Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genes (Basel) ; 15(6)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38927754

RESUMEN

Chickpea (Cicer arietinum) is a major food legume providing high quality nutrition, especially in developing regions. Chickpea wilt (Fusarium oxysporum f. sp. ciceris) causes significant annual losses. Integrated disease management of Fusarium wilt is supported by resistant varieties. Relatively few resistance genes are known so there is value in exploring genetic resources in chickpea wild relatives. This study investigates the inheritance of Fusarium wilt resistance (race 2) in recombinant inbred lines (RILs) from a cross between a cultivated susceptible chickpea variety (Gokce) and a wild resistant Cicer reticulatum line (Kayat-077). RILs, parents, resistant and susceptible tester lines were twice grown in the greenhouse with inoculation and disease symptoms scored. DNA was extracted from dried leaves and individuals were single nucleotide polymorphism (SNP) genotyped. SNPs were placed on the reference chickpea genome and quantitative trait locus (QTL) mapping was performed. Significant QTL regions were examined using PulseDB to identify candidate genes. The results showed the segregation of Fusarium wilt resistance conforming to a single gene inheritance. One significant QTL was found at the start of chromosome 8, containing 138 genes, three of which were disease-resistance candidates for chickpea breeding.


Asunto(s)
Mapeo Cromosómico , Cicer , Resistencia a la Enfermedad , Fusarium , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Cicer/genética , Cicer/microbiología , Cicer/inmunología , Fusarium/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Mapeo Cromosómico/métodos , Fitomejoramiento/métodos
2.
Plant Dis ; 108(8): 2367-2375, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38332491

RESUMEN

Global chickpea production is restricted by Ascochyta blight caused by the necrotrophic fungi Ascochyta rabiei. Developing locally adapted disease-resistant cultivars is an economically and environmentally sustainable approach to combat this disease. However, the lack of genetic variability in cultivated chickpeas and breeder-friendly markers poses a significant challenge to Ascochyta blight-resistant breeding efforts in chickpeas. In this study, we screened the mini-core germplasm of Cicer reticulatum against a local pathotype of A. rabiei. A modified mini-dome screening approach resulted in the identification of five accessions showing a high level of resistance. The mean disease score of resistant accessions ranged between 1.75 ± 0.3 and 2.88 ± 0.4 compared to susceptible accessions, where the mean disease score ranged between 3.59 ± 0.62 and 8.86 ± 0.14. Genome-wide association study revealed a strong association on chromosome 5, explaining ∼58% of the phenotypic variance. The underlying region contained two candidate genes (Cr_14190.1_v2 and Cr_14189.1_v2), the characterization of which showed the presence of a DNA-binding domain (cl28899 and cd18793) in Cr_14190.1_v2 and its orthologs in C. arietinum, whereas Cr_14190.1_v2 carried an additional N-terminal domain (cl31759). qPCR expression analysis in resistant and susceptible accessions revealed ∼3- and ∼110-fold higher transcript abundance for Cr_14189.1 and Cr_14190.1, respectively.


Asunto(s)
Ascomicetos , Cicer , Resistencia a la Enfermedad , Enfermedades de las Plantas , Ascomicetos/fisiología , Ascomicetos/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética , Cicer/microbiología , Cicer/genética , Cicer/inmunología , Estudio de Asociación del Genoma Completo
3.
Sci Rep ; 11(1): 17491, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34471168

RESUMEN

The root-lesion nematode, Pratylenchus thornei, is one of the major plant-parasitic nematode species causing significant yield losses in chickpea (Cicer arietinum). In order to identify the underlying mechanisms of resistance to P. thornei, the transcriptomes of control and inoculated roots of three chickpea genotypes viz. D05253 > F3TMWR2AB001 (resistant advanced breeding line), PBA HatTrick (moderately resistant cultivar), and Kyabra (susceptible cultivar) were studied at 20 and 50 days post inoculation using the RNA-seq approach. On analyzing the 633.3 million reads generated, 962 differentially expressed genes (DEGs) were identified. Comparative analysis revealed that the majority of DEGs upregulated in the resistant genotype were downregulated in the moderately resistant and susceptible genotypes. Transcription factor families WRKY and bZIP were uniquely expressed in the resistant genotype. The genes Cysteine-rich receptor-like protein kinase 10, Protein lifeguard-like, Protein detoxification, Bidirectional sugar transporter Sugars Will Eventually be Exported Transporters1 (SWEET1), and Subtilisin-like protease were found to play cross-functional roles in the resistant chickpea genotype against P. thornei. The identified candidate genes for resistance to P. thornei in chickpea can be explored further to develop markers and accelerate the introgression of P. thornei resistance into elite chickpea cultivars.


Asunto(s)
Cicer/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Proteínas de Plantas/metabolismo , Transcriptoma , Tylenchoidea/fisiología , Animales , Cicer/inmunología , Cicer/parasitología , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Parásitos , Enfermedades de las Plantas/parasitología , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/parasitología
4.
Mol Nutr Food Res ; 64(19): e2000560, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32875712

RESUMEN

SCOPE: Chickpea (Cicer arietinum) allergy has frequently been reported particularly in Spain and India. Nevertheless, chickpea allergens are poorly characterized. The authors aim to identify and characterize potential allergens from chickpea. METHODS AND RESULTS: Candidate proteins are selected by an in silico approach or immunoglobuline E (IgE)-testing. Potential allergens are prepared as recombinant or natural proteins and characterized for structural integrity by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), circular dichroism (CD)-spectroscopy, and mass spectrometry (MS) analysis. IgE-sensitization pattern of Spanish chickpea allergic and German peanut and birch pollen sensitized patients are investigated using chickpea extracts and purified proteins. Chickpea allergic patients show individual and heterogeneous IgE-sensitization profiles with extracts from raw and boiled chickpeas. Chickpea proteins pathogenesis related protein family 10 (PR-10), a late embryogenesis abundant protein (LEA/DC-8), and a vicilin-containing fraction, but not 2S albumin, shows IgE reactivity with sera from chickpea, birch pollen, and peanut sensitized patients. Remarkably, allergenic vicilin, DC-8, and PR-10 are detected in the extract of boiled chickpeas. CONCLUSION: Several IgE-reactive chickpea allergens are identified. For the first time a yet not classified DC-8 protein is characterized as minor allergen (Cic a 1). Finally, the data suggest a potential risk for peanut allergic patients by IgE cross-reactivity with homologous chickpea proteins.


Asunto(s)
Alérgenos/inmunología , Cicer/inmunología , Hipersensibilidad a los Alimentos/inmunología , Proteínas de Vegetales Comestibles/inmunología , Adulto , Alérgenos/química , Niño , Preescolar , Culinaria , Electroforesis en Gel de Poliacrilamida , Femenino , Humanos , Sueros Inmunes , Inmunoglobulina E/inmunología , Masculino , Persona de Mediana Edad , Proteínas de Vegetales Comestibles/química , Polen/inmunología
5.
BMC Plant Biol ; 20(1): 319, 2020 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-32631232

RESUMEN

BACKGROUND: Suppression and activation of plant defense genes is comprehensively regulated by WRKY family transcription factors. Chickpea, the non-model crop legume suffers from wilt caused by Fusarium oxysporum f. sp. ciceri Race1 (Foc1), defense response mechanisms of which are poorly understood. Here, we attempted to show interaction between WRKY70 and several downstream signaling components involved in susceptibility/resistance response in chickpea upon challenge with Foc1. RESULTS: In the present study, we found Cicer arietinum L. WRKY70 (CaWRKY70) negatively governs multiple defense responsive pathways, including Systemic Acquired Resistance (SAR) activation in chickpea upon Foc1 infection. CaWRKY70 is found to be significantly accumulated at shoot tissues of susceptible (JG62) chickpea under Foc1 stress and salicylic acid (SA) application. CaWRKY70 overexpression promotes susceptibility in resistant chickpea (WR315) plants to Foc1 infection. Transgenic plants upon Foc1 inoculation demonstrated suppression of not only endogenous SA concentrations but expression of genes involved in SA signaling. CaWRKY70 overexpressing chickpea roots exhibited higher ion-leakage and Foc1 biomass accumulation compared to control transgenic (VC) plants. CaWRKY70 overexpression suppresses H2O2 production and resultant reactive oxygen species (ROS) induced cell death in Foc1 infected chickpea roots, stem and leaves. Being the nuclear targeted protein, CaWRKY70 suppresses CaMPK9-CaWRKY40 signaling in chickpea through its direct and indirect negative regulatory activities. Protein-protein interaction study revealed CaWRKY70 and CaRPP2-like CC-NB-ARC-LRR protein suppresses hyper-immune signaling in chickpea. Together, our study provides novel insights into mechanisms of suppression of the multiple defense signaling components in chickpea by CaWRKY70 under Foc1 stress. CONCLUSION: CaWRKY70 mediated defense suppression unveils networking between several immune signaling events negatively affecting downstream resistance mechanisms in chickpea under Foc1 stress.


Asunto(s)
Cicer/genética , Fusarium/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Cicer/inmunología , Cicer/microbiología , Cicer/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Raíces de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/inmunología , Brotes de la Planta/microbiología , Brotes de la Planta/fisiología , Mapeo de Interacción de Proteínas , Especies Reactivas de Oxígeno/metabolismo , Ácido Salicílico/administración & dosificación , Transducción de Señal/inmunología , Factores de Transcripción/genética
6.
Protein J ; 39(3): 240-257, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32356273

RESUMEN

The pod wall of legumes is known to protect the developing seeds from pests and pathogens. However, the mechanism of conferring defense against insects has not yet been deciphered. Here, we have utilized 2-dimensional gel electrophoresis (2D-GE) coupled with mass spectrometry (MS/MS) to identify over expressed proteins in the pod wall of two different cultivars (commercial cultivar: JG 11 and tolerant cultivar: ICC 506-EB) of chickpea after 12 h of application of Helicoverpa armigera oral secretions (simulated herbivory). The assays were performed with a view that larvae are a voracious feeder and cause substantial damage to the pod within 12 h. A total of 600 reproducible protein spots were detected on gels, and the comparative analysis helped identify 35 (12 up-regulated, 23 down-regulated) and 20 (10 up-regulated, 10 down-regulated) differentially expressed proteins in JG 11 and ICC 506-EB, respectively. Functional classification of protein spots of each cultivar after MS/MS indicated that the differentially expressed proteins were associated with various metabolic activities. Also, stress-related proteins such as mannitol dehydrogenase (MADH), disease resistance-like protein-CSA1, serine/threonine kinase (D6PKL2), endoglucanase-19 etc. were up-regulated due to simulated herbivory. The proteins identified with a possible role in defense were further analyzed using the STRING database to advance our knowledge on their interacting partners. It decoded the involvement of several reactive oxygen species (ROS) scavengers and other proteins involved in cell wall reinforcement. The biochemical analysis also confirmed the active role of ROS scavengers during simulated herbivory. Thus, our study provides valuable new insights on chickpea-H.armigera interactions at the protein level.


Asunto(s)
Cicer/inmunología , Frutas/inmunología , Regulación de la Expresión Génica de las Plantas/inmunología , Interacciones Huésped-Parásitos/genética , Lepidópteros/fisiología , Proteínas de Plantas/inmunología , Animales , Pared Celular/genética , Pared Celular/inmunología , Pared Celular/parasitología , Celulasa/genética , Celulasa/inmunología , Cicer/genética , Cicer/parasitología , Depuradores de Radicales Libres/metabolismo , Frutas/genética , Frutas/parasitología , Ontología de Genes , Herbivoria/fisiología , Interacciones Huésped-Parásitos/inmunología , Larva/patogenicidad , Larva/fisiología , Lepidópteros/patogenicidad , Manitol Deshidrogenasas/genética , Manitol Deshidrogenasas/inmunología , Anotación de Secuencia Molecular , Lectinas de Plantas/genética , Lectinas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Proteínas Quinasas/inmunología
7.
Plant J ; 103(2): 561-583, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32170889

RESUMEN

Pathogen-/microbe-associated molecular patterns (PAMPs/MAMPs) initiate complex defense responses by reorganizing the biomolecular dynamics of the host cellular machinery. The extracellular matrix (ECM) acts as a physical scaffold that prevents recognition and entry of phytopathogens, while guard cells perceive and integrate signals metabolically. Although chitosan is a known MAMP implicated in plant defense, the precise mechanism of chitosan-triggered immunity (CTI) remains unknown. Here, we show how chitosan imparts immunity against fungal disease. Morpho-histological examination revealed stomatal closure accompanied by reductions in stomatal conductance and transpiration rate as early responses in chitosan-treated seedlings upon vascular fusariosis. Electron microscopy and Raman spectroscopy showed ECM fortification leading to oligosaccharide signaling, as documented by increased galactose, pectin and associated secondary metabolites. Multiomics approach using quantitative ECM proteomics and metabolomics identified 325 chitosan-triggered immune-responsive proteins (CTIRPs), notably novel ECM structural proteins, LYM2 and receptor-like kinases, and 65 chitosan-triggered immune-responsive metabolites (CTIRMs), including sugars, sugar alcohols, fatty alcohols, organic and amino acids. Identified proteins and metabolites are linked to reactive oxygen species (ROS) production, stomatal movement, root nodule development and root architecture coupled with oligosaccharide signaling that leads to Fusarium resistance. The cumulative data demonstrate that ROS, NO and eATP govern CTI, in addition to induction of PR proteins, CAZymes and PAL activities, besides accumulation of phenolic compounds downstream of CTI. The immune-related correlation network identified functional hubs in the CTI pathway. Altogether, these shifts led to the discovery of chitosan-responsive networks that cause significant ECM and guard cell remodeling, and translate ECM cues into cell fate decisions during fusariosis.


Asunto(s)
Quitosano/metabolismo , Cicer/inmunología , Matriz Extracelular/fisiología , Fusarium , Enfermedades de las Plantas/inmunología , Estomas de Plantas/fisiología , Metabolismo de los Hidratos de Carbono , Cicer/metabolismo , Cicer/microbiología , Interacciones Huésped-Patógeno , Metaboloma , Enfermedades de las Plantas/microbiología , Raíces de Plantas/inmunología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Proteoma , Plantones/inmunología , Plantones/microbiología
8.
Plant Mol Biol ; 100(4-5): 411-431, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30953279

RESUMEN

KEY MESSAGE: Physical interaction and phosphorylation by CaMPK9 protects the degradation of CaWRKY40 that induces resistance response in chickpea to Fusarium wilt disease by modulating the transcription of defense responsive genes. WRKY transcription factors (TFs) are the global regulators of plant defense signaling that modulate immune responses in host plants by regulating transcription of downstream target genes upon challenged by pathogens. However, very little is known about immune responsive role of Cicer arietinum L. (Ca) WRKY TFs particularly. Using two contrasting chickpea genotypes with respect to resistance against Fusarium oxysporum f. sp. ciceri Race1 (Foc1), we demonstrate transcript accumulation of different CaWRKYs under multiple stresses and establish that CaWRKY40 triggers defense. CaWRKY40 overexpressing chickpea mounts resistance to Foc1 by positively modulating the defense related gene expression. EMSA, ChIP assay and real-time PCR analyses suggest CaWRKY40 binds at the promoters and positively regulates transcription of CaDefensin and CaWRKY33. Further studies revealed that mitogen Activated Protein Kinase9 (CaMPK9) phosphorylates CaWRKY40 by directly interacting with its two canonical serine residues. Interestingly, CaMPK9 is unable to interact with CaWRKY40 when the relevant two serine residues were replaced by alanine. Overexpression of serine mutated WRKY40 isoform in chickpea fails to provide resistance against Foc1. Mutated WRKY40Ser.224/225 to AA overexpressing chickpea resumes its ability to confer resistance against Foc1 after application of 26S proteasomal inhibitor MG132, suggests that phosphorylation is essential to protect CaWRKY40 from proteasomal degradation. CaMPK9 silencing also led to susceptibility in chickpea to Foc1. Altogether, our results elucidate positive regulatory roles of CaMPK9 and CaWRKY40 in modulating defense response in chickpea upon Foc1 infection.


Asunto(s)
Cicer/inmunología , Fusarium/fisiología , Proteínas de Plantas/fisiología , Cicer/metabolismo , Cicer/microbiología , Proteína Quinasa 9 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/fisiología , Fosforilación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN Mensajero/metabolismo , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
9.
Plant Biotechnol J ; 17(1): 275-288, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29890030

RESUMEN

Whole-genome sequencing-based bulked segregant analysis (BSA) for mapping quantitative trait loci (QTL) provides an efficient alternative approach to conventional QTL analysis as it significantly reduces the scale and cost of analysis with comparable power to QTL detection using full mapping population. We tested the application of next-generation sequencing (NGS)-based BSA approach for mapping QTLs for ascochyta blight resistance in chickpea using two recombinant inbred line populations CPR-01 and CPR-02. Eleven QTLs in CPR-01 and six QTLs in CPR-02 populations were mapped on chromosomes Ca1, Ca2, Ca4, Ca6 and Ca7. The QTLs identified in CPR-01 using conventional biparental mapping approach were used to compare the efficiency of NGS-based BSA in detecting QTLs for ascochyta blight resistance. The QTLs on chromosomes Ca1, Ca4, Ca6 and Ca7 overlapped with the QTLs previously detected in CPR-01 using conventional QTL mapping method. The QTLs on chromosome Ca4 were detected in both populations and overlapped with the previously reported QTLs indicating conserved region for ascochyta blight resistance across different chickpea genotypes. Six candidate genes in the QTL regions identified using NGS-based BSA on chromosomes Ca2 and Ca4 were validated for their association with ascochyta blight resistance in the CPR-02 population. This study demonstrated the efficiency of NGS-based BSA as a rapid and cost-effective method to identify QTLs associated with ascochyta blight in chickpea.


Asunto(s)
Ascomicetos , Cicer/genética , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Cicer/inmunología , Cicer/microbiología , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades de las Plantas/inmunología
10.
Plant Biotechnol J ; 17(5): 914-931, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30328278

RESUMEN

Ascochyta blight (AB) is one of the major biotic stresses known to limit the chickpea production worldwide. To dissect the complex mechanisms of AB resistance in chickpea, three approaches, namely, transcriptome, small RNA and degradome sequencing were used. The transcriptome sequencing of 20 samples including two resistant genotypes, two susceptible genotypes and one introgression line under control and stress conditions at two time points (3rd and 7th day post inoculation) identified a total of 6767 differentially expressed genes (DEGs). These DEGs were mainly related to pathogenesis-related proteins, disease resistance genes like NBS-LRR, cell wall biosynthesis and various secondary metabolite synthesis genes. The small RNA sequencing of the samples resulted in the identification of 651 miRNAs which included 478 known and 173 novel miRNAs. A total of 297 miRNAs were differentially expressed between different genotypes, conditions and time points. Using degradome sequencing and in silico approaches, 2131 targets were predicted for 629 miRNAs. The combined analysis of both small RNA and transcriptome datasets identified 12 miRNA-mRNA interaction pairs that exhibited contrasting expression in resistant and susceptible genotypes and also, a subset of genes that might be post-transcriptionally silenced during AB infection. The comprehensive integrated analysis in the study provides better insights into the transcriptome dynamics and regulatory network components associated with AB stress in chickpea and, also offers candidate genes for chickpea improvement.


Asunto(s)
Ascomicetos , Cicer/genética , Resistencia a la Enfermedad/genética , MicroARNs/genética , Enfermedades de las Plantas/microbiología , ARN de Planta/genética , Transcriptoma/genética , Cicer/inmunología , Cicer/metabolismo , Cicer/microbiología , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Enfermedades de las Plantas/inmunología , Sitios de Carácter Cuantitativo/genética , Análisis de Secuencia de ARN
11.
J Basic Microbiol ; 59(1): 74-86, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30284310

RESUMEN

Lignifications in secondary cell walls play a significant role in defense mechanisms of plants against the invading pathogens. In the present study, we investigated Trichoderma strain specific lignifications in chickpea plants pre-treated with 10 potential Trichoderma strains and subsequently challenged with the wilt pathogen Fusarium oxysporum f. sp. ciceris (Foc). Trichoderma-induced lignifications in chickpea were observed through histochemical staining and expression of some genes of the lignin biosynthetic pathway. Lignifications were observed in transverse sections of shoots near the soil line through histochemical staining and expression pattern of the target genes was observed in root tissues through semi quantitative RT-PCR at different time intervals after inoculation of F. oxysporum f. sp. ciceris. Lignin deposition and expression pattern of the target genes were variable in each treatment. Lignifications were enhanced in all 10 Trichoderma strain treated and F. oxysporum f. sp. ciceris challenged chickpea plants. However, four Trichoderma strains viz., T-42, MV-41, DFL, and RO, triggered significantly high lignifications compared to the other six strains. Time course studies showed that effective Trichoderma isolates induced lignifications very early compared to the other strains and the process of lignifications nearly completes within 6 days of pathogen challenge. Thus, from the results it can be concluded that effective Trichoderma strains trigger lignifications very early in chickpea under Foc challenge and provide better protection to chickpea plants.


Asunto(s)
Cicer/metabolismo , Cicer/microbiología , Fusarium/patogenicidad , Lignina/biosíntesis , Enfermedades de las Plantas/microbiología , Trichoderma/fisiología , Antibiosis , Cicer/genética , Cicer/inmunología , ADN de Plantas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Interacciones Huésped-Patógeno , Lignina/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/prevención & control , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/microbiología , Trichoderma/aislamiento & purificación
12.
Plant Sci ; 276: 111-133, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30348309

RESUMEN

Fusarium wilt is one of the most serious diseases affecting chickpea (Cicer arietinum L.). Here, we identified a putative Resistance Gene Analog (CaRGA) from chickpea, encoding a coiled-coil (CC) nucleotide-binding oligomerization domain (NB-ARC) containing leucine-rich repeat (LRR) protein (CC-NLR protein) that confers resistance against Fusarium oxysporum f. sp. ciceri race1 (Foc1). Over-expression and silencing of CaRGA in chickpea resulted in enhanced resistance and hyper-susceptibility, respectively against Foc1. Furthermore, defense response to Foc1 depends on CC-NLR interaction with WRKY64 transcription factor. CaRGA mediated wilt resistance largely compromised when WRKY64 was silenced. We also determined in planta intramolecular interactions and self-association of chickpea CC-NLR protein. The study shows CC domain suppressing auto-activation of the full-length CC-NLR protein in the absence of pathogen through self-inhibitory intramolecular interaction with NB-ARC domain, which is attenuated by self-interactions to LRR domain. Chickpea CC-NLR protein forms homocomplexes and then interacts with WRKY64. CC-NLR protein further phosphorylates WRKY64 thereby, ubiquitination and proteasome mediated degradation are protected. Phosphorylated WRKY64 with increased stability binds to EDS1 promoter and stimulates its transcription that induces in planta ectopic cell-death. The detailed analysis of CC-NLR and WRKY interactions provide a better understanding of the immune regulation by NLR proteins under biotic stresses.


Asunto(s)
Cicer/fisiología , Resistencia a la Enfermedad , Fusarium/fisiología , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Cicer/genética , Cicer/inmunología , Fusarium/crecimiento & desarrollo , Glucanos/metabolismo , Interacciones Huésped-Patógeno , Proteínas NLR/genética , Proteínas NLR/metabolismo , Filogenia , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Dominios Proteicos , Transducción de Señal
13.
Microb Pathog ; 122: 98-107, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29894808

RESUMEN

A total of 219 endophytic actinobacteria, isolated from roots, stems and leaves of chickpea, were characterized for antagonistic potential against Botrytis cinerea, causal organism of Botrytis grey mold (BGM) disease, in chickpea. Among them, three most potential endophytes, AUR2, AUR4 and ARR4 were further characterized for their plant growth-promoting (PGP) and nodulating potentials and host-plant resistance against B. cinerea, in chickpea. The sequences of 16 S rDNA gene of the three endophytes were matched with Streptomyces but different species. In planta, the isolate AUR4 alone was able to significantly enhance PGP traits including seed numbers (11.8 vs. 9.8/Plant), seed weight (8 vs. 6.8 g/Plant), pod numbers (13.6 vs. 11.5/Plant), pod weight (9.3 vs. 7.5 g/Plant) and biomass (10.9 vs. 8 g/Plant) over the un-inoculated control in chickpea genotype JG11. Interestingly, consortium of the selected endophytes, AUR2, AUR4 and ARR4 were found less effective than single inoculation. Co-inoculation of the selected endophytes with Mesorhizobium ciceri significantly enhanced nodulation and nitrogenase activity in five chickpea genotypes including ICCV2, ICCV10, ICC4958, Annigeri and JG11 over the un-inoculated control. The selected endophytes showed antagonistic potential in planta by significant reduction of disease incidence (28─52%) in both single inoculation and consortium treatments over the un-inoculated control across the genotypes ICC4954 (susceptible), ICCV05530 (moderately resistant) and JG11 (unknown resistance). Further, antioxidant enzymes such as superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, glutathione reductase, phenylalanine ammonia-lyase and polyphenol oxidase and phenolics were found induced in the leaves of chickpea inoculated with selected endophytes over un-inoculated control. Principal component analysis revealed that, the antioxidant enzymes and phenolics were found in the magnitude of ICC4954 < JG11 < ICCV05530 which correlates with their resistance level. The selected endophytes enhanced the plant growth and also host plant resistance against BGM in chickpea.


Asunto(s)
Botrytis/crecimiento & desarrollo , Cicer/microbiología , Endófitos/crecimiento & desarrollo , Mesorhizobium/crecimiento & desarrollo , Interacciones Microbianas , Enfermedades de las Plantas/prevención & control , Streptomyces/crecimiento & desarrollo , Cicer/crecimiento & desarrollo , Cicer/inmunología , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Nitrogenasa/análisis , Filogenia , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Nodulación de la Raíz de la Planta , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Streptomyces/clasificación , Streptomyces/genética , Streptomyces/aislamiento & purificación
14.
Sci Rep ; 8(1): 6528, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29695764

RESUMEN

Host specific resistance and non-host resistance are two plant immune responses to counter pathogen invasion. Gene network organizing principles leading to quantitative differences in resistant and susceptible host during host specific resistance are poorly understood. Vascular wilt caused by root pathogen Fusarium species is complex and governed by host specific resistance in crop plants, including chickpea. Here, we temporally profiled two contrasting chickpea genotypes in disease and immune state to better understand gene expression switches in host specific resistance. Integrative gene-regulatory network elucidated tangible insight into interaction coordinators leading to pathway determination governing distinct (disease or immune) phenotypes. Global network analysis identified five major hubs with 389 co-regulated genes. Functional enrichment revealed immunome containing three subnetworks involving CTI, PTI and ETI and wilt diseasome encompassing four subnetworks highlighting pathogen perception, penetration, colonization and disease establishment. These subnetworks likely represent key components that coordinate various biological processes favouring defence or disease. Furthermore, we identified core 76 disease/immunity related genes through subcellular analysis. Our regularized network with robust statistical assessment captured known and unexpected gene interaction, candidate novel regulators as future biomarkers and first time showed system-wide quantitative architecture corresponding to genotypic characteristics in wilt landscape.


Asunto(s)
Cicer/genética , Cicer/inmunología , Redes Reguladoras de Genes/genética , Inmunidad de la Planta/genética , Transcriptoma/genética , Cicer/microbiología , Fusarium/inmunología , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/inmunología , Genes de Plantas/genética , Genes de Plantas/inmunología , Genotipo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/inmunología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Transcriptoma/inmunología
15.
Proteomics ; 17(23-24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29144021

RESUMEN

Extracellular matrix (ECM) is the unique organelle that perceives stress signals and reprograms molecular events of host cell during patho-stress. However, our understanding of how ECM dictates plant immunity is largely unknown. Vascular wilt caused by the soil borne filamentous fungus Fusarium oxysporum is a major impediment for global crop productivity. To elucidate the role of ECM proteins and molecular mechanism associated with cell wall mediated immunity, the temporal changes of ECM proteome was studied in vascular wilt resistant chickpea cultivar upon F. oxysporum infection. The 2DE protein profiling coupled with mass spectrometric analysis identified 166 immune responsive proteins (IRPs) involved in variety of functions. Our data suggest that wall remodeling; protein translocation, stabilization, and chitin triggered immunity; and extracellular ATP signaling are major players in early, middle, and later phases of ECM signaling during fungal attack. Furthermore, we interrogated the proteome data using network analysis that identified modules enriched in known and novel immunity-related prognostic proteins centered around nascent aminopolypeptide complex (NAC), amine oxidase, thioredoxin, and chaperonin. This study for the first time provides an insight into the complex network operating in the ECM and impinges on the surveillance mechanism of innate immunity during patho-stress in crop plant.


Asunto(s)
Pared Celular/inmunología , Cicer/inmunología , Proteínas de la Matriz Extracelular/metabolismo , Fusarium/fisiología , Enfermedades de las Plantas/inmunología , Proteómica/métodos , Pared Celular/metabolismo , Pared Celular/microbiología , Cicer/citología , Cicer/metabolismo , Cicer/microbiología , Proteínas de la Matriz Extracelular/inmunología , Interacciones Huésped-Patógeno , Inmunidad Innata , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/análisis , Proteínas de Plantas/inmunología , Proteoma/metabolismo
16.
Sci Rep ; 7(1): 7746, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28798320

RESUMEN

Fusarium wilt is one of the major biotic stresses reducing chickpea productivity. The use of wilt-resistant cultivars is the most appropriate means to combat the disease and secure productivity. As a step towards understanding the molecular basis of wilt resistance in chickpea, we investigated the transcriptomes of wilt-susceptible and wilt-resistant cultivars under both Fusarium oxysporum f.sp. ciceri (Foc) challenged and unchallenged conditions. Transcriptome profiling using LongSAGE provided a valuable insight into the molecular interactions between chickpea and Foc, which revealed several known as well as novel genes with differential or unique expression patterns in chickpea contributing to lignification, hormonal homeostasis, plant defense signaling, ROS homeostasis, R-gene mediated defense, etc. Similarly, several Foc genes characteristically required for survival and growth of the pathogen were expressed only in the susceptible cultivar with null expression of most of these genes in the resistant cultivar. This study provides a rich resource for functional characterization of the genes involved in resistance mechanism and their use in breeding for sustainable wilt-resistance. Additionally, it provides pathogen targets facilitating the development of novel control strategies.


Asunto(s)
Cicer/genética , Fusarium/patogenicidad , Interacciones Huésped-Patógeno , Inmunidad de la Planta , Transcriptoma , Cicer/inmunología , Cicer/microbiología , Genes de Plantas
17.
Food Chem ; 235: 244-256, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28554633

RESUMEN

Glycation of food allergens may alter their immunological behaviour. We sought to investigate the impact of glycation on the allergenicity of a food protein. Herein, a chickpea protein (≈26kDa) was purified and characterized as lectin. Further, glycation of this purified protein was carried out. Thereafter, allergic behaviour of this glycated protein was compared with its native form, using various allergic parameters in Balb/c mice. The reduced allergenicity of glycated protein was observed as lesser allergic phenotypes, reduced serum immunoglobulins and allergic mediators, lower mast cells and eosinophil counts, lower protein expressions of Th2 cytokines and associated transcription factors. In addition, more Th1 and less Th2 cytokine production in exposed splenocyte, were evident in the glycated protein treated mice as compared to its native protein treatment. Thus, glycation of the chickpea allergen attenuated the sensitizing potential and allergic responses in Balb/c mice significantly and could also be clinically beneficial.


Asunto(s)
Cicer/química , Cicer/inmunología , Hipersensibilidad a los Alimentos , Alérgenos , Animales , Citocinas , Ratones , Ratones Endogámicos BALB C
18.
Sci Rep ; 7: 44729, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300183

RESUMEN

Chickpea (C. arietinum L.) is an important pulse crop in Asian and African countries that suffers significant yield losses due to attacks by insects like H. armigera. To obtain insights into early responses of chickpea to insect attack, a transcriptomic analysis of chickpea leaves just 20 minutes after simulated herbivory was performed, using oral secretions of H. armigera coupled with mechanical wounding. Expression profiles revealed differential regulation of 8.4% of the total leaf transcriptome with 1334 genes up-regulated and 501 down-regulated upon wounding at log2-fold change (|FC| ≤ -1 and ≥1) and FDR value ≤ 0.05. In silico analysis showed the activation of defenses through up-regulation of genes of the phenylpropanoid pathway, pathogenesis, oxidases and CYTP450 besides differential regulation of kinases, phosphatases and transcription factors of the WRKY, MYB, ERFs, bZIP families. A substantial change in the regulation of hormonal networks was observed with up-regulation of JA and ethylene pathways and suppression of growth associated hormone pathways like GA and auxin within 20 minutes of wounding. Secondary qPCR comparison of selected genes showed that oral secretions often increased differential expression relative to mechanical damage alone. The studies provide new insights into early wound responses in chickpea.


Asunto(s)
Cicer/genética , Ciclopentanos/metabolismo , Etilenos/metabolismo , Redes Reguladoras de Genes/genética , Giberelinas/metabolismo , Herbivoria/fisiología , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Animales , Cicer/inmunología , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Mariposas Nocturnas/fisiología , Hojas de la Planta/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Saliva/metabolismo , Análisis de Secuencia de ARN , Transcriptoma/genética , Regulación hacia Arriba/genética
19.
J Agric Food Chem ; 65(1): 6-22, 2017 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-27779388

RESUMEN

Chickpeas (CPs) are one of the most commonly consumed legumes, especially in the Mediterranean area as well as in the Western world. Being one of the most nutritional elements of the human diet, CP toxicity and allergy have raised health concerns. CPs may contain various antinutritional compounds, including protease inhibitors, phytic acid, lectins, oligosaccharides, and some phenolic compounds that may impair the utilization of the nutrients by people. Also, high consumption rates of CPs have enhanced the allergic problems in sensitive individuals as they contain many allergens. On the other hand, beneficial health aspects of CP consumption have received attention from researchers recently. Phytic acid, lectins, sterols, saponins, dietary fibers, resistant starch, oligosaccharides, unsaturated fatty acids, amylase inhibitors, and certain bioactive compounds such as carotenoids and isoflavones have shown the capability of lowering the clinical complications associated with various human diseases. The aim of this paper is to unravel the health risks as well as health-promoting aspects of CP consumption and to try to fill the gaps that currently exist. The present review also focuses on various prevention strategies to avoid health risks of CP consumption using simple but promising ways.


Asunto(s)
Cicer/química , Cicer/metabolismo , Cicer/efectos adversos , Cicer/inmunología , Dieta , Hipersensibilidad a los Alimentos/etiología , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/metabolismo , Humanos , Valor Nutritivo , Medición de Riesgo
20.
Genome ; 59(6): 413-25, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27244453

RESUMEN

In western Canada, chickpea (Cicer arietinum L.) production is challenged by short growing seasons and infestations with ascochyta blight. Research was conducted to determine the genetic basis of the association between flowering time and reaction to ascochyta blight in chickpea. Ninety-two chickpea recombinant inbred lines (RILs) developed from a cross between ICCV 96029 and CDC Frontier were evaluated for flowering responses and ascochyta blight reactions in growth chambers and fields at multiple locations and during several years. A wide range of variation was exhibited by the RILs for days to flower, days to maturity, node of first flowering, plant height, and ascochyta blight resistance. Moderate to high broad sense heritability was estimated for ascochyta blight reaction (H(2) = 0.14-0.34) and for days to flowering (H(2) = 0.45-0.87) depending on the environments. Negative correlations were observed among the RILs for days to flowering and ascochyta blight resistance, ranging from r = -0.21 (P < 0.05) to -0.58 (P < 0.0001). A genetic linkage map consisting of eight linkage groups was developed using 349 SNP markers. Seven QTLs for days to flowering were identified that individually explained 9%-44% of the phenotypic variation. Eight QTLs were identified for ascochyta blight resistance that explained phenotypic variation ranging from 10% to 19%. Clusters of QTLs for days to flowering and ascochyta blight resistances were found on chromosome 3 at the interval of 8.6-23.11 cM and on chromosome 8 at the interval of 53.88-62.33 cM.


Asunto(s)
Ascomicetos/fisiología , Cicer/genética , Cicer/microbiología , Sitios de Carácter Cuantitativo , Canadá , Mapeo Cromosómico , Cicer/crecimiento & desarrollo , Cicer/inmunología , Cruzamientos Genéticos , Resistencia a Medicamentos , Flores/crecimiento & desarrollo , Ligamiento Genético , Marcadores Genéticos/genética , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA