Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 296: 100662, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33862085

RESUMEN

Photoactive biological systems modify the optical properties of their chromophores, known as spectral tuning. Determining the molecular origin of spectral tuning is instrumental for understanding the function and developing applications of these biomolecules. Spectral tuning in flavin-binding fluorescent proteins (FbFPs), an emerging class of fluorescent reporters, is limited by their dependency on protein-bound flavins, whose structure and hence electronic properties cannot be altered by mutation. A blue-shifted variant of the plant-derived improved light, oxygen, voltage FbFP has been created by introducing a lysine within the flavin-binding pocket, but the molecular basis of this shift remains unconfirmed. We here structurally characterize the blue-shifted improved light, oxygen, voltage variant and construct a new blue-shifted CagFbFP protein by introducing an analogous mutation. X-ray structures of both proteins reveal displacement of the lysine away from the chromophore and opening up of the structure as instrumental for the blue shift. Site saturation mutagenesis and high-throughput screening yielded a red-shifted variant, and structural analysis revealed that the lysine side chain of the blue-shifted variant is stabilized close to the flavin by a secondary mutation, accounting for the red shift. Thus, a single additional mutation in a blue-shifted variant is sufficient to generate a red-shifted FbFP. Using spectroscopy, X-ray crystallography, and quantum mechanics molecular mechanics calculations, we provide a firm structural and functional understanding of spectral tuning in FbFPs. We also show that the identified blue- and red-shifted variants allow for two-color microscopy based on spectral separation. In summary, the generated blue- and red-shifted variants represent promising new tools for application in life sciences.


Asunto(s)
Proteínas Bacterianas/química , Chloroflexus/metabolismo , Flavinas/metabolismo , Proteínas Luminiscentes/química , Proteínas Mutantes/química , Mutación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Chloroflexus/crecimiento & desarrollo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Simulación de Dinámica Molecular , Mutagénesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Fotoquímica , Conformación Proteica , Teoría Cuántica
2.
FEMS Microbiol Lett ; 366(10)2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31158281

RESUMEN

The genus Chloroflexus is a deeply branching group of thermophilic filamentous anoxygenic phototrophic bacteria. The bacteria in this genus have been shown to grow well heterotrophically under anaerobic photosynthetic and aerobic respiratory conditions. We examined autotrophic growth in new isolates of Chloroflexus strains from hot springs in Nakabusa, Japan. The isolates belonging to Chloroflexus aggregans (98.7% identity of 16S rRNA gene sequence to the respective type strain) and Chloroflexus aurantiacus (99.9% identity to the respective type strain) grew photoautotrophically under a 24% H2 atmosphere. We also observed chemolithotrophic growth of these isolates under 80% H2 and 5% O2 conditions in the dark. This is the first report showing that Chloroflexus grew under both photoautotrophic and chemolithotrophic conditions in addition to photoheterotrophic and aerobic chemoheterotrophic conditions.


Asunto(s)
Procesos Autotróficos , Chloroflexus/crecimiento & desarrollo , Chloroflexus/aislamiento & purificación , Manantiales de Aguas Termales/microbiología , Hidrógeno/metabolismo , Aerobiosis , Proteínas Bacterianas/genética , Crecimiento Quimioautotrófico , Chloroflexus/genética , Oscuridad , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
3.
FEMS Microbiol Lett ; 363(8)2016 04.
Artículo en Inglés | MEDLINE | ID: mdl-26946537

RESUMEN

Chloroflexus aggregans is an unbranched multicellular filamentous bacterium having the ability of gliding motility. The filament moves straightforward at a constant rate, ∼3 µm sec(-1) on solid surface and occasionally reverses the moving direction. In this study, we successfully detected movements of glass beads on the cell-surface along long axis of the filament indicating that the cell-surface movement was the direct force for gliding. Microscopic analyses found that the cell-surface movements were confined to a cell of the filament, and each cell independently moved and reversed the direction. To understand how the cellular movements determine the moving direction of the filament, we proposed a discrete-time stochastic model; sum of the directions of the cellular movements determines the moving direction of the filament only when the filament pauses, and after moving, the filament keeps the same directional movement until all the cells pause and/or move in the opposite direction. Monte Carlo simulation of this model showed that reversal frequency of longer filaments was relatively fixed to be low, but the frequency of shorter filaments varied widely. This simulation result appropriately explained the experimental observations. This study proposed the relevant mechanism adequately describing the motility of the multicellular filament in C. aggregans.


Asunto(s)
Membrana Celular/fisiología , Chloroflexus/fisiología , Movimiento/fisiología , Adhesión Bacteriana/fisiología , Chloroflexus/crecimiento & desarrollo , Modelos Biológicos
4.
FEMS Microbiol Lett ; 349(2): 171-9, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24164217

RESUMEN

The bacterium Chloroflexus aurantiacus excreted significant amounts of acetate during photohetero trophic growth on glucose and in resting cell suspensions. Up to 1.5 mol acetate per mol glucose were formed. In acetate-forming cells, the activities of phosphotransacetylase and acetate kinase, usually involved in acetate formation in Bacteria, could not be detected; instead, the cells contained an acetyl-CoA synthetase (ADP-forming) (ACD) (acetyl-CoA + ADP + Pi → acetate + ATP + CoA), an enzyme so far reported in prokaryotes to be specific for acetate-forming Archaea. ACD, which was induced 10-fold during growth on glucose, was purified and the encoding gene was identified as Caur_3920. The recombinant enzyme, a homotetrameric 300-kDa protein composed of 75-kDa subunits, was characterized as functional ACD. Substrate specificities and kinetic constants for acetyl-CoA/acetate and other acyl-CoA esters/acids were determined, showing similarity of the C. aurantiacus ACD to archaeal ACD I isoenzymes, which are involved in acetate formation from sugars. This is the first report of a functional ACD involved in acetate formation in the domain of Bacteria.


Asunto(s)
Acetatos/metabolismo , Chloroflexus/metabolismo , Coenzima A Ligasas/metabolismo , Chloroflexus/genética , Chloroflexus/crecimiento & desarrollo , Coenzima A Ligasas/genética , Activación Enzimática , Expresión Génica , Glucosa/metabolismo , Isoenzimas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
5.
Photosynth Res ; 110(3): 153-68, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22249883

RESUMEN

Chloroflexus aurantiacus J-10-fl is a thermophilic green bacterium, a filamentous anoxygenic phototroph, and the model organism of the phylum Chloroflexi. We applied high-throughput, liquid chromatography-mass spectrometry in a global quantitative proteomics investigation of C. aurantiacus cells grown under oxic (chemoorganoheterotrophically) and anoxic (photoorganoheterotrophically) redox states. Our global analysis identified 13,524 high-confidence peptides that matched to 1,286 annotated proteins, 242 of which were either uniquely identified or significantly increased in abundance under photoheterotrophic culture condition. Fifty-four of the 242 proteins are previously characterized photosynthesis-related proteins, including chlorosome proteins, proteins involved in the bacteriochlorophyll biosynthesis, 3-hydroxypropionate (3-OHP) CO(2) fixation pathway, and components of electron transport chains. The remaining 188 proteins have not previously been reported. Of these, five proteins were found to be encoded by genes from a novel operon and observed only in photoheterotrophically grown cells. These proteins candidates may prove useful in further deciphering the phototrophic physiology of C. aurantiacus and other filamentous anoxygenic phototrophs.


Asunto(s)
Chloroflexus/crecimiento & desarrollo , Chloroflexus/metabolismo , Procesos Heterotróficos/efectos de la radiación , Luz , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/efectos de la radiación , Dióxido de Carbono/metabolismo , Chloroflexus/citología , Chloroflexus/efectos de la radiación , Péptidos/metabolismo , Proteómica , Reproducibilidad de los Resultados
6.
BMC Genomics ; 12: 334, 2011 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-21714912

RESUMEN

BACKGROUND: Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. METHODS: The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. RESULTS: Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII), auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl. aurantiacus. According to previous reports and the genomic information, perspectives of Cfl. aurantiacus in the evolution of photosynthesis are also discussed. CONCLUSIONS: The genomic analyses presented in this report, along with previous physiological, ecological and biochemical studies, indicate that the anoxygenic phototroph Cfl. aurantiacus has many interesting and certain unique features in its metabolic pathways. The complete genome may also shed light on possible evolutionary connections of photosynthesis.


Asunto(s)
Chloroflexus/genética , Genoma Bacteriano , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Chloroflexus/clasificación , Chloroflexus/crecimiento & desarrollo , Mapeo Cromosómico , Complejo I de Transporte de Electrón/genética , Enzimas/genética , Redes y Vías Metabólicas , Nitrógeno/metabolismo , Fotosíntesis/genética , Filogenia , Análisis de Secuencia de ADN , Azufre/metabolismo
7.
Appl Environ Microbiol ; 77(17): 6181-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21764971

RESUMEN

Chloroflexus aurantiacus is a facultative autotrophic green nonsulfur bacterium that grows phototrophically in thermal springs and forms microbial mats with cyanobacteria. Cyanobacteria produce glycolate during the day (photorespiration) and excrete fermentation products at night. C. aurantiacus uses the 3-hydroxypropionate bi-cycle for autotrophic carbon fixation. This pathway was thought to be also suited for the coassimilation of various organic substrates such as glycolate, acetate, propionate, 3-hydroxypropionate, lactate, butyrate, or succinate. To test this possibility, we added these compounds at a 5 mM concentration to autotrophically pregrown cells. Although the provided amounts of H(2) and CO(2) allowed continuing photoautotrophic growth, cells immediately consumed most substrates at rates equaling the rate of autotrophic carbon fixation. Using [(14)C]acetate, half of the labeled organic carbon was incorporated into cell mass. Our data suggest that C. aurantiacus uses the 3-hydroxypropionate bi-cycle, together with the glyoxylate cycle, to channel organic substrates into the central carbon metabolism. Enzyme activities of the 3-hydroxypropionate bi-cycle were marginally affected when cells were grown heterotrophically with such organic substrates. The 3-hydroxypropionate bi-cycle in Chloroflexi is unique and was likely fostered in an environment in which traces of organic compounds can be coassimilated. Other bacteria living under oligotrophic conditions acquired genes of a rudimentary 3-hydroxypropionate bi-cycle, possibly for the same purpose. Examples are Chloroherpeton thalassium, Erythrobacter sp. strain NAP-1, Nitrococcus mobilis, and marine gammaproteobacteria of the OM60/NOR5 clade such as Congregibacter litoralis.


Asunto(s)
Procesos Autotróficos , Carbono/metabolismo , Chloroflexus/metabolismo , Compuestos Orgánicos/metabolismo , Radioisótopos de Carbono/metabolismo , Chloroflexus/crecimiento & desarrollo , Medios de Cultivo/química , Hidrógeno/metabolismo , Redes y Vías Metabólicas , Coloración y Etiquetado/métodos
8.
FEMS Microbiol Ecol ; 68(1): 46-58, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19175677

RESUMEN

Hypersaline microbial mat communities have recently been shown to be more diverse than once thought. The variability in community composition of hypersaline mats, both in terms of spatial and temporal dimensions, is still poorly understood. Because this information is essential to understanding the complex biotic and abiotic interactions within these communities, terminal restriction fragment analysis and 16S rRNA gene sequencing were used to characterize the near-surface community of a hypersaline microbial mat in Guerrero Negro, Mexico. Core samples were analyzed to assay community variability over large regional scales (centimeter to kilometer) and to track depth-related changes in population distribution at 250-microm intervals over a diel period. Significant changes in total species diversity were observed at increasing distances across the mat surface; however, key species (e.g. Microcoleus sp.) were identified throughout the mat. The vertical position and abundance of >50% of the 60 peaks detected varied dramatically over a diel cycle, including Beggiatoa sp., cyanobacteria, Chloroflexus sp., Halochromatium sp., Bacteroidetes sp. and several as-yet-identified bacteria. Many of these migrations correlated strongly with diel changes in redox conditions within the mat, contributing to strong day-night community structure differences.


Asunto(s)
Bacteroidetes/genética , Biodiversidad , Chloroflexus/genética , Cianobacterias/genética , Microbiología del Agua , Bacteroidetes/crecimiento & desarrollo , Chloroflexus/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Genes de ARNr , Fotoperiodo , Polimorfismo de Longitud del Fragmento de Restricción , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
9.
Appl Environ Microbiol ; 69(10): 6000-6, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14532055

RESUMEN

Stable carbon isotope fractionations between dissolved inorganic carbon and lipid biomarkers suggest photoautotrophy by Chloroflexus-like organisms in sulfidic and nonsulfidic Yellowstone hot springs. Where co-occurring, cyanobacteria appear to cross-feed Chloroflexus-like organisms supporting photoheterotrophy as well, although the relatively small 13C fractionation associated with cyanobacterial sugar biosynthesis may sometimes obscure this process.


Asunto(s)
Isótopos de Carbono/metabolismo , Carbono/metabolismo , Chloroflexus/metabolismo , Agua Dulce/microbiología , Biomasa , Dióxido de Carbono/metabolismo , Chloroflexus/crecimiento & desarrollo , Cromatografía de Gases , Medios de Cultivo , Cianobacterias/crecimiento & desarrollo , Cianobacterias/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Calor , Metabolismo de los Lípidos , Monosacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...