Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 868
Filtrar
1.
Arch Virol ; 169(5): 116, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722402

RESUMEN

In this study, we investigated the role of serum/glucocorticoid-regulated kinase 1 (SGK1) in varicella-zoster virus (VZV) replication. VZV DNA replication and plaque formation were inhibited by SGK1 knockout and treatment with an SGK1 inhibitor. Furthermore, SGK1 inhibition suppressed the increase in cyclin B1 expression induced by VZV infection. These results suggest that VZV infection induces SGK1 activation, which is required for efficient viral proliferation through the expression of cyclin B1. This is the first study to report that SGK1 is involved in the VZV life cycle.


Asunto(s)
Ciclina B1 , Herpesvirus Humano 3 , Proteínas Inmediatas-Precoces , Proteínas Serina-Treonina Quinasas , Replicación Viral , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Humanos , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Ciclina B1/metabolismo , Ciclina B1/genética , Línea Celular , Replicación del ADN
2.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713252

RESUMEN

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Asunto(s)
Proteína Quinasa CDC2 , Ciclina B1 , Proteínas de Unión al ADN , Progresión de la Enfermedad , Cinesinas , Ratones Desnudos , Mieloma Múltiple , Fosfatasas cdc25 , Humanos , Cinesinas/metabolismo , Cinesinas/genética , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Animales , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/genética , Ratones , Femenino , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Masculino , Ciclina B1/metabolismo , Ciclina B1/genética , Proliferación Celular , Línea Celular Tumoral , Persona de Mediana Edad , Pronóstico , Regulación Neoplásica de la Expresión Génica , Transducción de Señal , Ratones Endogámicos BALB C
3.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732090

RESUMEN

Meox1 is a critical transcription factor that plays a pivotal role in embryogenesis and muscle development. It has been established as a marker gene for growth-specific muscle stem cells in zebrafish. In this study, we identified the SsMeox1 gene in a large teleost fish, Sebastes schlegelii. Through in situ hybridization and histological analysis, we discovered that SsMeox1 can be employed as a specific marker of growth-specific muscle stem cells, which originate from the somite stage and are primarily situated in the external cell layer (ECL) and myosepta, with a minor population distributed among muscle fibers. The knockdown of SsMeox1 resulted in a significant increase in Ccnb1 expression, subsequently promoting cell cycle progression and potentially accelerating the depletion of the stem cell pool, which ultimately led to significant growth retardation. These findings suggest that SsMeox1 arrests the cell cycle of growth-specific muscle stem cells in the G2 phase by suppressing Ccnb1 expression, which is essential for maintaining the stability of the growth-specific muscle stem cell pool. Our study provides significant insights into the molecular mechanisms underlying the indeterminate growth of large teleosts.


Asunto(s)
Desarrollo de Músculos , Animales , Desarrollo de Músculos/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Células Madre/metabolismo , Células Madre/citología , Ciclo Celular/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
4.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 85-89, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678624

RESUMEN

We aimed to explore the effects of silencing NOD-like receptor protein 3 (NLRP3) on proliferation of psoriasis-like HaCaT cells and expressions of cytokines. HaCaT cells were treated with human keratinocyte growth factor (KGF) and were divided into KGF group, negative control group, NLRP3-RNAi group and control group. Cells proliferation was detected by CCK8, cell clone formation rate was detected by clone formation assay, distribution of cells cycle was detected by flow cytometry, expressions of cyclin B1 (Cyclin B1), cyclin-dependent kinase 2 (CDK2), Ki67 and proliferating cell nuclear antigen (PCNA) proteins were detected by Western blot, and levels of interleukin (IL)-17, IL-23, IL-6 and tumor necrosis factor α (TNF-α) were detected by enzyme-linked immunosorbent assay. Compared with control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were increased in KGF group, percentage of cells in G0/G1 phase was decreased, percentage of cells in S phase was increased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were increased, and levels of IL-17, IL-23, IL-6 and TNF-α were increased. Compared with negative control group, expressions of NLRP3 mRNA and protein, proliferation rate and clonal formation rate were decreased in NLRP3-RNAi group, percentage of cells in G0/G1 phase was increased, percentage of cells in S phase was decreased, expressions of Cyclin B1, CDK2, Ki67 and PCNA proteins were decreased, and levels of IL-17, IL-23, IL-6 and TNF-α were decreased. Silencing NLRP3 gene can inhibit the proliferation of psoriasis-like HaCaT cells, arrest cell cycle, inhibit the expressions of cell proliferation-related proteins and reduce levels of pro-inflammatory factors.


Asunto(s)
Proliferación Celular , Citocinas , Proteína con Dominio Pirina 3 de la Familia NLR , Antígeno Nuclear de Célula en Proliferación , Psoriasis , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proliferación Celular/genética , Psoriasis/genética , Psoriasis/metabolismo , Psoriasis/patología , Citocinas/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Ciclina B1/metabolismo , Ciclina B1/genética , Silenciador del Gen , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Células HaCaT , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Ciclo Celular/genética , Interleucina-17/metabolismo , Interleucina-17/genética , Interferencia de ARN , Interleucina-23/metabolismo , Interleucina-23/genética , Interleucina-6/metabolismo , Interleucina-6/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo
5.
Parasit Vectors ; 17(1): 180, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581071

RESUMEN

BACKGROUND: Toxoplasma gondii is an apicomplexan intracellular obligate parasite and the etiological agent of toxoplasmosis in humans, domestic animals and wildlife, causing miscarriages and negatively impacting offspring. During its intracellular development, it relies on nutrients from the host cell, controlling several pathways and the cytoskeleton. T. gondii has been proven to control the host cell cycle, mitosis and cytokinesis, depending on the time of infection and the origin of the host cell. However, no data from parallel infection studies have been collected. Given that T. gondii can infect virtually any nucleated cell, including those of humans and animals, understanding the mechanism by which it infects or develops inside the host cell is essential for disease prevention. Therefore, we aimed here to reveal whether this modulation is dependent on a specific cell type or host cell species. METHODS: We used only primary cells from humans and bovines at a maximum of four passages to ensure that all cells were counted with appropriate cell cycle checkpoint control. The cell cycle progression was analysed using fluorescence-activated cell sorting (FACS)-based DNA quantification, and its regulation was followed by the quantification of cyclin B1 (mitosis checkpoint protein). The results demonstrated that all studied host cells except bovine colonic epithelial cells (BCEC) were arrested in the S-phase, and none of them were affected in cyclin B1 expression. Additionally, we used an immunofluorescence assay to track mitosis and cytokinesis in uninfected and T. gondii-infected cells. RESULTS: The results demonstrated that all studied host cell except bovine colonic epithelial cells (BCEC) were arrested in the S-phase, and none of them were affected in cyclin B1 expression. Our findings showed that the analysed cells developed chromosome segregation problems and failed to complete cytokinesis. Also, the number of centrosomes per mitotic pole was increased after infection in all cell types. Therefore, our data suggest that T. gondii modulates the host cell cycle, chromosome segregation and cytokinesis during infection or development regardless of the host cell origin or type.


Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Animales , Bovinos , Toxoplasma/fisiología , Citocinesis , Ciclina B1/genética , Ciclina B1/metabolismo , Segregación Cromosómica , Toxoplasmosis/parasitología
6.
Biol Cell ; 116(4): e202300072, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514439

RESUMEN

BACKGROUND INFORMATION: The precise etiology of breast cancer is not completely understood, although women with BRCA1 gene mutations have a significantly increased risk of developing the disease. In addition, sporadic breast cancer is frequently associated with decreased BRCA1 gene expression. Growing evidence of Human papillomaviruses (HPVs) infections in breast tumors has raised the possibility of the involvement of HPVs in the pathogenesis of breast cancer. We investigated whether the effects of HPV oncoproteins E6 and E7 were influenced by the expression levels of BRCA1. HPV16E6E7 (prototype or E6D25E/E7N29S Asian variant type) were stably expressed in MDA-MB231 breast cancer cells, wild type for BRCA1, or with BRCA1 knocked down. RESULTS: Expression of HPV16E6E7 oncogenes did not affect BRCA1 levels and the abundance of HPV16E6E7 was not altered by BRCA1 knockdown. BRCA1 levels did not alter HPV16E6E7-dependent degradation of G1-S cell cycle proteins p53 and pRb. However, we found that the expression of G2-M cell cycle protein cyclin B1 enhanced by HPV16E6E7 was impacted by BRCA1 levels. Especially, we found the correlation between BRCA1 and cyclin B1 expression and this was also confirmed in breast cancer samples from a Thai cohort. We further demonstrated that the combination of HPV oncoproteins and low levels of BRCA1 protein appears to enhance proliferation and invasion. Transactivation activities of HPV16E6E7 on genes regulating cell proliferation and invasion (TGF-ß and vimentin) were significantly increased in BRCA1-deficient cells. CONCLUSIONS: Our results indicate that a deficiency of BRCA1 promotes the transactivation activity of HPV16E6E7 leading to increase of cell proliferation and invasion. SIGNIFICANCE: HPV infection appears to have the potential to enhance the aggressiveness of breast cancers, especially those deficient in BRCA1.


Asunto(s)
Neoplasias de la Mama , Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Femenino , Humanos , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/metabolismo , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Ciclina B1/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Infecciones por Papillomavirus/genética , Proteínas Oncogénicas Virales/genética , Proteínas Oncogénicas Virales/metabolismo
7.
Theriogenology ; 218: 137-141, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38325150

RESUMEN

The present experiments are aimed to examine the effect of copper nanoparticles supported on charcoal (CuNPs/C), growth factor betacellulin (BTC) and their interrelationships in the control of ovarian cell functions. Porcine ovarian granulosa cells were cultured in the presence of CuNPs/C (0, 1, 10 or 100 ng/ml), BTC (100 ng/ml) and the combination of both, CuNPs/C + BTC. Markers of cell proliferation (BrDU incorporation), of the S-phase (PCNA) and G-phase (cyclin B1) of the cell cycle, markers of extrinsic (nuclear DNA fragmentation) and cytoplasmic/mitochondrial apoptosis (bax and caspase 3), and the release of progesterone and estradiol were assessed by BrDU test, TUNEL, quantitative immunocytochemistry and ELISA. Both CuNPs/C and BTC, when added alone, increased the expression of all the markers of cell proliferation, reduced the expression of all apoptosis markers and stimulated progesterone and estradiol release. Moreover, BTC was able to promote the CuNPs/C action on the accumulation of PCNA, cyclin B1, bax and estradiol output. These observations demonstrate the stimulatory action of both CuNPs/C and BTC on ovarian cell functions, as well as the ability of BTC to promote the action of CuNPs/C on ovarian cell functions.


Asunto(s)
Nanopartículas , Progesterona , Femenino , Porcinos , Animales , Ciclina B1/metabolismo , Progesterona/farmacología , Carbón Orgánico/metabolismo , Carbón Orgánico/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Betacelulina/metabolismo , Betacelulina/farmacología , Bromodesoxiuridina/metabolismo , Bromodesoxiuridina/farmacología , Células de la Granulosa , Estradiol/farmacología , Proliferación Celular , Apoptosis , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo
8.
Exp Cell Res ; 435(2): 113950, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309674

RESUMEN

The existing knowledge of the involvement of vinculin (VCL) in the control of ovarian cell functions is insufficient. To understand the role of VCL in the control of basic porcine ovarian granulosa cell functions, we decreased VCL activity by small interfering RNA (VCL siRNA). The expression of VCL, accumulation of VCL protein, cell viability, proliferation (accumulation of PCNA and cyclin B1), proportion of proliferative active cells, apoptosis (accumulation of bax, caspase 3, p53, antiapoptotic marker bcl2, and bax/bcl-2 ratio), DNA fragmentation, and release of steroid hormones and IGF-I were analyzed by RT‒qPCR, Trypan blue exclusion test, quantitative immunocytochemistry, XTT assay, TUNEL assay, and ELISA. The suppression of VCL activity inhibited cell viability, the accumulation of the proliferation-related proteins PCNA and cyclin B1, the antiapoptotic protein bcl2, and the proportion of proliferative active cells. Moreover, VCL siRNA inhibited the release of progesterone, estradiol, and IGF-1. VCL siRNA increased the proportion of the proapoptotic proteins bax, caspase 3, p53, the proportion of DNA fragmented cells, and stimulated testosterone release. Taken together, the present study is the first evidence that inhibition of VCL suppresses porcine granulosa cell functions. Moreover, the results suggest that VCL can be a potent physiological stimulator of ovarian functions.


Asunto(s)
Progesterona , Proteína p53 Supresora de Tumor , Femenino , Porcinos , Animales , Ciclina B1/metabolismo , Ciclina B1/farmacología , Caspasa 3/genética , Caspasa 3/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , Vinculina/genética , Vinculina/metabolismo , Progesterona/farmacología , Apoptosis , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proliferación Celular , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo
9.
Appl Biochem Biotechnol ; 196(3): 1481-1492, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37428386

RESUMEN

CDCA8 expression is abnormally high in a variety of cancers and involved in the biological process of tumor malignancy. In this study, we discovered that the expression of CDCA8 was up-regulated in hepatocellular carcinoma cancer (HCC) tissues and high levels of CDCA8 are associated with larger tumor size, higher AFP (α-fetoprotein) levels, and unfavorable prognosis. Cell functional experiments revealed that CDCA8 silencing remarkably inhibited proliferation and promoted apoptosis in SNU-387 and Hep-3B cells. The results of flow cytometry showed that CDCA8 regulated CDK1 and cyclin B1 expression to arrest at the S phase, inhibited proliferation, and promoted apoptosis. In addition, in vivo studies have confirmed that silencing CDCA8 could regulate CDK1/cyclin B1 signaling axis to inhibit the growth of HCC xenograft tumor. Our study demonstrated CDCA8 acts an oncogene to facilitate cell proliferation of HCC via regulating cell cycle, indicating the promising application value of CDCA8 for HCC diagnosis and clinical treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Ciclina B1/metabolismo , Neoplasias Hepáticas/patología , Línea Celular Tumoral , Regulación hacia Arriba , Proliferación Celular/genética , Pronóstico , Apoptosis/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
10.
Nucleic Acids Res ; 52(3): 1258-1271, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38048302

RESUMEN

Progression through the mitotic and meiotic cell cycle is driven by fluctuations in the levels of cyclins, the regulatory subunits controlling the localization and activity of CDK1 kinases. Cyclin levels are regulated through a precise balance of synthesis and degradation. Here we demonstrate that the synthesis of Cyclin B1 during the oocyte meiotic cell cycle is defined by the selective translation of mRNA variants generated through alternative cleavage and polyadenylation (APA). Using gene editing in mice, we introduced mutations into the proximal and distal polyadenylation elements of the 3' untranslated region (UTR) of the Ccnb1 mRNA. Through in vivo loss-of-function experiments, we demonstrate that the translation of mRNA with a short 3' UTR specifies Cyclin B1 protein levels that set the timing of meiotic re-entry. In contrast, translation directed by a long 3' UTR is necessary to direct Cyclin B1 protein accumulation during the MI/MII transition. These findings establish that the progression through the cell cycle is dependent on the selective translation of multiple mRNA variants generated by APA.


Asunto(s)
Ciclina B1 , Meiosis , Poliadenilación , Animales , Ratones , Regiones no Traducidas 3'/genética , Ciclo Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Oocitos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
11.
Pathol Res Pract ; 253: 154961, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043194

RESUMEN

The immunoexpression of BubR1 and cyclin B1 in pleomorphic adenoma (PA) and polymorphic adenocarcinoma (PAC) in minor salivary glands is poorly studied. Thus, a retrospective and observational study was performed to provide a better understanding of the role and immunopositivity patterns of these proteins in these lesions. Sixteen cases of PA and 16 cases of PAC were selected. Parenchyma cells were submitted to quantitative immunohistochemical analysis through the labeling index. Cytoplasmic immunoexpression of BubR1 was observed in neoplastic cells from all analyzed PA and PAC cases. All PA cases and 93.7% of PAC exhibited nuclear immunoexpression of BubR1. Higher cytoplasmic and nuclear immunoexpression of BubR1 was observed in PAC (p = 0.001 and p = 0.122, respectively). Cytoplasmic immunoexpression of cyclin B1 was observed in all cases of PA and PAC, with a higher labeling index in the latter (p < 0.001). There was a significant positive correlation between nuclear and cytoplasmic BubR1 immunoexpressions (p < 0.001) in PA and a significant negative correlation between BubR1 and cyclin B1 cytoplasmic immunoexpressions (p = 0.014) in PAC. The higher cytoplasmic and nuclear immunoexpression of BubR1 in PACs suggests the continuous maintenance of neoplastic cells in the cell cycle and migration. Higher immunoexpression of cyclin B1 supports this lesion's enhanced proliferative and migration ability.


Asunto(s)
Adenocarcinoma , Adenoma Pleomórfico , Neoplasias de las Glándulas Salivales , Humanos , Adenocarcinoma/patología , Adenoma Pleomórfico/metabolismo , Ciclina B1/metabolismo , Estudios Retrospectivos , Neoplasias de las Glándulas Salivales/patología , Glándulas Salivales Menores/patología
12.
Tissue Cell ; 86: 102263, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37979396

RESUMEN

The identification and investigation of key molecules involved in the pathogenesis of multiple myeloma (MM) hold paramount clinical significance. This study primarily focuses on elucidating the role of DEPDC1B within the context of MM. Our findings robustly affirm the abundant expression of DEPDC1B in MM tissues and cell lines. Notably, DEPDC1B depletion exerted inhibitory effects on MM cell proliferation and migration while concurrently facilitating apoptosis and G2 cell cycle arrest. These outcomes stand in stark contrast to the consequences of DEPDC1B overexpression. Furthermore, we identified CCNB1 as a putative downstream target, characterized by a co-expression pattern with DEPDC1B, mediating DEPDC1B's regulatory influence on MM. Additionally, our results suggest that DEPDC1B knockdown may activate the p53 pathway, thereby impeding MM progression. To corroborate these in vitro findings, we conducted in vivo experiments that further validate the regulatory role of DEPDC1B in MM and its interaction with CCNB1 and the p53 pathway. Collectively, our research underscores DEPDC1B as a potent promoter in the development of MM, representing a promising therapeutic target for MM treatment. This discovery bears significant implications for future investigations in this field.


Asunto(s)
Mieloma Múltiple , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Mieloma Múltiple/metabolismo , Apoptosis/genética , Transducción de Señal/genética , Proliferación Celular/genética , Línea Celular Tumoral , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina B1/farmacología , Proteínas Activadoras de GTPasa/metabolismo
13.
FEBS Open Bio ; 14(3): 444-454, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38151757

RESUMEN

SETDB2 is a H3K9 histone methyltransferase required for accurate chromosome segregation. Its H3K9 histone methyltransferase activity was reported to be associated with chromosomes during metaphase. Here, we confirm that SETDB2 is required for mitosis and accurate chromosome segregation. However, these functions are independent of its histone methyltransferase activity. Further analysis showed that SETDB2 can interact with BUBR1, and is required for CDC20 binding to BUBR1 and APC/C complex and CYCLIN B1 degradation. The ability of SETDB2 to regulate the binding of CDC20 to BUBR1 or APC/C complex, and stabilization of CYCLIN B1 are also independent of its histone methyltransferase activity. These results suggest that SETDB2 interacts with BUBR1 to promote binding of CDC20 to BUBR1 and APC3, then degrades CYCLIN B1 to ensure accurate chromosome segregation and mitosis, independently of its histone methyltransferase activity.


Asunto(s)
Segregación Cromosómica , Proteínas Serina-Treonina Quinasas , Proteínas Serina-Treonina Quinasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclina B1/genética , Ciclina B1/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Huso Acromático/metabolismo , Proteínas de Ciclo Celular/genética
14.
Epigenomics ; 15(18): 895-910, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37909116

RESUMEN

Aim: The present study sought to investigate the therapeutic effect of resveratrol on clear cell renal cell carcinoma. Materials & methods: Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were used to verify the cell proliferation. Transwell, real-time quantitative transcription PCR, western blot and ß-galactosidase staining were used to verify the migration, macrophage polarization and senescence. The tumor inhibitory effect of resveratrol on clear cell renal cell carcinoma was verified in vivo. Results: This study confirmed that resveratrol could affect the stability of CCNB1 mRNA mediated by RBM15 and inhibit the cancer process by inhibiting the expression of EP300/CBP from the perspective of cell senescence. Conclusion: Resveratrol is able to treat clear cell renal cell carcinoma through RBM15-induced cell senescence.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Resveratrol/farmacología , Senescencia Celular , Neoplasias Renales/genética , Macrófagos/metabolismo , Proteínas de Unión al ARN , Ciclina B1/metabolismo , Ciclina B1/farmacología
15.
Medicine (Baltimore) ; 102(46): e35802, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37986322

RESUMEN

This study aimed to investigate CCNB1, CENPF, and Neutrophils as diagnostic predictors of lung cancer and to explore their association with clinical prognosis. Clinical data were obtained for a total of 52 patients. In addition, we downloaded 555 lung cancer-related samples from the cancer genome atlas (TCGA) database. Differentially expressed genes were further screened. Immune cell infiltration and survival analysis were performed. Immunohistochemistry was used to confirm gene expression. Peripheral blood analysis showed that neutrophil percentages were significantly reduced in patients with lung cancer. The least absolute shrinkage and selection operator and multivariate regression analysis revealed that CCNB1 and CENPF were lung cancer risk factors. Both CCNB1 and CENPF are overexpressed in lung cancer. The clinical diagnostic model constructed using CCNB1, CENPF, and neutrophils had a C-index of 0.994. This model area under the curve (AUC) and internal validation C-index values were 0.994 and 0.993, respectively. The elevated expression of CCNB1 and CENPF showed that the survival rate of lung cancer patients was reduced. CCNB1 and CENPF expression was positively correlated with the clinical stage of lung cancer. Further studies confirmed that CCNB1 and CENPF are overexpressed in lung cancer tissues. The clinically constructed model with high accuracy based on CCNB1, CENPF, and neutrophils demonstrated that these are crucial indicators for lung cancer diagnosis. High expression of CCNB1 and CENPF indicates a poor prognosis in patients with lung cancer.


Asunto(s)
Proteínas Cromosómicas no Histona , Ciclina B1 , Neoplasias Pulmonares , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Humanos , Proteínas Cromosómicas no Histona/análisis , Proteínas Cromosómicas no Histona/metabolismo , Neutrófilos , Persona de Mediana Edad , Masculino , Femenino , Ciclina B1/análisis , Ciclina B1/metabolismo , Pronóstico , Gravedad del Paciente , Tasa de Supervivencia
16.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(5): 1290-1295, 2023 Oct.
Artículo en Chino | MEDLINE | ID: mdl-37846674

RESUMEN

OBJECTIVE: To investigate the effects of methionine restriction on proliferation, cell cycle and apoptosis of human acute leukemia cells. METHODS: Cell Counting Kit-8 (CCK-8) assay was used to detect the effect of methionine restriction on HL-60 and Jurkat cells proliferation. The effect of methionine restriction on cell cycle of HL-60 and Jurkat cells was examined by PI staining. Annexin V-FITC / PI double staining was applied to detect apoptosis of HL-60 and Jurkat cells following methionine restriction. The expression of cell cycle-related proteins cyclin B1, CDC2 and apoptosis-related protein Bcl-2 was evaluated by Western blot assay. RESULTS: Methionine restriction significantly inhibited the proliferation of HL-60 and Jurkat cells in a time-dependent manner (HL-60: r =0.7773, Jurkat: r =0.8725), arrested the cells at G2/M phase (P < 0.001), and significantly induced apoptosis of HL-60 and Jurkat cells (HL-60: P < 0.001; Jurkat: P < 0.05). Furthermore, Western blot analysis demonstrated that methionine restriction significantly reduced the proteins expression of Cyclin B1 (P < 0.05), CDC2 (P < 0.01) and Bcl-2 (P < 0.001) in HL-60 and Jurkat cells. CONCLUSION: Acute leukemia cells HL-60 and Jurkat exhibit methionine dependence. Methionine restriction can significantly inhibit the proliferation, promote cell cycle arrest and induce apoptosis of HL-60 and Jurkat cells, which suggests that methionine restriction may be a potential therapeutic strategy for acute leukemia.


Asunto(s)
Leucemia Mieloide Aguda , Metionina , Humanos , Ciclina B1/genética , Ciclina B1/metabolismo , Ciclina B1/farmacología , Proliferación Celular , Metionina/farmacología , Ciclo Celular , Apoptosis , División Celular , Proteínas de Ciclo Celular , Células Jurkat , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células HL-60
17.
Sci Rep ; 13(1): 16226, 2023 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758792

RESUMEN

Aberrant levels of the G2/M cyclin cyclin B1 (gene CCNB1) have been associated with multiple cancers; however, the literature lacks a focused and comprehensive analysis of the regulation of this important regulator of cell proliferation in cancer. Through this work, we performed a pancancer analysis of the levels of CCNB1 and dissected aspects of regulation and how this correlates with cancer prognosis. We comprehensively evaluated the expression and promoter methylation of CCNB1 across 38 cancers based on RNA sequencing data obtained from the Cancer Genome Atlas (TCGA). The correlation of CCNB1 with prognosis and the tumor microenvironment was explored. Using lung adenocarcinoma data, we studied the potential upstream noncoding RNAs involved in the regulation of CCNB1 and validated the protein levels and prognostic value of CCNB1 for this disease site. CCNB1 was highly expressed, and promoter methylation was reduced in most cancers. Gene expression of CCNB1 correlated positively with poor prognosis of tumor patients, and these results were confirmed at the protein level using lung adenocarcinoma. CCNB1 expression was associated with the infiltration of T helper cells, and this further correlated with poor prognosis for certain cancers, including renal clear cell carcinoma and lung adenocarcinoma. Subsequently, we identified a specific upstream noncoding RNA contributing to CCNB1 overexpression in lung adenocarcinoma through correlation analysis, expression analysis and survival analysis. This study provides a comprehensive analysis of the expression and methylation status of CCNB1 across several forms of cancer and provides further insight into the mechanistic pathways regulating Cyclin B1 in the tumorigenesis process.


Asunto(s)
Adenocarcinoma del Pulmón , Transformación Celular Neoplásica , Ciclina B1 , Humanos , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Regulación Neoplásica de la Expresión Génica , Pronóstico , Análisis de Supervivencia , Microambiente Tumoral
18.
BMB Rep ; 56(10): 557-562, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37679297

RESUMEN

Dysregulation of the E3 ubiquitin ligase Parkin has been linked to various human cancers, indicating that Parkin is a tumor suppressor protein. However, the mechanisms of action of Parkin remain unclear to date. Thus, we aimed to elucidate the mechanisms of action of Parkin as a tumor suppressor in human lung and colorectal cancer cells. Results showed that Parkin overexpression reduced the viability of A549 human lung cancer cells by inducing G2/M cell cycle arrest. In addition, Parkin caused DNA damage and ATM (Ataxia telangiectasia mutated) activation, which subsequently led to p53 activation. It also induced the p53-mediated upregulation of p21 and downregulation of cyclin B1. Moreover, Parkin suppressed the proliferation of HCT-15 human colorectal cancer cells by a mechanism similar to that in A549 lung cancer cells. Taken together, our results suggest that the tumor-suppressive effects of Parkin on lung and colorectal cancer cells are mediated by DNA damage/p53 activation/cyclin B1 reduction/cell cycle arrest. [BMB Reports 2023; 56(10): 557-562].


Asunto(s)
Neoplasias Colorrectales , Neoplasias Pulmonares , Humanos , Apoptosis , Ciclo Celular , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Pulmón/metabolismo , Neoplasias Pulmonares/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Cell Signal ; 110: 110836, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37532136

RESUMEN

BACKGROUND: MicroRNAs (miRNAs) play a critical role in cancer development and progression, the dis-regulation of miR-30c-5p has been observed in various malignant tumors but no research was done in bladder cancer (BCa). This study aims to investigate the downregulation of miR-30c-5p in BCa, and examine its mechanism and prognostic significance. METHODS: Bioinformatics analyses and clinical specimens were employed to investigate the relationship between miR-30c-5p and clinical information in BCa patients. The expression levels of miR-30c-5p and its target gene were assessed by real-time PCR and western blot. Cell viability was evaluated through clonogenic capacity, CCK-8, and EdU assays. Cell cycle distribution and cell apoptosis were determined by flow cytometry. The anti-tumor effect of miR-30c-5p was also validated in animal models. RESULTS: The expression levels of miR-30c-5p were significantly decreased in both bladder tumor tissue and BCa cell lines. Low miR-30c-5p expression was found to be correlated with unfavorable TNM stages and poor prognosis. Over-expressing miR-30c-5p was observed to hinder BCa cell growth, migration, and invasion abilities and causing cell cycle arrest. Mechanistically, miR-30c-5p directly binds and suppresses PRC1, thereby blocking the CDK1/Cyclin B1 axis in BCa, thus impairing BCa cell viability and inducing cell cycle arrest at G2/M phase. CONCLUSION: Down-regulated miR-30c-5p promotes BCa through its target gene PRC1, miR-30c-5p is a favorable biomarker for predicting clinical outcomes in BCa patients and has the potential to be a therapeutic target.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Animales , División Celular , Línea Celular Tumoral , Proliferación Celular/genética , Ciclina B1/genética , Ciclina B1/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , Humanos
20.
J Cancer Res Clin Oncol ; 149(13): 11471-11489, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37391641

RESUMEN

BACKGROUND: Cirrhosis is a serious condition characterized by the replacement of healthy liver tissue with scar tissue, which can progress to liver failure if left untreated. Hepatocellular carcinoma (HCC) is a concerning complication of cirrhosis. It can be challenge to identify individuals with cirrhosis who are at high risk of developing HCC, particularly in the absence of known risk factors. METHODS: In this study, statistical and bioinformatics methods were utilized to construct a protein-protein interaction network and identify disease-related hub genes. We analyzed two hub genes, CXCL8 and CCNB1, and developed a mathematical model to predict the likelihood of developing HCC in individuals with cirrhosis. We also investigated immune cell infiltration, functional analysis under ontology terms, pathway analysis, distinct clusters of cells, and protein-drug interactions. RESULTS: The results indicated that CXCL8 and CCNB1 were associated with the development of cirrhosis-induced HCC. A prognostic model based on these two genes was able to predict the occurrence and survival time of HCC. In addition, the candidate drugs were also discovered based on our model. CONCLUSION: The findings offer the potential for earlier detection of cirrhosis-induced HCC and provide a new instrument for clinical diagnosis, prognostication, and the development of immunological medications. This study also identified distinct clusters of cells in HCC patients using UMAP plot analysis and analyzed the expression of CXCL8 and CCNB1 within these cells, indicating potential therapeutic opportunities for targeted drug therapies to benefit HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/genética , Ciclina B1/metabolismo , Cirrosis Hepática/genética , Cirrosis Hepática/patología , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/genética , Mapas de Interacción de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...