Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Bioenerg ; 1862(6): 148396, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33581107

RESUMEN

Chlorosomes of photosynthetic green bacteria are unique molecular assemblies providing efficient light harvesting followed by multi-step transfer of excitation energy to reaction centers. In each chlorosome, 104-105 bacteriochlorophyll (BChl) c/d/e molecules are organized by self-assembly into high-ordered aggregates. We studied the early-time dynamics of the excitation energy flow and energy conversion in chlorosomes isolated from Chloroflexus (Cfx.) aurantiacus bacteria by pump-probe spectroscopy with 30-fs temporal resolution at room temperature. Both the S2 state of carotenoids (Cars) and the Soret states of BChl c were excited at ~490 nm, and absorption changes were probed at 400-900 nm. A global analysis of spectroscopy data revealed that the excitation energy transfer (EET) from Cars to BChl c aggregates occurred within ~100 fs, and the Soret â†’ Q energy conversion in BChl c occurred faster within ~40 fs. This conclusion was confirmed by a detailed comparison of the early exciton dynamics in chlorosomes with different content of Cars. These processes are accompanied by excitonic and vibrational relaxation within 100-270 fs. The well-known EET from BChl c to the baseplate BChl a proceeded on a ps time-scale. We showed that the S1 state of Cars does not participate in EET. We discussed the possible presence (or absence) of an intermediate state that might mediates the Soret â†’ Qy internal conversion in chlorosomal BChl c. We discussed a possible relationship between the observed exciton dynamics and the structural heterogeneity of chlorosomes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Chloroflexus/metabolismo , Transferencia de Energía , Luz , Orgánulos/metabolismo , Fotosíntesis , Chloroflexus/efectos de la radiación , Cinética , Orgánulos/efectos de la radiación
2.
Photosynth Res ; 146(1-3): 95-108, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31939070

RESUMEN

Chlorosomes of green photosynthetic bacteria are the most amazing example of long-range ordered natural light-harvesting antennae. Chlorosomes are the largest among all known photosynthetic light-harvesting structures (~ 104-105 pigments in the aggregated state). The chlorosomal bacteriochlorophyll (BChl) c/d/e molecules are organized via self-assembly and do not require proteins to provide a scaffold for efficient light harvesting. Despite numerous investigations, a consensus regarding the spatial structure of chlorosomal antennae has not yet been reached. In the present work, we studied hyperchromism/hypochromism in the chlorosomal BChl c Q/B absorption bands of the green photosynthetic bacterium Chloroflexus (Cfx.) aurantiacus. The chlorosomes were isolated from cells grown under different light intensities and therefore, as we discovered earlier, they had different sizes of both BChl c antennae and their unit building blocks. We have shown experimentally that the Q-/B-band hyperchromism/hypochromism is proportional to the size of the chlorosomal antenna. We explained theoretically these findings in terms of excitonic intensity borrowing between the Q and B bands for the J-/H-aggregates of the BChls. The theory developed by Gülen (Photosynth Res 87:205-214, 2006) showed the dependence of the Q-/B-band hyperchromism/hypochromism on the structure of the aggregates. For the model of exciton-coupled BChl c linear chains within a unit building block, the theory predicted an increase in the hyperchromism/hypochromism with the increase in the number of molecules per chain and a decrease in it with the increase in the number of chains. It was previously shown that this model ensured a good fit with spectroscopy experiments and approximated the BChl c low packing density in vivo. The presented experimental and theoretical studies of the Q-/B-band hyperchromism/hypochromism permitted us to conclude that the unit building block of Cfx. aurantiacus chlorosomes comprises of several short BChl c chains.This conclusion is in accordance with previous linear and nonlinear spectroscopy studies on Cfx. aurantiacus chlorosomes.


Asunto(s)
Bacterioclorofilas/metabolismo , Chloroflexus/metabolismo , Fotosíntesis , Proteínas Bacterianas/metabolismo , Chloroflexus/efectos de la radiación , Luz , Orgánulos/metabolismo , Análisis Espectral
3.
Microbes Environ ; 34(3): 304-309, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31391357

RESUMEN

Chloroflexus aggregans is a thermophilic filamentous anoxygenic phototrophic bacterium frequently found in microbial mats in natural hot springs. C. aggregans often thrives with cyanobacteria that engage in photosynthesis to provide it with an organic substrate; however, it sometimes appears as the dominant phototroph in microbial mats without cyanobacteria. This suggests that C. aggregans has the ability to grow photoautotrophically. However, photoautotrophic growth has not been observed in any cultured strains of C. aggregans. We herein attempted to isolate a photoautotrophic strain from C. aggregansdominated microbial mats in Nakabusa hot spring in Japan. Using an inorganic medium, we succeeded in isolating a new strain that we designated "ACA-12". A phylogenetic analysis based on 16S rRNA gene and 16S-23S rRNA gene internal transcribed spacer (ITS) region sequences revealed that strain ACA-12 was closely related to known C. aggregans strains. Strain ACA-12 showed sulfide consumption along with autotrophic growth under anaerobic light conditions. The deposited elemental sulfur particles observed by microscopy indicated that sulfide oxidation occurred, similar to that in photoautotrophic strains in the related species, C. aurantiacus. Moreover, we found that other strains of C. aggregans, including the type strain, also exhibited a slight photoautotrophic growing ability, whereas strain ACA-12 showed the fastest growth rate. This is the first demonstration of photoautotrophic growth with sulfide in C. aggregans. The present results strongly indicate that C. aggregans is associated with inorganic carbon incorporation using sulfide as an electron donor in hot spring microbial mats.


Asunto(s)
Chloroflexus/metabolismo , Procesos Fototróficos , Sulfuros/metabolismo , Proteínas Bacterianas/genética , Chloroflexus/clasificación , Chloroflexus/genética , Chloroflexus/efectos de la radiación , Medios de Cultivo/química , ADN Bacteriano/genética , ADN Espaciador Ribosómico/genética , Manantiales de Aguas Termales/microbiología , Japón , Luz , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfuros/análisis , Azufre/metabolismo
4.
Photosynth Res ; 110(3): 153-68, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22249883

RESUMEN

Chloroflexus aurantiacus J-10-fl is a thermophilic green bacterium, a filamentous anoxygenic phototroph, and the model organism of the phylum Chloroflexi. We applied high-throughput, liquid chromatography-mass spectrometry in a global quantitative proteomics investigation of C. aurantiacus cells grown under oxic (chemoorganoheterotrophically) and anoxic (photoorganoheterotrophically) redox states. Our global analysis identified 13,524 high-confidence peptides that matched to 1,286 annotated proteins, 242 of which were either uniquely identified or significantly increased in abundance under photoheterotrophic culture condition. Fifty-four of the 242 proteins are previously characterized photosynthesis-related proteins, including chlorosome proteins, proteins involved in the bacteriochlorophyll biosynthesis, 3-hydroxypropionate (3-OHP) CO(2) fixation pathway, and components of electron transport chains. The remaining 188 proteins have not previously been reported. Of these, five proteins were found to be encoded by genes from a novel operon and observed only in photoheterotrophically grown cells. These proteins candidates may prove useful in further deciphering the phototrophic physiology of C. aurantiacus and other filamentous anoxygenic phototrophs.


Asunto(s)
Chloroflexus/crecimiento & desarrollo , Chloroflexus/metabolismo , Procesos Heterotróficos/efectos de la radiación , Luz , Proteoma/metabolismo , Proteínas Bacterianas/metabolismo , Vías Biosintéticas/efectos de la radiación , Dióxido de Carbono/metabolismo , Chloroflexus/citología , Chloroflexus/efectos de la radiación , Péptidos/metabolismo , Proteómica , Reproducibilidad de los Resultados
5.
Photosynth Res ; 111(1-2): 205-17, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21710338

RESUMEN

Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) have been employed in studying the structural information of various biological systems, particularly in systems without high-resolution structural information available. In this report, we briefly present some principles and biological applications of neutron scattering and DLS, compare the differences in information that can be obtained with small-angle X-ray scattering (SAXS), and then report recent studies of SANS and DLS, together with other biophysical approaches, for light-harvesting antenna complexes and reaction centers of purple and green phototrophic bacteria.


Asunto(s)
Chloroflexus/química , Diatomeas/química , Complejos de Proteína Captadores de Luz/química , Dispersión del Ángulo Pequeño , Tilacoides/química , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/efectos de la radiación , Chloroflexus/metabolismo , Chloroflexus/efectos de la radiación , Diatomeas/metabolismo , Diatomeas/efectos de la radiación , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Complejos de Proteína Captadores de Luz/efectos de la radiación , Difracción de Neutrones , Fotosíntesis , Proteobacteria/química , Proteobacteria/metabolismo , Proteobacteria/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/efectos de la radiación
6.
Biochemistry (Mosc) ; 76(12): 1360-6, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22150281

RESUMEN

The change in the dark reduction rate of photooxidized reaction centers (RC) of type II from three anoxygenic bacteria (Rhodobacter sphaeroides R-26, Chromatium minutissimum, and Chloroflexus aurantiacus) having different redox potentials of the P(+)/P pair and availability of RC for exogenous electron donors was investigated upon the addition of Mn(2+) and HCO(3)(-). It was found that the dark reduction of P(870)(+) from Rb. sphaeroides R-26 is considerably accelerated upon the combined addition of 0.5 mM MnCl(2) and 30-75 mM NaHCO(3) (as a result of formation of "low-potential" complexes [Mn(HCO(3))(2)]), while MnCl(2) and NaHCO(3) added separately had no such effect. The effect is not observed either in RC from Cf. aurantiacus (probably due to the low oxidation potential of the primary electron donor, P(865), which results in thermodynamic difficulties of the redox interaction between P(865)(+) and Mn(2+)) or in RC from Ch. minutissimum (apparently due to the presence of the RC-bound cytochrome preventing the direct interaction between P(870)(+) and Mn(2+)). The absence of acceleration of the dark reduction of P(870)(+) in the RC of Rb. sphaeroides R-26 when Mn(2+) and HCO(3)(-) were replaced by Mg(2+) or Ca(2+) and by formate, oxalate, or acetate, respectively, reveals the specificity of the Mn2+-bicarbonate complexes for the redox interaction with P(+). The results of this work might be considered as experimental evidence for the hypothesis of the participation of Mn(2+) complexes in the evolutionary origin of the inorganic core of the water oxidizing complex of photosystem II.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cloruros/metabolismo , Chloroflexus/metabolismo , Chromatium/metabolismo , Compuestos de Manganeso/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chloroflexus/química , Chloroflexus/genética , Chloroflexus/efectos de la radiación , Chromatium/química , Chromatium/genética , Chromatium/efectos de la radiación , Cinética , Luz , Oxidación-Reducción , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/genética , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/efectos de la radiación
7.
J Bioinform Comput Biol ; 6(4): 643-66, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18763734

RESUMEN

Transient absorption difference spectroscopy with approximately 20 femtosecond (fs) resolution was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of Chloroflexus (C.) aurantiacus. In RCs, the composition of the B-branch chromophores is different with respect to that of purple bacterial RCs by occupying the B(B) binding site of accessory bacteriochlorophyll by bacteriopheophytin molecule (Phi(B)). It was found that the nuclear wave packet motion induced on the potential energy surface of the excited state of the primary electron donor P* by approximately 20 fs excitation leads to a coherent formation of the states P+Phi(B)(-) and P+B(A)(-) (B(A) is a bacteriochlorophyll monomer in the A-branch of cofactors). The processes were studied by measuring coherent oscillations in kinetics of the absorbance changes at 900 nm and 940 nm (P* stimulated emission), at 750 nm and 785 nm (Phi(B) absorption bands), and at 1,020-1028 nm (B(A)(-) absorption band). In RCs, the immediate bleaching of the P band at 880 nm and the appearance of the stimulated wave packet emission at 900 nm were accompanied (with a small delay of 10-20 fs) by electron transfer from P* to the B-branch with bleaching of the Phi(B) absorption band at 785 nm due to Phi(B)(-) formation. These data are consistent with recent measurements for the mutant HM182L Rb. sphaeroides RCs (Yakovlev et al., Biochim Biophys Acta 1757:369-379, 2006). Only at a delay of 120 fs was the electron transfer from P* to the A-branch observed with a development of the B(A)(-) absorption band at 1028 nm. This development was in phase with the appearance of the P* stimulated emission at 940 nm. The data on the A-branch electron transfer in C. aurantiacus RCs are consistent with those observed in native RCs of Rb. sphaeroides. The mechanism of charge separation in RCs with the modified B-branch pigment composition is discussed in terms of coupling between the nuclear wave packet motion and electron transfer from P* to Phi(B) and B(A) primary acceptors in the B-branch and A-branch, respectively.


Asunto(s)
Chloroflexus/química , Chloroflexus/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Transporte de Electrón , Luz , Dosis de Radiación
8.
Arch Microbiol ; 182(4): 265-76, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15340781

RESUMEN

Based upon their photosynthetic nature and the presence of a unique light-harvesting antenna structure, the chlorosome, the photosynthetic green bacteria are defined as a distinctive group in the Bacteria. However, members of the two taxa that comprise this group, the green sulfur bacteria (Chlorobi) and the filamentous anoxygenic phototrophic bacteria ("Chloroflexales"), are otherwise quite different, both physiologically and phylogenetically. This review summarizes how genome sequence information facilitated studies of the biosynthesis and function of the photosynthetic apparatus and the oxidation of inorganic sulfur compounds in two model organisms that represent these taxa, Chlorobium tepidum and Chloroflexus aurantiacus. The genes involved in bacteriochlorophyll (BChl) c and carotenoid biosynthesis in these two organisms were identified by sequence homology with known BChl a and carotenoid biosynthesis enzymes, gene cluster analysis in Cfx. aurantiacus, and gene inactivation studies in Chl. tepidum. Based on these results, BChl a and BChl c biosynthesis is similar in the two organisms, whereas carotenoid biosynthesis differs significantly. In agreement with its facultative anaerobic nature, Cfx. aurantiacus in some cases apparently produces structurally different enzymes for heme and BChl biosynthesis, in which one enzyme functions under anoxic conditions and the other performs the same reaction under oxic conditions. The Chl. tepidum mutants produced with modified BChl c and carotenoid species also allow the functions of these pigments to be studied in vivo.


Asunto(s)
Chlorobium/genética , Chlorobium/metabolismo , Chloroflexus/genética , Chloroflexus/metabolismo , Fotosíntesis/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Bacterioclorofila A/biosíntesis , Bacterioclorofila A/genética , Bacterioclorofilas/biosíntesis , Bacterioclorofilas/genética , Carotenoides/biosíntesis , Chlorobium/efectos de la radiación , Chloroflexus/efectos de la radiación , Genes Bacterianos , Genómica , Modelos Biológicos , Familia de Multigenes , Mutación , Orgánulos/metabolismo , Especificidad de la Especie , Azufre/metabolismo
9.
Biophys J ; 85(5): 3173-86, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14581217

RESUMEN

The interior of chlorosomes of green bacteria forms an unusual antenna system organized without proteins. The steady-spectra (absorption, circular dichroism, and linear dichroism) have been modeled using the Frenkel Hamiltonian for the large tubular aggregates of bacteriochlorophylls with geometries corresponding to those proposed for Chloroflexus aurantiacus and Chlorobium tepidum chlorosomes. For the Cf. aurantiacus aggregates we apply a structure used previously (V. I. Prokhorenko., D. B. Steensgaard, and A. R. Holzwarth, Biophys: J. 2000, 79:2105-2120), whereas for the Cb. tepidum aggregates a new extended model of double-tube aggregates, based on recently published solid-state nuclear magnetic resonance studies (B.-J. van Rossum, B. Y. van Duhl, D. B. Steensgaard, T. S. Balaban, A. R. Holzwarth, K. Schaffner, and H. J. M. de Groot, Biochemistry 2001, 40:1587-1595), is developed. We find that the circular dichroism spectra depend strongly on the aggregate length for both types of chlorosomes. Their shape changes from "type-II" (negative at short wavelengths to positive at long wavelengths) to the "mixed-type" (negative-positive-negative) in the nomenclature proposed in K. Griebenow, A. R. Holzwarth, F. van Mourik, and R. van Grondelle, Biochim: Biophys. Acta 1991, 1058:194-202, for an aggregate length of 30-40 bacteriochlorophyll molecules per stack. This "size effect" on the circular dichroism spectra is caused by appearance of macroscopic chirality due to circular distribution of the transition dipole moment of the monomers. We visualize these distributions, and also the corresponding Frenkel excitons, using a novel presentation technique. The observed size effects provide a key to explain many previously puzzling and seemingly contradictory experimental data in the literature on the circular and linear dichroism spectra of seemingly identical types of chlorosomes.


Asunto(s)
Bacterioclorofilas/química , Chlorobium/metabolismo , Chlorobium/efectos de la radiación , Chloroflexus/metabolismo , Chloroflexus/efectos de la radiación , Dicroismo Circular/métodos , Modelos Biológicos , Chlorobium/química , Chlorobium/ultraestructura , Chloroflexus/química , Chloroflexus/ultraestructura , Simulación por Computador , Dimerización , Isomerismo , Luz , Sustancias Macromoleculares , Modelos Químicos , Orgánulos/química , Orgánulos/metabolismo , Orgánulos/efectos de la radiación , Orgánulos/ultraestructura , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/ultraestructura , Conformación Proteica , Especificidad de la Especie , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...