo , Ácido Linoleico/metabolismo , Microalgas/metabolismo , Procesos Heterotróficos , Biomasa , Acetatos
15.
Bioresour Technol ; 399: 130607, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499203

RESUMEN

A halotolerant consortium between microalgae and methanotrophic bacteria could effectively remediate in situ CH4 and CO2, particularly using saline wastewater sources. Herein, Methylomicrobium alcaliphilum 20Z was demonstrated to form a mutualistic association with Chlorella sp. HS2 at a salinity level above 3.0%. Co-culture significantly enhanced the growth of both microbes, independent of initial inoculum ratios. Additionally, increased methane provision in enclosed serum bottles led to saturated methane removal. Subsequent analyses suggested nearly an order of magnitude increase in the amount of carbon sequestered in biomass in methane-fed co-cultures, conditions that also maintained a suitable cultural pH suitable for methanotrophic growth. Collectively, these results suggest a robust metabolic coupling between the two microbes and the influence of the factors other than gaseous exchange on the assembled consortium. Therefore, multi-faceted investigations are needed to harness the significant methane removal potential of the identified halotolerant consortium under conditions relevant to real-world operation scenarios.


Asunto(s)
Chlorella , Methylococcaceae , Metano/metabolismo , Chlorella/metabolismo , Methylococcaceae/metabolismo , Bacterias/metabolismo
16.
Int J Biol Macromol ; 264(Pt 2): 130705, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38458300

RESUMEN

The mitochondria are known to exert significant influence on various aspects of cancer cell physiology. The suppression of mitochondrial function represents a novel avenue for the advancement of anti-cancer pharmaceuticals. The heat shock protein HSP90 functions as a versatile regulator of mitochondrial metabolism in cancer cells, rendering as a promising target for anticancer interventions. In this work, a novel acid polysaccharide named as XQZ3 was extracted from Chlorella pyrenoidosa and purified by DEAE-cellulose and gel-filtration chromatography. The structural characteristic of XQZ3 was evaluated by monosaccharides composition, methylation analysis, TEM, FT-IR, and 2D-NMR. It was found that XQZ3 with a molecular weight of 29.13 kDa was a complex branched polysaccharide with a backbone mainly composed of galactose and mannose. It exhibited good antitumor activity in vitro and in vivo by patient-derived 3D organoid models and patient-derived xenografts models. The mechanistic investigations revealed that XQZ3 specifically interacted with HSP90, impeding the activation of the HSP90/AKT/mTOR signaling cascade. This, in turn, led to the induction of mitochondrial dysfunction, autophagy, and apoptosis, ultimately resulting in the demise of cancer cells due to nutrient deprivation. This study offers a comprehensive theoretical foundation for the advancement of XQZ3, a novel polysaccharide inhibitor targeting HSP90, with potential as an effective therapeutic agent against cancer.


Asunto(s)
Chlorella , Neoplasias , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Chlorella/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Transducción de Señal , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Apoptosis , Metabolismo Energético , Mitocondrias/metabolismo , Polisacáridos/farmacología , Polisacáridos/metabolismo
17.
Bioresour Technol ; 396: 130420, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336213

RESUMEN

An integrated process for the co-production of cellulosic ethanol and microalgal biomass by fixing CO2 generated from bioethanol fermentation is proposed. Specifically, over one-fifth of the fermentative carbon was converted into high-purity CO2 during ethanol production. The optimal concentration of 4 % CO2 was identified for the growth and metabolism of Chlorella sp. BWY-1. A multiple short-term intermittent CO2 supply system was established to efficiently fix and recycle the waste CO2. Using this system, economical co-production of cellulosic ethanol by Zymomonas mobilis and microalgal biomass in biogas slurry wastewater was achieved, resulting in the production of ethanol at a rate of 0.4 g/L/h and a fixed fermentation CO2 of 3.1 g/L/d. Moreover, the amounts of algal biomass and chlorophyll a increased by over 50 % and two-fold, respectively. Through techno-economic analysis, the integrated process demonstrated its cost-effectiveness for cellulosic ethanol production. This study presents an innovative approach to a low-carbon circular bioeconomy.


Asunto(s)
Chlorella , Microalgas , Fermentación , Dióxido de Carbono/metabolismo , Biomasa , Etanol/metabolismo , Microalgas/metabolismo , Chlorella/metabolismo , Clorofila A , Biocombustibles
18.
Sci Total Environ ; 919: 170676, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38350567

RESUMEN

As one of the most commonly used biocidal cationic surfactants, benzalkonium chlorides (BACs) have been an increasing concern as emerging contaminants. Wastewater has been claimed the main point for BACs to enter into the environment, but to date, it is still largely unknown how the BACs affect the microbes (especially microalgae) in the practical wastewater and how to cost-effectively remove them. In this study, the inhibitory effects of a typical BACs, dodecyl dimethyl benzyl ammonium chloride (DDBAC), on a green microalga Chlorella sp. in oxidation pond wastewater were investigated. The results showed that though a hermetic effect at the first 2 days was observed with the DDBAC at low concentration (<6 mg/L), the algal growth and photosynthesis were significantly inhibited by the DDBAC at all the tested concentrations (3 to 48 mg/L). Fortunately, a new microbial consortium (MC) capable of degrading DDBAC was screened through a gradient domestication method. The MC mainly composed of Wickerhamomyces sp., Purpureocillium sp., and Achromobacter sp., and its maximum removal efficiency and removal rate of DDBAC (48 mg/L) respectively reached 98.1 % and 46.32 mg/L/d. Interestingly, a microbial-microalgal system (MMS) was constructed using the MC and Chlorella sp., and a synergetic effect between the two kinds of microorganisms was proposed: microalga provided oxygen and extracellular polysaccharides as co-metabolic substrates to help the MC to degrade DDBAC, while the MC helped to eliminate the DDBAC-induced inhibition on the alga. Further, by observing the seven kinds of degradation products (mainly including CH5O3P, C6H5CH2-, and C8H11N), two possible chemical pathways of the DDBAC degradation were proposed. In addition, the metagenomic sequencing results showed that the main functional genes of the MMS included antibiotic-resistant genes, ABC transporter genes, quorum sensing genes, two-component regulatory system genes, etc. This study provided some theoretical and application findings for the cost-effective pollution prevention of BACs in wastewater.


Asunto(s)
Chlorella , Microalgas , Aguas Residuales , Cloruro de Amonio/metabolismo , Consorcios Microbianos , Chlorella/metabolismo , Técnicas de Cocultivo , Biomasa
19.
Bioresour Technol ; 397: 130465, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38373503

RESUMEN

The nitrogen transformation, enzymatic activity, antioxidant ability and transcriptional response of Chlorella pyrenoidosa (C. pyrenoidosa) treating mariculture wastewater were compared under different light intensities. The microalgal growth, chlorophyll synthesis and nitrogen removal ability of C. pyrenoidosa increased with the light intensity from 3000 to 7000 Lux, whereas they slightly decreased under 9000 and 11,000 Lux. The nitrogen metabolism enzymatic activities displayed obvious differences under different light intensities and affected the nitrogen transformation process. The reactive oxygen species (ROS) production increased with the increase of operational time, whereas it had distinct differences under different light intensities. The changes of antioxidant enzymatic activities were positively correlated with the ROS production. The transcriptional response of C. pyrenoidosa was in accordance with the variation of the photosynthesis, nitrogen assimilation and antioxidant system under different light intensities. This study provides theoretical basis and technical support to select suitable light intensity for algae treating mariculture wastewater.


Asunto(s)
Chlorella , Aguas Residuales , Chlorella/metabolismo , Antioxidantes/metabolismo , Nitrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo
20.
Plant Physiol Biochem ; 207: 108385, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38280256

RESUMEN

The wide utilization of iron-based nanoparticles (NPs) based on their preferential properties has led to the discharge and accumulation of these materials into the aquatic environment. In this regard, a comparative study of different concentrations of α-Fe2O3 NPs and their micro form was conducted using microalga Chlorella sorokiniana up to the stationary growth phase. This study revealed that high concentrations of NPs (100 and 200 mg L-1) imposed a stressful condition on algal cells documented by a reduction in microalga growth, including cell number and specific growth rate. The physical contact between the algal cells and NPs resulted in a shading effect as well as morphological changes validated by scanning electron microscope results. The biochemical composition of C. sorokiniana exposed to high levels of Fe2O3 NPs was also evaluated. The increase in total carbohydrate content of algal cells along with a significant reduction in unsaturated fatty acids was found. Moreover, Fe2O3 NPs exposure induced oxidative stress evidenced by an increase in lipid peroxidation. To cope with oxidative stress, superoxide dismutase activity and antioxidant potential of microalga as defensive mechanisms increased in the culture with high concentrations of NPs. Besides, due to the interactions, microalga tended to form a protective layer from further cell-NP interactions through the secretion of extracellular polymeric substances. Nonetheless, the nano form of Fe2O3 was more toxic than its micro form due to its small size. Overall, this trial may provide additional insight into the toxicological mechanism and safety assessments of Fe2O3 NPs in the aquatic environment.


Asunto(s)
Chlorella , Microalgas , Nanopartículas , Chlorella/metabolismo , Nanopartículas/química , Antioxidantes/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...