Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27.879
Filtrar
1.
J Toxicol Environ Health A ; 87(14): 579-591, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38708983

RESUMEN

Natural products are usually considered harmless; however, these substances need to be consumed with caution. Biological assays with plant models are a suitable alternative for prospective studies to assess natural product-initiated toxicity. The aim of this study was to examine the toxic potential of leaf and flower extracts derived from Tropaeolum majus L. a widely used plant in traditional medicine. Seeds of Lactuca sativa L. were exposed to T. majus extracts and based upon the seedling growth curve values, the 50% Inhibition Concentration (IC50) was calculated and applied for cell cycle analysis exposure. Both extracts contained organic acids, proteins, amino acids, and terpene steroids. Sesquiterpene lactones and depside were detected in leaf extracts. The higher concentration tested exhibited a marked phytotoxic effect. The extracts induced clastogenic, aneugenic cytotoxic, and potential mutagenic effects. The possible relationships between the classes of compounds found in the extracts and effects on cells and DNA were determined.


Asunto(s)
Ciclo Celular , Germinación , Lactuca , Extractos Vegetales , Tropaeolum , Extractos Vegetales/farmacología , Extractos Vegetales/toxicidad , Lactuca/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Ciclo Celular/efectos de los fármacos , Germinación/efectos de los fármacos , Tropaeolum/química , Hojas de la Planta/química , Flores/química , Semillas/química
2.
Sci Rep ; 14(1): 10616, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720012

RESUMEN

Oral cancer stands as a prevalent maligancy worldwide; however, its therapeutic potential is limited by undesired effects and complications. As a medicinal edible fungus, Chaga mushroom (Inonotus obliquus) exhibits anticancer effects across diverse cancers. Yet, the precise mechanisms underlying its efficacy remain unclear. We explored the detailed mechanisms underlying the anticancer action of Chaga mushroom extract in oral cancer cells (HSC-4). Following treatment with Chaga mushroom extracts, we analyzed cell viability, proliferation capacity, glycolysis, mitochondrial respiration, and apoptosis. Our findings revealed that the extract reduced cell viability and proliferation of HSC-4 cells while arresting their cell cycle via suppression of STAT3 activity. Regarding energy metabolism, Chaga mushroom extract inhibited glycolysis and mitochondrial membrane potential in HSC-4 cells, thereby triggering autophagy-mediated apoptotic cell death through activation of the p38 MAPK and NF-κB signaling pathways. Our results indicate that Chaga mushroom extract impedes oral cancer cell progression, by inhibiting cell cycle and proliferation, suppressing cancer cell energy metabolism, and promoting autophagy-mediated apoptotic cell death. These findings suggest that this extract is a promising supplementary medicine for the treatment of patients with oral cancer.


Asunto(s)
Apoptosis , Autofagia , Proliferación Celular , Metabolismo Energético , Neoplasias de la Boca , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Metabolismo Energético/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Inonotus/química , Supervivencia Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Glucólisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , FN-kappa B/metabolismo , Factor de Transcripción STAT3/metabolismo , Agaricales/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ciclo Celular/efectos de los fármacos
3.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731850

RESUMEN

When new antitumor therapy drugs are discovered, it is essential to address new target molecules from the point of view of chemical structure and to carry out efficient and systematic evaluation. In the case of natural products and derived compounds, it is of special importance to investigate chemomodulation to further explore antitumoral pharmacological activities. In this work, the compound podophyllic aldehyde, a cyclolignan derived from the chemomodulation of the natural product podophyllotoxin, has been evaluated for its viability, influence on the cell cycle, and effects on intracellular signaling. We used functional proteomics characterization for the evaluation. Compared with the FDA-approved drug etoposide (another podophyllotoxin derivative), we found interesting results regarding the cytotoxicity of podophyllic aldehyde. In addition, we were able to observe the effect of mitotic arrest in the treated cells. The use of podophyllic aldehyde resulted in increased cytotoxicity in solid tumor cell lines, compared to etoposide, and blocked the cycle more successfully than etoposide. High-throughput analysis of the deregulated proteins revealed a selective antimitotic mechanism of action of podophyllic aldehyde in the HT-29 cell line, in contrast with other solid and hematological tumor lines. Also, the apoptotic profile of podophyllic aldehyde was deciphered. The cell death mechanism is activated independently of the cell cycle profile. The results of these targeted analyses have also shown a significant response to the signaling of kinases, key proteins involved in signaling cascades for cell proliferation or metastasis. Thanks to this comprehensive analysis of podophyllic aldehyde, remarkable cytotoxic, antimitotic, and other antitumoral features have been discovered that will repurpose this compound for further chemical transformations and antitumoral analysis.


Asunto(s)
Ciclo Celular , Podofilotoxina , Proteómica , Humanos , Podofilotoxina/farmacología , Podofilotoxina/análogos & derivados , Podofilotoxina/química , Proteómica/métodos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Etopósido/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Células HT29 , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos
4.
Med Oncol ; 41(6): 153, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743323

RESUMEN

The mechanism by which DNMT3B facilitates esophageal cancer (ESCA) progression is currently unknown, despite its association with adverse prognoses in several cancer types. To investigate the potential therapeutic effects of the Chinese herbal medicine rhubarb on esophageal cancer (ESCA), we adopted an integrated bioinformatics approach. Gene Set Enrichment Analysis (GSEA) was first utilized to screen active anti-ESCA components in rhubarb. We then employed Weighted Gene Co-expression Network Analysis (WGCNA) to identify key molecular modules and targets related to the active components and ESCA pathogenesis. This system-level strategy integrating multi-omics data provides a powerful means to unravel the molecular mechanisms underlying the anticancer activities of natural products, like rhubarb. To investigate module gene functional enrichment, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted. In addition, we evaluated the predictive impact of DNMT3B expression on ESCA patients utilizing the Kaplan-Meier method. Finally, we conducted experiments on cell proliferation and the cell cycle to explore the biological roles of DNMT3B. In this study, we identified Rhein as the main active ingredient of rhubarb that exhibited significant anti-ESCA activity. Rhein markedly suppressed ESCA cell proliferation. Utilizing Weighted Gene Co-expression Network Analysis (WGCNA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, we determined that the blue module was associated with Rhein target genes and the cell cycle. Additionally, DNMT3B was identified as a Rhein target gene. Analysis of The Cancer Genome Atlas (TCGA) database revealed that higher DNMT3B levels were associated with poor prognosis in ESCA patients. Furthermore, Rhein partially reversed the overexpression of DNMT3B to inhibit ESCA cell proliferation. In vitro studies demonstrated that Rhein and DNMT3B inhibition disrupted the S phase of the cell cycle and affected the production of cell cycle-related proteins. In this study, we found that Rhein exerts its anti-proliferative effects in ESCA cells by targeting DNMT3B and regulating the cell cycle.


Asunto(s)
Antraquinonas , Ciclo Celular , Proliferación Celular , ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3B , Neoplasias Esofágicas , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Neoplasias Esofágicas/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Antraquinonas/farmacología , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Ciclo Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Rheum/química , Biología Computacional
5.
Mol Biol Rep ; 51(1): 623, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710891

RESUMEN

BACKGROUND: An increase in cancer stem cell (CSC) populations and their resistance to common treatments could be a result of c-Myc dysregulations in certain cancer cells. In the current study, we investigated anticancer effects of c-Myc decoy ODNs loaded-poly (methacrylic acid-co-diallyl dimethyl ammonium chloride) (PMA-DDA)-coated silica nanoparticles as carriers on cancer-like stem cells (NTERA-2). METHODS AND RESULTS: The physicochemical characteristics of the synthesized nanocomposites (SiO2@PMA-DDA-DEC) were analyzed using FT-IR, DLS, and SEM techniques. UV-Vis spectrophotometer was applied to analyze the release pattern of decoy ODNs from the nanocomposite. Furthermore, uptake, cell viability, apoptosis, and cell cycle assays were used to investigate the anticancer effects of nanocomposites loaded with c-Myc decoy ODNs on NTERA-2 cancer cells. The results of physicochemical analytics demonstrated that SiO2@PMA-DDA-DEC nanocomposites were successfully synthesized. The prepared nanocomposites were taken up by NTERA-2 cells with high efficiency, and could effectively inhibit cell growth and increase apoptosis rate in the treated cells compared to the control group. Moreover, SiO2@PMA-DDA nanocomposites loaded with c-Myc decoy ODNs induced cell cycle arrest at the G0/G1 phase in the treated cells. CONCLUSIONS: The conclusion drawn from this study is that c-Myc decoy ODN-loaded SiO2@PMA-DDA nanocomposites can effectively inhibit cell growth and induce apoptosis in NTERA-2 cancer cells. Moreover, given that a metal core is incorporated into this synthetic nanocomposite, it could potentially be used in conjunction with irradiation as part of a decoy-radiotherapy combinational therapy in future investigations.


Asunto(s)
Apoptosis , Proliferación Celular , Nanopartículas , Células Madre Neoplásicas , Proteínas Proto-Oncogénicas c-myc , Humanos , Apoptosis/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proliferación Celular/efectos de los fármacos , Nanopartículas/química , Línea Celular Tumoral , Nanocompuestos/química , Polielectrolitos/química , Oligodesoxirribonucleótidos/farmacología , Oligodesoxirribonucleótidos/química , Supervivencia Celular/efectos de los fármacos , Dióxido de Silicio/química , Poliaminas/química , Poliaminas/farmacología , Ciclo Celular/efectos de los fármacos
6.
Arch Microbiol ; 206(6): 251, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727840

RESUMEN

The prevalence of Candida albicans infection has increased during the past few years, which contributes to the need for new, effective treatments due to the increasing concerns regarding antifungal drug toxicity and multidrug resistance. Butyl isothiocyanate (butylITC) is a glucosinolate derivative, and has shown a significant antifungal effect contrary to Candida albicans. Additionally, how butylITC affects the virulence traits of C. albicans and molecular mode of actions are not well known. Present study shows that at 17.36 mM concentration butylITC inhibit planktonic growth. butylITC initially slowed the hyphal transition at 0.542 mM concentration. butylITC hampered biofilm development, and inhibits biofilm formation at 17.36 mM concentration which was analysed using metabolic assay (XTT assay) and Scanning Electron Microscopy (SEM). In addition, it was noted that butylITC inhibits ergosterol biosynthesis. The permeability of cell membranes was enhanced by butylITC treatment. Moreover, butylITC arrests cells at S-phase and induces intracellular Reactive Oxygen Species (ROS) accumulation in C. albicans. The results suggest that butylITC may have a dual mode of action, inhibit virulence factors and modulate cellular processes like inhibit ergosterol biosynthesis, cell cycle arrest, induces ROS production which leads to cell death in C. albicans.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Membrana Celular , Isotiocianatos , Estrés Oxidativo , Especies Reactivas de Oxígeno , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Biopelículas/efectos de los fármacos , Antifúngicos/farmacología , Isotiocianatos/farmacología , Estrés Oxidativo/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Pruebas de Sensibilidad Microbiana , Ciclo Celular/efectos de los fármacos , Hifa/efectos de los fármacos , Hifa/crecimiento & desarrollo , Ergosterol/metabolismo
7.
Clin Exp Pharmacol Physiol ; 51(6): e13865, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38692577

RESUMEN

CTCE-9908, a CXC chemokine receptor 4 (CXCR4) antagonist, prevents CXCR4 phosphorylation and inhibits the interaction with chemokine ligand 12 (CXCL12) and downstream signalling pathways associated with metastasis. This study evaluated the in vitro effects of CTCE-9908 on B16 F10 melanoma cells with the use of mathematical modelling. Crystal violet staining was used to construct a mathematical model of CTCE-9908 B16 F10 (melanoma) and RAW 264.7 (non-cancerous macrophage) cell lines on cell viability to predict the half-maximal inhibitory concentration (IC50). Morphological changes were assessed using transmission electron microscopy. Flow cytometry was used to assess changes in cell cycle distribution, apoptosis via caspase-3, cell survival via extracellular signal-regulated kinase1/2 activation, CXCR4 activation and CXCL12 expression. Mathematical modelling predicted IC50 values from 0 to 100 h. At IC50, similar cytotoxicity between the two cell lines and ultrastructural morphological changes indicative of cell death were observed. At a concentration 10 times lower than IC50, CTCE-9908 induced inhibition of cell survival (p = 0.0133) in B16 F10 cells but did not affect caspase-3 or cell cycle distribution in either cell line. This study predicts CTCE-9908 IC50 values at various time points using mathematical modelling, revealing cytotoxicity in melanoma and non-cancerous cells. CTCE-9908 significantly inhibited melanoma cell survival at a concentration 10 times lower than the IC50 in B16 F10 cells but not RAW 264.7 cells. However, CTCE-9908 did not affect CXCR4 phosphorylation, apoptosis,\ or cell cycle distribution in either cell line.


Asunto(s)
Apoptosis , Supervivencia Celular , Receptores CXCR4 , Ratones , Supervivencia Celular/efectos de los fármacos , Animales , Receptores CXCR4/antagonistas & inhibidores , Receptores CXCR4/metabolismo , Apoptosis/efectos de los fármacos , Melanoma Experimental/patología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/metabolismo , Células RAW 264.7 , Línea Celular Tumoral , Melanoma/patología , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Modelos Biológicos , Ciclo Celular/efectos de los fármacos , Quimiocina CXCL12/metabolismo
8.
Hepatol Commun ; 8(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38696353

RESUMEN

BACKGROUND: Transarterial chemoembolization is the first-line treatment for intermediate-stage HCC. However, the response rate to transarterial chemoembolization varies, and the molecular mechanisms underlying variable responses are poorly understood. Patient-derived hepatocellular carcinoma organoids (HCCOs) offer a novel platform to investigate the molecular mechanisms underlying doxorubicin resistance. METHODS: We evaluated the effects of hypoxia and doxorubicin on cell viability and cell cycle distribution in 20 patient-derived HCCO lines. The determinants of doxorubicin response were identified by comparing the transcriptomes of sensitive to resistant HCCOs. Candidate genes were validated by pharmacological inhibition. RESULTS: Hypoxia reduced the proliferation of HCCOs and increased the number of cells in the G0/G1 phase of the cell cycle, while decreasing the number in the S phase. The IC50s of the doxorubicin response varied widely, from 29nM to >1µM. Doxorubicin and hypoxia did not exhibit synergistic effects but were additive in some HCCOs. Doxorubicin reduced the number of cells in the G0/G1 and S phases and increased the number in the G2 phase under both normoxia and hypoxia. Genes related to drug metabolism and export, most notably ABCB1, were differentially expressed between doxorubicin-resistant and doxorubicin-sensitive HCCOs. Small molecule inhibition of ABCB1 increased intracellular doxorubicin levels and decreased drug tolerance in resistant HCCOs. CONCLUSIONS: The inhibitory effects of doxorubicin treatment and hypoxia on HCCO proliferation are variable, suggesting an important role of tumor-cell intrinsic properties in doxorubicin resistance. ABCB1 is a determinant of doxorubicin response in HCCOs. Combination treatment of doxorubicin and ABCB1 inhibition may increase the response rate to transarterial chemoembolization.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Carcinoma Hepatocelular , Doxorrubicina , Resistencia a Antineoplásicos , Neoplasias Hepáticas , Organoides , Doxorrubicina/farmacología , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Organoides/efectos de los fármacos , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quimioembolización Terapéutica , Ciclo Celular/efectos de los fármacos
9.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731434

RESUMEN

Cannabidiol (CBD), a non-psychoactive ingredient extracted from the hemp plant, has shown therapeutic effects in a variety of diseases, including anxiety, nervous system disorders, inflammation, and tumors. CBD can exert its antitumor effect by regulating the cell cycle, inducing tumor cell apoptosis and autophagy, and inhibiting tumor cell invasion, migration, and angiogenesis. This article reviews the proposed antitumor mechanisms of CBD, aiming to provide references for the clinical treatment of tumor diseases and the rational use of CBD.


Asunto(s)
Apoptosis , Cannabidiol , Neoplasias , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Cannabidiol/química , Humanos , Apoptosis/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Animales , Autofagia/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Movimiento Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química
10.
J Cell Mol Med ; 28(9): e18342, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693852

RESUMEN

Urothelial carcinoma (UC) urgently requires new therapeutic options. Histone deacetylases (HDAC) are frequently dysregulated in UC and constitute interesting targets for the development of alternative therapy options. Thus, we investigated the effect of the second generation HDAC inhibitor (HDACi) quisinostat in five UC cell lines (UCC) and two normal control cell lines in comparison to romidepsin, a well characterized HDACi which was previously shown to induce cell death and cell cycle arrest. In UCC, quisinostat led to cell cycle alterations, cell death induction and DNA damage, but was well tolerated by normal cells. Combinations of quisinostat with cisplatin or the PARP inhibitor talazoparib led to decrease in cell viability and significant synergistic effect in five UCCs and platinum-resistant sublines allowing dose reduction. Further analyses in UM-UC-3 and J82 at low dose ratio revealed that the mechanisms included cell cycle disturbance, apoptosis induction and DNA damage. These combinations appeared to be well tolerated in normal cells. In conclusion, our results suggest new promising combination regimes for treatment of UC, also in the cisplatin-resistant setting.


Asunto(s)
Apoptosis , Inhibidores de Histona Desacetilasas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Vejiga Urinaria , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Sinergismo Farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias Urológicas/tratamiento farmacológico , Neoplasias Urológicas/patología
11.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732105

RESUMEN

Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.


Asunto(s)
Apoptosis , Bortezomib , Mitocondrias , Mieloma Múltiple , Especies Reactivas de Oxígeno , Tigeciclina , Bortezomib/farmacología , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/metabolismo , Mieloma Múltiple/patología , Tigeciclina/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Mitofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos
12.
Oncol Res ; 32(5): 817-830, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686050

RESUMEN

Cancer frequently develops resistance to the majority of chemotherapy treatments. This study aimed to examine the synergistic cytotoxic and antitumor effects of SGLT2 inhibitors, specifically Canagliflozin (CAN), Dapagliflozin (DAP), Empagliflozin (EMP), and Doxorubicin (DOX), using in vitro experimentation. The precise combination of CAN+DOX has been found to greatly enhance the cytotoxic effects of doxorubicin (DOX) in MCF-7 cells. Interestingly, it was shown that cancer cells exhibit an increased demand for glucose and ATP in order to support their growth. Notably, when these medications were combined with DOX, there was a considerable inhibition of glucose consumption, as well as reductions in intracellular ATP and lactate levels. Moreover, this effect was found to be dependent on the dosages of the drugs. In addition to effectively inhibiting the cell cycle, the combination of CAN+DOX induces substantial modifications in both cell cycle and apoptotic gene expression. This work represents the initial report on the beneficial impact of SGLT2 inhibitor medications, namely CAN, DAP, and EMP, on the responsiveness to the anticancer properties of DOX. The underlying molecular mechanisms potentially involve the suppression of the function of SGLT2.


Asunto(s)
Apoptosis , Neoplasias de la Mama , Doxorrubicina , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Femenino , Humanos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Compuestos de Bencidrilo/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Canagliflozina/farmacología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Doxorrubicina/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Glucosa/metabolismo , Glucósidos/farmacología , Células MCF-7 , Transportador 2 de Sodio-Glucosa/metabolismo , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
13.
Drug Des Devel Ther ; 18: 1321-1338, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38681206

RESUMEN

Purpose: Cinobufotalin injection has obvious curative effects on liver cancer patients with less toxicity and fewer side effects than other therapeutic approaches. However, the core ingredients and mechanism underlying these anti-liver cancer effects have not been fully clarified due to its complex composition. Methods: Multidimensional network analysis was used to screen the core ingredients, key targets and pathways underlying the therapeutic effects of cinobufotalin injection on liver cancer, and in vitro and in vivo experiments were performed to confirm the findings. Results: By construction of ingredient networks and integrated analysis, eight core ingredients and ten key targets were finally identified in cinobufotalin injection, and all of the core ingredients are tightly linked with the key targets, and these key targets are highly associated with the cell cycle-related pathways, supporting that both cinobufotalin injection and its core ingredients exert anti-liver cancer roles by blocking cell cycle-related pathways. Moreover, in vitro and in vivo experiments confirmed that either cinobufotalin injection or one of its core ingredients, cinobufagin, significantly inhibited cell proliferation, colony formation, cell cycle progression and xenograft tumor growth, and the key target molecules involved in the cell cycle pathway such as CDK1, CDK4, CCNB1, CHEK1 and CCNE1, exhibit consistent changes in expression after treatment with cinobufotalin injection or cinobufagin. Interestingly, some key targets CDK1, CDK4, PLK1, CHEK1, TTK were predicted to bind with multiple of core ingredients of cinobufotalin injection, and the affinity between one of the critical ingredients cinobufagin and key target CDK1 was further confirmed by SPR assay. Conclusion: Cinobufotalin injection was confirmed to includes eight core ingredients, and they play therapeutic effects in liver cancer by blocking cell cycle-related pathways, which provides important insights for the mechanism of cinobufotalin injection antagonizing liver cancer and the development of novel small molecule anti-cancer drugs.


Asunto(s)
Antineoplásicos , Bufanólidos , Proliferación Celular , Neoplasias Hepáticas , Bufanólidos/farmacología , Bufanólidos/química , Bufanólidos/administración & dosificación , Humanos , Animales , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Proliferación Celular/efectos de los fármacos , Ratones , Antineoplásicos/farmacología , Antineoplásicos/química , Ensayos de Selección de Medicamentos Antitumorales , Neoplasias Hepáticas Experimentales/tratamiento farmacológico , Neoplasias Hepáticas Experimentales/patología , Neoplasias Hepáticas Experimentales/metabolismo , Ratones Endogámicos BALB C , Ciclo Celular/efectos de los fármacos , Ratones Desnudos , Relación Dosis-Respuesta a Droga , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Neoplasias Experimentales/metabolismo , Células Tumorales Cultivadas , Relación Estructura-Actividad , Estructura Molecular , Inyecciones
14.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675591

RESUMEN

Ovarian cancer, a highly lethal malignancy among reproductive organ cancers, poses a significant challenge with its high mortality rate, particularly in advanced-stage cases resistant to platinum-based chemotherapy. This study explores the potential therapeutic efficacy of 1-methoxyisobrassinin (MB-591), a derivative of indole phytoalexins found in Cruciferae family plants, on both cisplatin-sensitive (A2780) and cisplatin-resistant ovarian cancer cells (A2780 cis). The findings reveal that MB-591 exhibits an antiproliferative effect on both cell lines, with significantly increased potency against cisplatin-sensitive cells. The substance induces alterations in the distribution of the cell cycle, particularly in the S and G2/M phases, accompanied by changes in key regulatory proteins. Moreover, MB-591 triggers apoptosis in both cell lines, involving caspase-9 cleavage, PARP cleavage induction, and DNA damage, accompanied by the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Notably, the substance selectively induces autophagy in cisplatin-resistant cells, suggesting potential targeted therapeutic applications. The study further explores the interplay between MB-591 and antioxidant N-acetylcysteine (NAC), in modulating cellular processes. NAC demonstrates a protective effect against MB-591-induced cytotoxicity, affecting cell cycle distribution and apoptosis-related proteins. Additionally, NAC exhibits inhibitory effects on autophagy initiation in cisplatin-resistant cells, suggesting its potential role in overcoming resistance mechanisms.


Asunto(s)
Acetilcisteína , Apoptosis , Autofagia , Proliferación Celular , Indoles , Neoplasias Ováricas , Fitoalexinas , Femenino , Humanos , Acetilcisteína/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Daño del ADN/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Especies Reactivas de Oxígeno/metabolismo , Fitoalexinas/farmacología , Indoles/farmacología , Tiocarbamatos/farmacología
15.
Life Sci ; 346: 122632, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615748

RESUMEN

Mycobacterium Tuberculosis (Mtb) causing Tuberculosis (TB) is a widespread disease infecting millions of people worldwide. Additionally, emergence of drug resistant tuberculosis is a major challenge and concern in high TB burden countries. Most of the drug resistance in mycobacteria is attributed to developing acquired resistance due to spontaneous mutations or intrinsic resistance mechanisms. In this review, we emphasize on the role of bacterial cell cycle synchronization as one of the intrinsic mechanisms used by the bacteria to cope with stress response and perhaps involved in evolution of its drug resistance. The importance of cell cycle synchronization and its function in drug resistance in cancer cells, malarial and viral pathogens is well understood, but its role in bacterial pathogens has yet to be established. From the extensive literature survey, we could collect information regarding how mycobacteria use synchronization to overcome the stress response. Additionally, it has been observed that most of the microbial pathogens including mycobacteria are responsive to drugs predominantly in their logarithmic phase, while they show resistance to antibiotics when they are in the lag or stationary phase. Therefore, we speculate that Mtb might use this novel strategy wherein they regulate their cell cycle upon antibiotic pressure such that they either enter in their low metabolic phase i.e., either the lag or stationary phase to overcome the antibiotic pressure and function as persister cells. Thus, we propose that manipulating the mycobacterial drug resistance could be possible by fine-tuning its cell cycle.


Asunto(s)
Antituberculosos , Mycobacterium tuberculosis , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Humanos , Antituberculosos/farmacología , Ciclo Celular/efectos de los fármacos , Farmacorresistencia Bacteriana , Mycobacterium/efectos de los fármacos , Mycobacterium/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis/microbiología , Tuberculosis/tratamiento farmacológico
16.
Mol Biol Rep ; 51(1): 592, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683376

RESUMEN

PURPOSE: Ferula gummosa Boiss. is a well-known and valuable medicinal plant in Iran. Research has shown that this plant has several pharmacological properties, including anti-bacterial, anti-cancer and etc. In the present study, we investigated the cytotoxic properties of F. gummosa Boiss. extract in MCF-7 breast adenocarcinoma cells. METHODS: The cytotoxicity and pro-apoptotic properties of the extract were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test and propidium iodide (PI) stained cells, respectively. Apoptosis and necrosis were evaluated by annexin V-PI staining. The levels of reactive oxygen species (ROS),malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) was determined to evaluate oxidative stress. The cell migration and the gene expression were assessed by scratch assay and quantitative real-time polymerase chain reaction (q-RT-PCR), respectively. RESULTS: The extract of F. gummosa decreased the viability and cell cycle progression of MCF-7 cells by inducing apoptosis and necrosis, increasing ROS and MDA levels, and decreasing GSH levels and SOD activity. It also lowered the cells' migration capability by enhancing p53 mRNA levels and reducing MMP-9 mRNA expression. CONCLUSION: F. gummosa exhibited pro-apoptotic, anti-proliferative, and anti-metastatic effects on MCF-7 cells. It is therefore recommended that detailed future research be done on different parts of the plant or its secondary metabolites to find anti-cancer lead compounds.


Asunto(s)
Adenocarcinoma , Apoptosis , Neoplasias de la Mama , Ferula , Extractos Vegetales , Especies Reactivas de Oxígeno , Humanos , Ferula/química , Apoptosis/efectos de los fármacos , Células MCF-7 , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Femenino , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Adenocarcinoma/metabolismo , Supervivencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Malondialdehído/metabolismo , Ciclo Celular/efectos de los fármacos
17.
Asian Pac J Cancer Prev ; 25(4): 1339-1347, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38679995

RESUMEN

OBJECTIVE: The present study aimed to evaluate the antiproliferative and apoptotic effects of extracts obtained from the murici (Byrsonima crassifolia (L.) Kunth and verbascifolia (L.) DC) and taperebá (Spondias mombin L.) pulps, on cell proliferation, cell cycle and apoptosis on human prostate cell line (PC-3). METHODS: Four extract was produced from the pulps:  murici aqueous extract (MA), taperebá aqueous extract (TA), murici ethanolic extract (ME) and taperebá ethanolic extract (TE). In the present study, the analysis of cell viability, cell cycle and apoptosis analyze were performed using the MTT method and flow cytometry. RESULTS: The results showed that murici and taperebá extracts proved to be inhibitors of cell growth, modulation of cell cycle promoters and capable of enhancing the death in prostate carcinoma cells PC-3; suggesting a regulatory effect in prostate cell line, depending on type of extract and dosage used. CONCLUSION: These results open a series of perspectives on the use of these bioactive extracts in the prevention and treatment of prostate cancer.


Asunto(s)
Apoptosis , Proliferación Celular , Extractos Vegetales , Neoplasias de la Próstata , Humanos , Masculino , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Ciclo Celular/efectos de los fármacos , Células Tumorales Cultivadas , Células PC-3 , Supervivencia Celular/efectos de los fármacos
18.
Asian Pac J Cancer Prev ; 25(4): 1433-1440, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38680005

RESUMEN

OBJECTIVE: aim of this study was to examine the synergistic effect between the antibacterial drug ciprofloxacin and the natural compound laetrile on esophageal cancer cells, specifically focusing on their combined cytotoxic effect. METHODS: The combined cytotoxic effects of two alternative incubation durations (24 and 72 hours) were studied using an esophageal cancer cell line.  Ciprofloxacin, laetrile, and their combinations were tested at concentrations ranging from 1 to 1000 micrograms/milliliter, to enhance the safety of the combination, the concentrations of the combination constituents were reduced by half compared to when they are used individually, the combination index was then calculated to estimate the components' possible synergistic effects. RESULT: The results indicate that the combined cytotoxicity of ciprofloxacin and laetrile was greater than the cytotoxicity of either ciprofloxacin or laetrile alone, the combination cytotoxicity increased with higher concentrations and longer incubation periods, in other words, the cytotoxicity pattern of the combination was time-dependent (cell-cycle specific), and concentration dependent, (cell-cycle non-specific). CONCLUSION: The study found that the combination of ciprofloxacin and laetrile had a greater inhibitory effect on the growth of esophageal cancer cells compared to ciprofloxacin or laetrile alone. This suggests a synergistic effect between the components of the mixture, which can be attributed to a complementary mechanism between the ingredients in the combination.


Asunto(s)
Proliferación Celular , Ciprofloxacina , Sinergismo Farmacológico , Neoplasias Esofágicas , Humanos , Ciprofloxacina/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Proliferación Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Células Tumorales Cultivadas , Apoptosis/efectos de los fármacos , Antibacterianos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología
19.
Pharmacol Res Perspect ; 12(3): e1203, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38682818

RESUMEN

Interference in cell cycle progression has been noted as one of the important properties of anticancer drugs. In this study, we developed the cell cycle prediction model using high-content imaging data of recipient cells after drug exposure and DNA-staining with a low-toxic DNA dye, SiR-DNA. For this purpose, we exploited HeLa and MCF7 cells introduced with a fluorescent ubiquitination-based cell cycle indicator (Fucci). Fucci-expressing cancer cells were subjected to high-content imaging analysis using OperettaCLS after 36-h exposure to anticancer drugs; the nuclei were segmented, and the morphological and intensity properties of each nucleus characterized by SiR-DNA staining were calculated using imaging analysis software, Harmony. For the use of training, we classified cells into each phase of the cell cycle using the Fucci system. Training data (n = 7500) and validation data (n = 2500) were randomly sampled and the binary classification prediction models for G1, early S, and S/G2/M phases of the cell cycle were developed using four supervised machine learning algorithms. We selected random forest as the model with the best performance through 10-fold cross-validation; the accuracy rate was approximately 75%-87%. Regarding feature importance, variables expected to be biologically related to the cell cycle, for example, signal intensity and nuclear size, were highly ranked, suggesting the validity of the model. These results showed that the cell cycle can be predicted in cancer cells by simply exploiting the current prediction model using fluorescent images of DNA-staining dye, and the model could be applied for the use of future ex vivo drug sensitivity diagnosis.


Asunto(s)
Antineoplásicos , Ciclo Celular , Colorantes Fluorescentes , Humanos , Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología , Células HeLa , Células MCF-7 , ADN , Aprendizaje Automático , Coloración y Etiquetado/métodos , Núcleo Celular
20.
Medicina (Kaunas) ; 60(4)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674285

RESUMEN

Background and Objectives: TAA is potent hepatic/renal toxicant. Conversely, WGO is a potent dietary supplement with impressive antioxidant properties. Olmutinib is an apoptotic chemotherapy drug that does not harm the liver or kidney. This study investigated the impact of olmutinib and wheat germ oil (WGO) on Thioacetamide (TAA)-induced gene alterations in mice liver and kidney tissues. Materials and Methods: Adult male C57BL/6 mice were exposed to 0.3% TAA in drinking water for 14 days, followed by the oral administration of olmutinib (30 mg/kg) and WGO (1400 mg/kg) for 5 consecutive days. Treatment groups included the following: groups I (control), II (TAA-exposed), III (TAA + olmutinib), IV (TAA + WGO), and V (TAA + olmutinib + WGO). Results: The findings revealed that TAA exposure increased MKi67 and CDKN3 gene expression in liver and kidney tissues. Olmutinib treatment effectively reversed these TAA-induced effects, significantly restoring MKi67 and CDKN3 gene expression. WGO also reversed MKi67 effects in the liver but exhibited limited efficacy in reversing CDKN3 gene alterations induced by TAA exposures in both the liver and kidney. TAA exposure showed the tissue-specific expression of TP53, with decreased expression in the liver and increased expression in the kidney. Olmutinib effectively reversed these tissue-specific alterations in TP53 expression. While WGO treatment alone could not reverse the gene alterations induced by TAA exposure, the co-administration of olmutinib and WGO exhibited a remarkable potentiation of therapeutic effects in both the liver and kidney. The gene interaction analysis revealed 77.4% of physical interactions and co-localization between MKi67, CDKN3, and TP53 expressions. Protein-protein interaction networks also demonstrated physical interactions between MKi67, TP53, and CDKN3, forming complexes or signaling cascades. Conclusions: It was predicted that the increased expression of the MKi67 gene by TAA leads to the increase in TP53, which negatively regulates the cell cycle via increased CDKN3 expression in kidneys and the restoration of TP53 levels in the liver. These findings contribute to our understanding of the effects of olmutinib and WGO on TAA-induced gene expression changes and highlight their contrasting effects based on cell cycle alterations.


Asunto(s)
Riñón , Hígado , Ratones Endogámicos C57BL , Tioacetamida , Animales , Ratones , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ciclo Celular/efectos de los fármacos , Triticum
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...