Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
1.
BMC Microbiol ; 24(1): 165, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745279

RESUMEN

Globally, drought stress poses a significant threat to crop productivity. Improving the drought tolerance of crops with microbial biostimulants is a sustainable strategy to meet a growing population's demands. This research aimed to elucidate microbial biostimulants' (Plant Growth Promoting Rhizobacteria) role in alleviating drought stress in oil-seed crops. In total, 15 bacterial isolates were selected for drought tolerance and screened for plant growth-promoting (PGP) attributes like phosphate solubilization and production of indole-3-acetic acid, siderophore, hydrogen cyanide, ammonia, and exopolysaccharide. This research describes two PGPR strains: Acinetobacter calcoaceticus AC06 and Bacillus amyloliquefaciens BA01. The present study demonstrated that these strains (AC06 and BA01) produced abundant osmolytes under osmotic stress, including proline (2.21 and 1.75 µg ml- 1), salicylic acid (18.59 and 14.21 µg ml- 1), trehalose (28.35 and 22.74 µg mg- 1 FW) and glycine betaine (11.35 and 7.74 mg g- 1) respectively. AC06 and BA01 strains were further evaluated for their multifunctional performance by inoculating in Arachis hypogaea L. (Groundnut) under mild and severe drought regimes (60 and 40% Field Capacity). Inoculation with microbial biostimulants displayed distinct osmotic-adjustment abilities of the groundnut, such as growth parameters, plant biomass, photosynthetic pigments, relative water content, proline, and soluble sugar in respective to control during drought. On the other hand, plant sensitivity indexes such as electrolyte leakage and malondialdehyde (MDA) contents were decreased as well as cooperatively conferred plant drought tolerance by induced alterations in stress indicators such as catalase (CAT), ascorbate peroxidase (APX), and superoxide dismutase (SOD). Thus, Acinetobacter sp. AC06 and Bacillus sp. BA01 can be considered as osmolyte producing microbial biostimulants to simultaneously induce osmotic tolerance and metabolic changes in groundnuts under drought stress.


Asunto(s)
Arachis , Sequías , Estrés Fisiológico , Arachis/microbiología , Arachis/crecimiento & desarrollo , Arachis/metabolismo , Arachis/fisiología , Prolina/metabolismo , Bacillus amyloliquefaciens/metabolismo , Bacillus amyloliquefaciens/fisiología , Microbiología del Suelo , Presión Osmótica , Betaína/metabolismo , Ácidos Indolacéticos/metabolismo , Ácido Salicílico/metabolismo , Acinetobacter/metabolismo , Acinetobacter/crecimiento & desarrollo , Acinetobacter/fisiología , Cianuro de Hidrógeno/metabolismo , Trehalosa/metabolismo
2.
Plant Physiol Biochem ; 206: 108222, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016371

RESUMEN

Hydrogen cyanide has been extensively used worldwide for bud dormancy break in fruit trees, consequently enhancing fruit production via expedited cultivation, especially in areas with controlled environments or warmer regions. A novel and safety nanotechnology was developed since the hazard of hydrogen cyanide for the operators and environments, there is an urgent need for the development of novel and safety approaches to replace it to break bud dormancy for fruit trees. In current study, we have systematically explored the potential of iron oxide nanoparticles, specifically α-Fe2O3, to modulate bud dormancy in sweet cherry (Prunus avium). The synthesized iron oxide nanoparticles underwent meticulous characterization and assessment using various techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and ultraviolet-visible infrared (UV-Vis) spectroscopy. Remarkably, when applied at a concentration of 10 mg L-1 alongside gibberellin (GA4+7), these iron oxide nanoparticles exhibited a substantial 57% enhancement in bud dormancy release compared to control groups, all achieved within a remarkably short time span of 4 days. Our RNA-seq analyses further unveiled that 2757 genes within the sweet cherry buds were significantly up-regulated when treated with 10 mg L-1 α-Fe2O3 nanoparticles in combination with GA, while 4748 genes related to dormancy regulation were downregulated in comparison to the control. Moreover, we discovered an array of 58 transcription factor families among the crucial differentially expressed genes (DEGs). Through hormonal quantification, we established that the increased bud burst was accompanied by a reduced concentration of abscisic acid (ABA) at 761.3 ng/g fresh weight in the iron oxide treatment group, coupled with higher levels of gibberellins (GAs) in comparison to the control. Comprehensive transcriptomic and metabolomic analyses unveiled significant alterations in hormone contents and gene expression during the bud dormancy-breaking process when α-Fe2O3 nanoparticles were combined with GA. In conclusion, our findings provide valuable insights into the intricate molecular mechanisms underlying the impact of iron oxide nanoparticles on achieving uniform bud dormancy break in sweet cherry trees.


Asunto(s)
Prunus avium , Prunus avium/metabolismo , Giberelinas/farmacología , Giberelinas/metabolismo , Cianuro de Hidrógeno/metabolismo , Flores/genética , Proteínas de Plantas/genética , Nanopartículas Magnéticas de Óxido de Hierro , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas
3.
Langmuir ; 39(48): 17240-17250, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38050683

RESUMEN

Recently, we have described the first supermolecular nanoentities (SMEs) of a vitamin B12 derivative, viz., a monocyano form of heptabutyl cobyrinate ((CN-)BuCby), unique nanoparticles with strong noncovalent intermolecular interactions, and emerging optical and redox properties. In this work, the fast response of thin films based on the SMEs of the B12 derivative to gaseous toxins (viz., hydrogen cyanide, ammonia, sulfur dioxide, and hydrogen sulfide) particularly dangerous for humans was demonstrated. The reaction between SMEs of (CN-)BuCby in Langmuir-Schaefer (LS) films and HCN generates dicyano species and proceeds ca. 5-fold more rapidly than the process involving drop-coated films that contain (CN-)BuCby in molecular form. The highest sensitivity toward HCN was achieved by using thicker LS films. The reaction proceeds reversibly: upon exposure to air, the dicyano complex undergoes partial decyanation. The decyanated complex retains reactivity toward HCN for at least four subsequent cycles. The processes involving SMEs of (CN-)BuCby and NH3, SO2, and H2S are irreversible, and the sensitivity of the films toward these gases is lower in comparison with HCN. Presented data provides mechanistic information on the reactions involving solid vitamin B12 derivatives and gaseous toxins. In the case of NH3, deprotonation of the coordinated Co(III)-ion water molecule occurs, and the generated hydroxocyano species exhibit high air stability. After binding of SO2, a mixture of sulfito and dicyano species is produced, and the regenerated film contains aquacyano and diaqua or aquahydroxo species, which possess high reactivity toward gaseous toxins. Reaction with H2S produces a mixture of the Co(III)-dicyano form and Co(II)-species containing sulfide oxidation products, which are resistant to aerobic oxidation. Our findings can be used for the development of naked-eye, electronic optic, and chemiresistive sensors toward gaseous toxins with improved reactivity for prompt cyanide detection in air, blood, and plant samples and for analysis of exhaled gases for the diagnosis of diseases.


Asunto(s)
Cianuros , Vitamina B 12 , Humanos , Cianuro de Hidrógeno/metabolismo , Gases , Vitaminas
4.
Am J Bot ; 110(10): e16233, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37661820

RESUMEN

PREMISE: ß-Cyanoalanine synthase (ß-CAS) and alternative oxidase (AOX) play important roles in the ability of plants to detoxify and tolerate hydrogen cyanide (HCN). These functions are critical for all plants because HCN is produced at low levels during basic metabolic processes, and especially for cyanogenic species, which release high levels of HCN following tissue damage. However, expression of ß-CAS and Aox genes has not been examined in cyanogenic species, nor compared between cyanogenic and acyanogenic genotypes within a species. METHODS: We used a natural polymorphism for cyanogenesis in white clover to examine ß-CAS and Aox gene expression in relation to cyanogenesis-associated HCN exposure. We identified all ß-CAS and Aox gene copies present in the genome, including members of the Aox1, Aox2a, and Aox2d subfamilies previously reported in legumes. Expression levels were compared between cyanogenic and acyanogenic genotypes and between damaged and undamaged leaf tissue. RESULTS: ß-CAS and Aox2a expression was differentially elevated in cyanogenic genotypes, and tissue damage was not required to induce this increased expression. Aox2d, in contrast, appeared to be upregulated as a generalized wounding response. CONCLUSIONS: These findings suggest a heightened constitutive role for HCN detoxification (via elevated ß-CAS expression) and HCN-toxicity mitigation (via elevated Aox2a expression) in plants that are capable of cyanogenesis. As such, freezing-induced cyanide autotoxicity is unlikely to be the primary selective factor in the evolution of climate-associated cyanogenesis clines.


Asunto(s)
Cianuros , Trifolium , Trifolium/genética , Cianuro de Hidrógeno/metabolismo , Nitrilos
5.
J Exp Bot ; 74(19): 6040-6051, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37586035

RESUMEN

The high phenotypic plasticity developed by plants includes rapid responses and adaptations to aggressive or changing environments. To achieve this, they evolved extremely efficient mechanisms of signaling mediated by a wide range of molecules, including small signal molecules. Among them, hydrogen cyanide (HCN) has been largely ignored due to its toxic characteristics. However, not only is it present in living organisms, but it has been shown that it serves several functions in all kingdoms of life. Research using model plants has changed the traditional point of view, and it has been demonstrated that HCN plays a positive role in the plant response to pathogens independently of its toxicity. Indeed, HCN induces a response aimed at protecting the plant from pathogen attack, and the HCN is provided either exogenously (in vitro or by some cyanogenic bacteria species present in the rhizosphere) or endogenously (in reactions involving ethylene, camalexin, or other cyanide-containing compounds). The contribution of different mechanisms to HCN function, including a new post-translational modification of cysteines in proteins, namely S-cyanylation, is discussed here. This work opens up an expanding 'HCN field' of research related to plants and other organisms.


Asunto(s)
Cianuro de Hidrógeno , Venenos , Cianuro de Hidrógeno/metabolismo , Transducción de Señal , Plantas/metabolismo , Rizosfera
6.
mBio ; 14(5): e0085723, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37650608

RESUMEN

IMPORTANCE: Bacteria communicate by exchanging chemical signals, some of which are volatile and can remotely reach other organisms. HCN was one of the first volatiles discovered to severely impact exposed organisms by inhibiting their respiration. Using HCN-deficient mutants in two Pseudomonas strains, we demonstrate that HCN's impact goes beyond the sole inhibition of respiration and affects both emitting and receiving bacteria in a global way, modulating their motility, biofilm formation, and production of antimicrobial compounds. Our data suggest that bacteria could use HCN not only to control their own cellular functions, but also to remotely influence the behavior of other bacteria sharing the same environment. Since HCN emission occurs in both clinically and environmentally relevant Pseudomonas, these findings are important to better understand or even modulate the expression of bacterial traits involved in both virulence of opportunistic pathogens and in biocontrol efficacy of plant-beneficial strains.


Asunto(s)
Cianuro de Hidrógeno , Pseudomonas , Pseudomonas/genética , Pseudomonas/metabolismo , Cianuro de Hidrógeno/metabolismo , Cianuro de Hidrógeno/farmacología , Plantas/microbiología
7.
Int Microbiol ; 25(4): 817-829, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35854164

RESUMEN

Trichoderma species have been widely recognized as biofertilizer fungi for their ability to produce phytohormones and enhance plant growth. In our current study, fifteen strains of Trichoderma spp. (T1-T15) were screened for their capacity to produce phytohormones and metabolites eliciting plant growth. The stains were previously isolated from olive rhizosphere soil in northern Algeria. Plant growth promoting (PGP) potential of Trichoderma spp. was evaluated in vitro through the production of phosphatases, siderophores, hydrogen cyanide (HCN), and ammonia (NH3). Besides, plant growth phytohormones such as gibberellic acid and indole-3-acetic acid (IAA) were assessed quantitatively by a colorimetric assay. Results showed an effective potential of Trichoderma spp. in plant growth-promoting biomolecule production. Importantly, qualitative estimation of phosphate solubilization indicates that T10 gave the highest phosphate solubilization on medium Pikovskaya's with a solubilization index (SI) of 3, whereas, the high capacity nitrogen-fixing was related to T8. On the other hand, quantitative analysis of indole-3-acetic acid and gibberellic acid revealed a production varying between (1.30 µg mL-1 to 21.15 µg mL-1) and (0.53 µg mL-1 to 7.87 µg mL-1), respectively; the highest amount of both phytohormones was obtained by T11 isolate. Indeed, an analysis of ethyl acetate extracts of T11 isolate by high-performance liquid chromatography (HPLC) revealed a high amount (71.19 mg L-1) of IAA. Overall, the results showed clearly that isolate T11 has promising plant growth-promoting properties. Hence, this native Trichoderma isolate (T11) identified as Trichoderma harzianum strain (OL587563) could be used later as biofertilizer for sustainable olive crop agriculture.


Asunto(s)
Trichoderma , Amoníaco , Giberelinas , Cianuro de Hidrógeno/metabolismo , Nitrógeno/metabolismo , Fosfatos/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Sideróforos/metabolismo , Suelo/química , Microbiología del Suelo , Trichoderma/metabolismo
8.
Plant Biol (Stuttg) ; 24(6): 1084-1088, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35727820

RESUMEN

Domesticated sorghum (Sorghum bicolor [L.] Moench subsp. bicolor) diverts significant amounts of nitrogen away from primary metabolism to the synthesis of cyanogenic glucosides (CNglc) - specialized metabolites that release toxic hydrogen cyanide (HCN). Our aim was to identify the point in the genus Sorghum Moench at which plants gained the ability to maintain hazardous concentrations of cyanogenic glucosides in their leaves into maturity (HCN potential >0.4 mg g-1 ). This ability occurs in domesticated sorghum (in the subgenus Eusorghum), but not in wild taxa in other Sorghum subgenera. Eight accessions from the subgenus Eusorghum were grown in a common garden: an improved sorghum line, five sorghum landraces, the crop's wild progenitor (S. bicolor subsp. verticilliflorum [Steud.] de Wet ex Wiersema & J. Dahlb.) and wild Sorghum propinquum (Kunth) Hitchc. HCN potential was measured in plants (n = 80) at the three-leaf stage and at 6 weeks old. All study accessions, including the wild taxa, had hazardous CNglc concentrations in the leaves at both the three-leaf stage (mean HCN potentials > = 2.5 mg g-1 ) and at 6 weeks old (mean HCN potentials > = 0.68 mg g-1 ), greatly contrasting the much lower mature leaf HCN potentials previously found in wild Sorghum taxa outside subgenus Eusorghum (generally <= 0.01 mg g-1 ). Our results suggest that the ability to maintain hazardous leaf HCN potentials into maturity might have arisen during the divergence of Eusorghum from other Sorghum subgenera, rather than during the speciation or domestication of S. bicolor, and highlights the value of utilizing Sorghum taxa outside Eusorghum in efforts to improve the crop safety of sorghum.


Asunto(s)
Cianuro de Hidrógeno , Sorghum , Glucósidos , Glicósidos/metabolismo , Cianuro de Hidrógeno/metabolismo , Nitrógeno/metabolismo , Plantas/metabolismo , Sorghum/metabolismo
9.
Science ; 375(6586): 1275-1281, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35298255

RESUMEN

Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied among cities. Sequencing 2074 genomes from 26 cities revealed that the evolution of urban-rural clines was best explained by adaptive evolution, but the degree of parallel adaptation varied among cities. Our results demonstrate that urbanization leads to adaptation at a global scale.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Ecosistema , Trifolium/fisiología , Urbanización , Ciudades , Genes de Plantas , Genoma de Planta , Cianuro de Hidrógeno/metabolismo , Población Rural , Trifolium/genética
10.
Int J Mol Sci ; 23(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35216390

RESUMEN

The common vetch (Vicia sativa L.) seed is an ideal plant-based protein food for humans, but its edible value is mainly limited by the presence of cyanogenic glycosides that hydrolyze to produce toxic hydrogen cyanide (HCN), and the genes that regulate HCN synthesis in common vetch are unknown. In this study, seeds from common vetch at 5, 10, 15, 20, 25, 30, and 35 days after anthesis were sampled, and the seven stages were further divided into five developmental stages, S1, S2, S3, S4, and S5, based on morphological and transcriptome analyses. A total of 16,403 differentially expressed genes were identified in the five developmental stages. The HCN contents of seeds in these five stages were determined by alkaline titration, and weighted gene coexpression network analysis was used to explain the molecular regulatory mechanism of HCN synthesis in common vetch seeds. Eighteen key regulatory genes for HCN synthesis were identified, including the VsGT2, VsGT17 and CYP71A genes, as well as the VsGT1 gene family. VsGT1, VsGT2, VsGT17 and CYP71A jointly promoted HCN synthesis, from 5 to 25 days after anthesis, with VsGT1-1, VsGT1-4, VsGT1-11 and VsGT1-14 playing major roles. The HCN synthesis was mainly regulated by VsGT1, from 25 to 35 days after anthesis. As the expression level of VsGT1 decreased, the HCN content no longer increased. In-depth elucidation of seed HCN synthesis lays the foundations for breeding common vetch with low HCN content.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Cianuro de Hidrógeno/metabolismo , Semillas/genética , Semillas/metabolismo , Transcriptoma/genética , Vicia sativa/genética , Vicia sativa/metabolismo , Perfilación de la Expresión Génica/métodos , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Genes (Basel) ; 13(1)2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-35052482

RESUMEN

Domestication has resulted in a loss of genetic diversity in our major food crops, leading to susceptibility to biotic and abiotic stresses linked with climate change. Crop wild relatives (CWR) may provide a source of novel genes potentially important for re-gaining climate resilience. Sorghum bicolor is an important cereal crop with wild relatives that are endemic to Australia. Sorghum bicolor is cyanogenic, but the cyanogenic status of wild Sorghum species is not well known. In this study, leaves of wild species endemic in Australia are screened for the presence of the cyanogenic glucoside dhurrin. The direct measurement of dhurrin content and the potential for dhurrin-derived HCN release (HCNp) showed that all the tested Australian wild species were essentially phenotypically acyanogenic. The unexpected low dhurrin content may reflect the variable and generally nutrient-poor environments in which they are growing in nature. Genome sequencing of six CWR and PCR amplification of the CYP79A1 gene from additional species showed that a high conservation of key amino acids is required for correct protein function and dhurrin synthesis, pointing to the transcriptional regulation of the cyanogenic phenotype in wild sorghum as previously shown in elite sorghum.


Asunto(s)
Glicósidos/metabolismo , Cianuro de Hidrógeno/metabolismo , Nitrilos/metabolismo , Proteínas de Plantas/metabolismo , Sorghum/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Genotipo , Fenotipo , Proteínas de Plantas/genética , Sorghum/genética , Sorghum/crecimiento & desarrollo
12.
Elife ; 102021 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-34792466

RESUMEN

Agricultural soil harbors a diverse microbiome that can form beneficial relationships with plants, including the inhibition of plant pathogens. Pseudomonas spp. are one of the most abundant bacterial genera in the soil and rhizosphere and play important roles in promoting plant health. However, the genetic determinants of this beneficial activity are only partially understood. Here, we genetically and phenotypically characterize the Pseudomonas fluorescens population in a commercial potato field, where we identify strong correlations between specialized metabolite biosynthesis and antagonism of the potato pathogens Streptomyces scabies and Phytophthora infestans. Genetic and chemical analyses identified hydrogen cyanide and cyclic lipopeptides as key specialized metabolites associated with S. scabies inhibition, which was supported by in planta biocontrol experiments. We show that a single potato field contains a hugely diverse and dynamic population of Pseudomonas bacteria, whose capacity to produce specialized metabolites is shaped both by plant colonization and defined environmental inputs.


Potato scab and blight are two major diseases which can cause heavy crop losses. They are caused, respectively, by the bacterium Streptomyces scabies and an oomycete (a fungus-like organism) known as Phytophthora infestans. Fighting these disease-causing microorganisms can involve crop management techniques ­ for example, ensuring that a field is well irrigated helps to keep S. scabies at bay. Harnessing biological control agents can also offer ways to control disease while respecting the environment. Biocontrol bacteria, such as Pseudomonas, can produce compounds that keep S. scabies and P. infestans in check. However, the identity of these molecules and how irrigation can influence Pseudomonas population remains unknown. To examine these questions, Pacheco-Moreno et al. sampled and isolated hundreds of Pseudomonas strains from a commercial potato field, closely examining the genomes of 69 of these. Comparing the genetic information of strains based on whether they could control the growth of S. scabies revealed that compounds known as cyclic lipopeptides are key to controlling the growth of S. scabies and P. infestans. Whether the field was irrigated also had a large impact on the strains forming the Pseudomonas population. Working out how Pseudomonas bacteria block disease could speed up the search for biological control agents. The approach developed by Pacheco-Moreno et al. could help to predict which strains might be most effective based on their genetic features. Similar experiments could also work for other combinations of plants and diseases.


Asunto(s)
Phytophthora infestans/fisiología , Enfermedades de las Plantas/microbiología , Pseudomonas fluorescens/genética , Solanum tuberosum/microbiología , Streptomyces/fisiología , Cianuro de Hidrógeno/metabolismo , Lipopéptidos/metabolismo , Péptidos Cíclicos/metabolismo , Pseudomonas fluorescens/metabolismo
14.
World J Microbiol Biotechnol ; 37(5): 82, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33855623

RESUMEN

Many volatile compounds secreted by bacteria play an important role in the interactions of microorganisms, can inhibit the growth of phytopathogenic bacteria and fungi, can suppress or stimulate plant growth and serve as infochemicals presenting a new type of interspecies communication. In this work, we investigated the effect of total pools of volatile substances and individual volatile organic compounds (VOCs) synthesized by the rhizosphere bacteria Pseudomonas chlororaphis 449 and Serratia plymuthica IC1270, the soil-borne strain P. fluorescens B-4117 and the spoiled meat isolate S. proteamaculans 94 on Arabidopsis thaliana plants. We showed that total gas mixtures secreted by these strains during their growth on Luria-Bertani agar inhibited A. thaliana growth. Hydrogen cyanide synthesis was unnecessary for the growth suppression. A decrease in the inhibition level was observed for the strain P. chlororaphis 449 with a mutation in the gacS gene, while inactivation of the rpoS gene had no effect. Individual VOCs synthesized by these bacteria (1-indecene, ketones 2-nonanone, 2-heptanone, 2-undecanone, and dimethyl disulfide) inhibited the growth of plants or killed them. Older A. thaliana seedlings were more resistant to VOCs than younger seedlings. The results indicated that the ability of some volatiles emitted by the rhizosphere and soil bacteria to inhibit plant growth should be considered when assessing the potential of such bacteria for the biocontrol of plant diseases.


Asunto(s)
Arabidopsis/efectos de los fármacos , Pseudomonas chlororaphis/química , Pseudomonas chlororaphis/genética , Pseudomonas fluorescens/química , Serratia/química , Compuestos Orgánicos Volátiles/toxicidad , Arabidopsis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cianuro de Hidrógeno/metabolismo , Carne/microbiología , Mutación , Pseudomonas chlororaphis/metabolismo , Pseudomonas fluorescens/metabolismo , Rizosfera , Plantones/efectos de los fármacos , Serratia/metabolismo , Factor sigma/genética , Factor sigma/metabolismo , Microbiología del Suelo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Compuestos Orgánicos Volátiles/química
15.
J Plant Physiol ; 258-259: 153393, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33667954

RESUMEN

Crop plants are assumed to have become more susceptible to pests as a result of selection for high growth rates during the process of domestication, consistent with resource allocation theories. We compared the investment by domesticated sorghum into cyanogenic glucosides, nitrogen-based specialised metabolites that break down to release hydrogen cyanide, with five wild relatives native to Australia. Plants were grown in pots in a greenhouse and supplied with low and high concentrations of nitrogen and monitored for 9 weeks. The concentrations of nitrate, total phenolics and silicon were also measured. Domesticated Sorghum bicolor had the highest leaf and root cyanogenic glucoside concentrations, and among the lowest nitrate and silicon concentrations under both treatments. Despite partitioning a much higher proportion of its stored nitrogen to cyanogenic glucosides than the wild species, S. bicolor's nitrogen productivity levels were among the highest. Most of the wild sorghums had higher concentrations of silicon and phenolics, which may provide an alternative defence system. Cyanogenic glucosides appear to be integral to S. bicolor's physiology, having roles in both growth and defence. Sorghum macrospermum displayed consistently low cyanogenic glucoside concentrations, high growth rates and high nitrogen productivity and represents a particularly attractive genetic resource for sorghum improvement.


Asunto(s)
Glicósidos/metabolismo , Nitrógeno/metabolismo , Sorghum/metabolismo , Cianuro de Hidrógeno/metabolismo
16.
Microbiol Res ; 242: 126616, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33115624

RESUMEN

Rice (Oryza sativa L.) growth and productivity has been negatively affected due to high soil salinity. However, some salt-tolerant plant growth-promoting bacteria (ST-PGPB) enhance crop growth and reduce the negative impacts of salt stress through regulation of some biochemical, physiological, and molecular features. Total thirty six ST-PGPB were isolated from sodic soil of eastern Uttar Pradesh, India, and screened for salt tolerance at different salt (NaCl) concentrations up to 2000 millimolar (mM). Out of thirty-six, thirteen strains indicated better growth and plant growth properties (PGPs) in NaCl amended medium. Among thirteen, one most effective Bacillus pumilus strain JPVS11 was molecularly characterized, which showed potential PGPs, such as indole-3-acetic acid (IAA),1-aminocyclo propane-1-carboxylicacid (ACC) deaminase activity, P-solubilization, proline accumulation and exopolysaccharides (EPS) production at different concentrations of NaCl (0 -1200 mM). Pot experiment was conducted on rice (Variety CSR46) at different NaCl concentrations (0, 50, 100, 200, and 300 mM) with and without inoculation of Bacillus pumilus strain JPVS11. At elevated concentrations of NaCl, the adverse effects on chlorophyll content, carotenoids, antioxidant activity was recorded in non-inoculated (only NaCl) plants. However, inoculation of Bacillus pumilus strain JPVS11 showed positive adaption and improve growth performance of rice as compared to non-inoculated in similar conditions. A significant (P < 0.05) enhancement plant height (12.90-26.48%), root length (9.55-23.09%), chlorophyll content (10.13-27.24%), carotenoids (8.38-25.44%), plant fresh weight (12.33-25.59%), and dry weight (8.66-30.89%) were recorded from 50 to 300 mM NaCl concentration in inoculated plants as compared to non-inoculated. Moreover, the plants inoculated with Bacillus pumilus strain JPVS11showed improvement in antioxidant enzyme activities of catalase (15.14-32.91%) and superoxide dismutase (8.68-26.61%). Besides, the significant improvement in soil enzyme activities, such as alkaline phosphatase (18.37-53.51%), acid phosphatase (28.42-45.99%), urease (14.77-47.84%), and ß-glucosidase (25.21-56.12%) were recorded in inoculated pots as compared to non-inoculated. These results suggest that Bacillus pumilus strain JPVS11 is a potential ST-PGPB for promoting plant growth attributes, soil enzyme activities, microbial counts, and mitigating the deleterious effects of salinity in rice.


Asunto(s)
Bacillus pumilus/fisiología , Oryza/crecimiento & desarrollo , Oryza/microbiología , Desarrollo de la Planta , Estrés Salino/fisiología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Plantas Tolerantes a la Sal/microbiología , Suelo/química , Antioxidantes , Bacillus pumilus/clasificación , Bacillus pumilus/genética , Bacillus pumilus/aislamiento & purificación , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Clorofila , Cianuro de Hidrógeno/metabolismo , Ácidos Indolacéticos , Fijación del Nitrógeno , Fosfatos/metabolismo , Prolina/metabolismo , Salinidad , Tolerancia a la Sal/fisiología , Semillas/microbiología , Sideróforos/metabolismo , Microbiología del Suelo , Estrés Fisiológico
17.
Plant J ; 105(3): 754-770, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33164279

RESUMEN

Manihot esculenta (cassava) is a root crop originating from South America that is a major staple in the tropics, including in marginal environments. This study focused on South American and African germplasm and investigated the genetic architecture of hydrogen cyanide (HCN), a major component of root quality. HCN, representing total cyanogenic glucosides, is a plant defense component against herbivory but is also toxic for human consumption. We genotyped 3354 landraces and modern breeding lines originating from 26 Brazilian states and 1389 individuals were phenotypically characterized across multi-year trials for HCN. All plant material was subjected to high-density genotyping using genotyping by sequencing. We performed genome-wide association mapping to characterize the genetic architecture and gene mapping of HCN. Field experiments revealed strong broad- and narrow-sense trait heritability (0.82 and 0.41, respectively). Two major loci were identified, encoding for an ATPase and a MATE protein, and contributing up to 7 and 30% of the HCN concentration in roots, respectively. We developed diagnostic markers for breeding applications, validated trait architecture consistency in African germplasm and investigated further evidence for the domestication of sweet and bitter cassava. Fine genomic characterization revealed: (i) the major role played by vacuolar transporters in regulating HCN content; (ii) the co-domestication of sweet and bitter cassava major alleles are dependent upon geographical zone; and (iii) the major loci allele for high HCN in M. esculenta Crantz seems to originate from its ancestor, M. esculenta subsp. flabellifolia. Taken together, these findings expand our insights into cyanogenic glucosides in cassava roots and its glycosylated derivatives in plants.


Asunto(s)
Glicósidos/genética , Manihot/genética , África , Alelos , Brasil , Cromosomas de las Plantas , Genética de Población , Estudio de Asociación del Genoma Completo , Glicósidos/metabolismo , Cianuro de Hidrógeno/metabolismo , América Latina , Manihot/metabolismo , Mutación , Filogenia , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , Gusto
18.
J Sci Food Agric ; 101(8): 3355-3365, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33227149

RESUMEN

BACKGROUND: Nitrogen fertilization can increase sorghum yield and quality and the hydrocyanic acid (HCN) accumulation in plants, increasing the risk of animal toxicity, particularly under drought conditions. In this study, plants of three sorghum genotypes (sweet sorghum, sudangrass and hybrid sorghum) were supplemented with nitrogen (0, 60, 90 and 120 kg N ha-1 ) under well-watered and drought-stressed conditions, aiming to investigate the responses of morpho-physiological parameters and HCN accumulation to drought and nitrogen fertilization. RESULTS: Drought caused a decline in growth and photosynthesis. Average HCN content increased by 27.85% in drought-stressed plants when compared with those in well-watered plants. Drought increased the proline and soluble protein content, the content of O2 - , H2 O2 and malondialdehyde (MDA), and the activities of antioxidant enzymes in leaves of all three genotypes. Maximum plant growth and higher plant nutrient content (nitrogen and phosphorus) were observed at 120 kg N ha-1 , followed by 90 and 60 kg N ha-1 . However, a sharp increase in HCN content and a decrease in antioxidant enzyme activities were observed when nitrogen rates increased from 90 to 120 kg N ha-1 , suggesting that 90 kg N ha-1 might be better for sorghums under drought conditions. CONCLUSION: These results suggest that optimum nitrogen application on sorghum under drought conditions could achieve a balance between plant defense and food safety, attributed to the reduced MDA, O2 - and H2 O2 accumulation, the improvement in photosynthesis parameters, the increase in soluble protein and proline content, and the increase in antioxidant enzyme activities. © 2020 Society of Chemical Industry.


Asunto(s)
Fertilizantes/análisis , Cianuro de Hidrógeno/metabolismo , Nitrógeno/metabolismo , Sorghum/crecimiento & desarrollo , Sorghum/metabolismo , Sequías , Cianuro de Hidrógeno/análisis , Fotosíntesis , Hojas de la Planta , Prolina/metabolismo , Agua/análisis , Agua/metabolismo
19.
Sci Rep ; 10(1): 20409, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33230192

RESUMEN

The effect of Plant Growth Promoting Rhizobacteria (Bacillus sp.) and silver nanoparticles on Zea mays was evaluated. The silver nanoparticles were synthesized from Tagetes erecta (Marigold) leaf and flower extracts, whereas PGPR isolated from spinach rhizosphere. The silver nanoparticles (AgNPs) were purified using ultra centrifugation and were characterized using UV-Vis spectroscopy at gradient wavelength and also by High Resolution Transmission Electron microscopy (HRTEM). The average particles size of AgNPs was recorded approximately 60 nm. Almost all potential isolates were able to produce Indole Acetic Acid (IAA), ammonia and Hydrogen cyanide (HCN), solubilized tricalcium phosphate and inhibited the growth of Macrophomina phaseolina in vitro but the isolate LPR2 was found the best among all. On the basis of 16S rRNA gene sequence, the isolate LPR2 was characterized as Bacillus cereus LPR2. The maize seeds bacterized with LPR2 and AgNPs individually showed a significant increase in germination (87.5%) followed by LPR2 + AgNPs (75%). But the maximum growth of root and shoot of maize plant was observed in seeds coated with LPR2 followed by AgNPs and a combination of both. Bacillus cereus LPR2 and silver nanoparticles enhanced the plant growth and LPR2 strongly inhibited the growth of deleterious fungal pathogen. Therefore, LPR2 and AgNPs could be utilized as bioinoculant and growth stimulator, respectively for maize.


Asunto(s)
Ascomicetos/efectos de los fármacos , Bacillus cereus/crecimiento & desarrollo , Nanopartículas del Metal/toxicidad , Plata/farmacología , Tagetes/química , Zea mays/microbiología , Amoníaco/metabolismo , Amoníaco/farmacología , Ascomicetos/crecimiento & desarrollo , Ascomicetos/patogenicidad , Bacillus cereus/genética , Bacillus cereus/metabolismo , Fosfatos de Calcio/metabolismo , Fosfatos de Calcio/farmacología , Cianuro de Hidrógeno/metabolismo , Cianuro de Hidrógeno/farmacología , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Nanopartículas del Metal/química , Tamaño de la Partícula , Hojas de la Planta/química , ARN Ribosómico 16S/genética , Rizosfera , Plata/química , Simbiosis/fisiología , Zea mays/fisiología
20.
Mol Biol Rep ; 47(8): 6015-6026, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32734439

RESUMEN

The soil nature and characterstics are directly related to the micro-organisms present, bio-mineralization process, plant type and thus having harmonius and interdependent relationships. Soil bacteria having antagonistic activity against phytopathogens, play an important role in root growth, overall plant growth and also their composition depends upon the plant species. Population explosion across globe has resulted in indiscriminate use of chemical fertilizers, fungicides and pesticides, thus posing serious risk to plant productivity and soil flora. Plant growth promoting rhizobacteria (PGPRs) are considered safer than chemical fertilizers as they are eco-friendly and sustain longer after colonization in rhizospheric soil. PGPRs are preferred as a green choice and acts as a superior biocontrol agents against phytopathogens. In the present study, a potential rhizobacteria, Pseudomonas aeruginosa (isolate-2) was isolated from the rhizosphere of a medicinal plant, Valeriana wallichi. The bacterial isolate exhibited qualitative tests for plant growth promoting determinatives. It was also subjected to in-vitro biocontrol activity against potential phytopathogens viz. Alternaria alternata, Aspergillus flavus and F. oxysporum. The antagonistic efficacy against F. oxysporum was 56.2% followed by Alternaria alternata to be 51.02%. The maximum inhibition of radial growth of F. oxysporum was 69.2%, Alternaria alternata (46.4%) and Aspergillus flavus (15%). The Pseudomonas aeruginosa exhibited plant growth promotion rhizobacterial activity which can be expoited as biofertilizers. This study deals with microbial revitalization strategy and offers promising solution as a biocontrol agent to enhance crop yield. Further, PGPRs research using the interdisciplinary approaches like biotechnology, nanotechnology etc. will unravel the molecular mechanisms which may be helpful for maximizing its potential in sustainable agriculture.


Asunto(s)
Alternaria , Aspergillus flavus , Agentes de Control Biológico , Fusarium , Plantas Medicinales/microbiología , Pseudomonas aeruginosa/fisiología , Valeriana/microbiología , Secuencia de Bases , Cianuro de Hidrógeno/metabolismo , India , Ácidos Indolacéticos/metabolismo , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/prevención & control , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Rizosfera , Ribotipificación , Sideróforos/biosíntesis , Microbiología del Suelo , Valeriana/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...