Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 546
Filtrar
1.
J Am Chem Soc ; 146(19): 13163-13175, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698548

RESUMEN

A pretargeted strategy that decouples targeting vectors from radionuclides has shown promise for nuclear imaging and/or therapy in vivo. However, the current pretargeted approach relies on the use of antibodies or nanoparticles as the targeting vectors, which may be compromised by poor tissue penetration and limited accumulation of targeting vectors in the tumor tissues. Herein, we present an orthogonal dual-pretargeted approach by combining stimuli-triggered in situ self-assembly strategy with fast inverse electron demand Diels-Alder (IEDDA) reaction and strong biotin-streptavidin (SA) interaction for near-infrared fluorescence (NIR FL) and magnetic resonance (MR) imaging of tumors. This approach uses a small-molecule probe (P-Cy-TCO&Bio) containing both biotin and trans-cyclooctene (TCO) as a tumor-targeting vector. P-Cy-TCO&Bio can efficiently penetrate subcutaneous HeLa tumors through biotin-assisted targeted delivery and undergo in situ self-assembly to form biotinylated TCO-bearing nanoparticles (Cy-TCO&Bio NPs) on tumor cell membranes. Cy-TCO&Bio NPs exhibited an "off-on" NIR FL and retained in the tumors, offering a high density of TCO and biotin groups for the concurrent capture of Gd-chelate-labeled tetrazine (Tz-Gd) and IR780-labeled SA (SA-780) via the orthogonal IEDDA reaction and SA-biotin interaction. Moreover, Cy-TCO&Bio NPs offered multiple-valent binding modes toward SA, which additionally regulated the cross-linking of Cy-Gd&Bio NPs into microparticles (Cy-Gd&Bio/SA MPs). This process could significantly (1) increase r1 relaxivity and (2) enhance the accumulation of Tz-Gd and SA-780 in the tumors, resulting in strong NIR FL, bright MR contrast, and an extended time window for the clear and precise imaging of HeLa tumors.


Asunto(s)
Biotina , Ciclooctanos , Imagen por Resonancia Magnética , Nanopartículas , Ciclooctanos/química , Humanos , Nanopartículas/química , Imagen por Resonancia Magnética/métodos , Células HeLa , Biotina/química , Animales , Imagen Óptica , Biotinilación , Ratones , Estreptavidina/química , Reacción de Cicloadición , Fluorescencia
2.
Top Curr Chem (Cham) ; 382(2): 15, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38703255

RESUMEN

Aligned with the increasing importance of bioorthogonal chemistry has been an increasing demand for more potent, affordable, multifunctional, and programmable bioorthogonal reagents. More advanced synthetic chemistry techniques, including transition-metal-catalyzed cross-coupling reactions, C-H activation, photoinduced chemistry, and continuous flow chemistry, have been employed in synthesizing novel bioorthogonal reagents for universal purposes. We discuss herein recent developments regarding the synthesis of popular bioorthogonal reagents, with a focus on s-tetrazines, 1,2,4-triazines, trans-cyclooctenes, cyclooctynes, hetero-cycloheptynes, and -trans-cycloheptenes. This review aims to summarize and discuss the most representative synthetic approaches of these reagents and their derivatives that are useful in bioorthogonal chemistry. The preparation of these molecules and their derivatives utilizes both classical approaches as well as the latest organic chemistry methodologies.


Asunto(s)
Ciclooctanos , Triazinas , Triazinas/química , Triazinas/síntesis química , Ciclooctanos/química , Ciclooctanos/síntesis química , Alquinos/química , Alquinos/síntesis química , Catálisis , Indicadores y Reactivos/química , Estructura Molecular
3.
Biomacromolecules ; 25(5): 3200-3211, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38591457

RESUMEN

Achieving efficient and site-specific conjugation of therapeutic protein to polymer is crucial to augment their applicability in the realms of biomedicine by improving their stability and enzymatic activity. In this study, we exploited tetrazine bioorthogonal chemistry to achieve the site-specific conjugation of bottlebrush polymers to urate oxidase (UOX), a therapeutic protein for gout treatment. An azido-functionalized zwitterionic bottlebrush polymer (N3-ZBP) using a "grafting-from" strategy involving RAFT and ATRP methods was synthesized, and a trans-cyclooctene (TCO) moiety was introduced at the polymer end through the strain-promoted azide-alkyne click (SPAAC) reaction. The subsequent coupling between TCO-incorporated bottlebrush polymer and tetrazine-labeled UOX using a fast and safe bioorthogonal reaction, inverse electron demand Diels-Alder (IEDDA), led to the formation of UOX-ZBP conjugates with a 52% yield. Importantly, the enzymatic activity of UOX remained unaffected following polymer conjugation, suggesting a minimal change in the folded structure of UOX. Moreover, UOX-ZBP conjugates exhibited enhanced proteolytic resistance and reduced antibody binding, compared to UOX-wild type. Overall, the present findings reveal an efficient and straightforward route for synthesizing protein-bottlebrush polymer conjugates without compromising the enzymatic activity while substantially reducing proteolytic degradation and antibody binding.


Asunto(s)
Química Clic , Reacción de Cicloadición , Polímeros , Urato Oxidasa , Urato Oxidasa/química , Química Clic/métodos , Polímeros/química , Ciclooctanos/química , Humanos , Azidas/química , Alquinos/química
4.
J Asian Nat Prod Res ; 26(5): 604-615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38634612

RESUMEN

We established myocardial injury models in vivo and in vitro to investigate the cardioprotective effect of gomisin D obtained from Schisandra chinensis. Gomisin D significantly inhibited isoproterenol-induced apoptosis and hypertrophy in H9C2 cells. Gomisin D decreased serum BNP, ANP, CK-MB, cTn-T levels and histopathological alterations, and inhibited myocardial hypertrophy in mice. In mechanisms research, gomisin D reversed ISO-induced accumulation of intracellular ROS and Ca2+. Gomisin D further improved mitochondrial energy metabolism disorders by regulating the TCA cycle. These results demonstrated that gomisin D had a significant effect on isoproterenol-induced myocardial injury by inhibiting oxidative stress, calcium overload and improving mitochondrial energy metabolism.


Asunto(s)
Apoptosis , Isoproterenol , Estrés Oxidativo , Compuestos Policíclicos , Schisandra , Animales , Isoproterenol/farmacología , Ratones , Estructura Molecular , Schisandra/química , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Masculino , Especies Reactivas de Oxígeno/metabolismo , Lignanos/farmacología , Lignanos/química , Cardiotónicos/farmacología , Línea Celular , Miocitos Cardíacos/efectos de los fármacos , Ciclooctanos/farmacología , Ciclooctanos/química
5.
Chembiochem ; 25(4): e202300786, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38126970

RESUMEN

The allylic trans-cyclooctene (TCO) functionality facilitates powerful control over the spatiotemporal activity of bio-active molecules, enabling precision targeting of druglike and imaging modalities. However, the introduction of this function onto molecules remains chemically challenging, particularly for peptides. Modification with TCOs of this important class of biomolecules remains a challenge, primarily due to the sensitivity of the TCO group to the strong acids typically used in global deprotection during solid phase peptide synthesis. Here, we present a novel synthetic approach to site-selectively introduce TCO-groups in peptides. Our approach utilizes azide groups to mask amine functions, enabling selective introduction of the TCO on a single lysine residue. Staudinger reduction of the azides back to the corresponding amines proceeds without disturbing the sensitive TCO. We show that using our method, we can produce TCO-inactivated antigenic peptides of previously unseen complexity.


Asunto(s)
Carbamatos , Lisina , Ciclooctanos/química , Péptidos/química , Azidas/química , Aminas
6.
Theranostics ; 13(12): 4004-4015, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37554267

RESUMEN

One of the main challenges of PET imaging with 89Zr-labeled monoclonal antibodies (mAbs) remains the long blood circulation of the radiolabeled mAbs, leading to high background signals, decreasing image quality. To overcome this limitation, here we report the use of a bioorthogonal linker cleavage approach (click-to-release chemistry) to selectively liberate [89Zr]Zr-DFO from trans-cyclooctene-functionalized trastuzumab (TCO-Tmab) in blood, following the administration of a tetrazine compound (trigger) in BT-474 tumor-bearing mice. Methods: We created a series of TCO-DFO constructs and evaluated their performance in [89Zr]Zr-DFO release from Tmab in vitro using different trigger compounds. The in vivo behavior of the best performing [89Zr]Zr-TCO-Tmab was studied in healthy mice first to determine the optimal dose of the trigger. To find the optimal time for the trigger administration, the rate of [89Zr]Zr-TCO-Tmab internalization was studied in BT-474 cancer cells. Finally, the trigger was administered 6 h or 24 h after [89Zr]Zr-TCO-Tmab- administration in tumor-bearing mice to liberate the [89Zr]Zr-DFO fragment. PET scans were obtained of tumor-bearing mice that received the trigger 6 h post-[89Zr]Zr-TCO-Tmab administration. Results: The [89Zr]Zr-TCO-Tmab and trigger pair with the best in vivo properties exhibited 83% release in 50% mouse plasma. In tumor-bearing mice the tumor-blood ratios were markedly increased from 1.0 ± 0.4 to 2.3 ± 0.6 (p = 0.0057) and from 2.5 ± 0.7 to 6.6 ± 0.9 (p < 0.0001) when the trigger was administered at 6 h and 24 h post-mAb, respectively. Same day PET imaging clearly showed uptake in the tumor combined with a strongly reduced background due to the fast clearance of the released [89Zr]Zr-DFO-containing fragment from the circulation through the kidneys. Conclusions: This is the first demonstration of the use of trans-cyclooctene-tetrazine click-to-release chemistry to release a radioactive chelator from a mAb in mice to increase tumor-to-blood ratios. Our results suggest that click-cleavable radioimmunoimaging may allow for substantially shorter intervals in PET imaging with full mAbs, reducing radiation doses and potentially even enabling same day imaging.


Asunto(s)
Neoplasias , Radioinmunodetección , Animales , Ratones , Trastuzumab , Anticuerpos Monoclonales/química , Tomografía de Emisión de Positrones/métodos , Ciclooctanos/química , Línea Celular Tumoral , Circonio/química
7.
Molecules ; 28(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37298808

RESUMEN

Schisandra henryi (Schisandraceae) is a plant species endemic to Yunnan Province in China and is little known in Europe and America. To date, few studies, mainly performed by Chinese researchers, have been conducted on S. henryi. The chemical composition of this plant is dominated by lignans (dibenzocyclooctadiene, aryltetralin, dibenzylbutane), polyphenols (phenolic acids, flavonoids), triterpenoids, and nortriterpenoids. The research on the chemical profile of S. henryi showed a similar chemical composition to S. chinensis-a globally known pharmacopoeial species with valuable medicinal properties whichis the best-known species of the genus Schisandra. The whole genus is characterized by the presence of the aforementioned specific dibenzocyclooctadiene lignans, known as "Schisandra lignans". This paper was intended to provide a comprehensive review of the scientific literature published on the research conducted on S. henryi, with particular emphasis on the chemical composition and biological properties. Recently, a phytochemical, biological, and biotechnological study conducted by our team highlighted the great potential of S. henryi in in vitro cultures. The biotechnological research revealed the possibilities of the use of biomass from S. henryi as an alternative to raw material that cannot be easily obtained from natural sites. Moreover, the characterization of dibenzocyclooctadiene lignans specific to the Schisandraceae family was provided. Except for several scientific studies which have confirmed the most valuable pharmacological properties of these lignans, hepatoprotective and hepatoregenerative, this article also reviews studies that have confirmed the anti-inflammatory, neuroprotective, anticancer, antiviral, antioxidant, cardioprotective, and anti-osteoporotic effects and their application for treating intestinal dysfunction.


Asunto(s)
Lignanos , Schisandra , Schisandra/química , China , Lignanos/química , Ciclooctanos/química
8.
Chem Biodivers ; 20(6): e202300372, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37145919

RESUMEN

From the fruits of Schisandra cauliflora, five new dimethylbutyrylated dibenzocyclooctadiene lignans, named schisandracaurins A-E, were isolated using separation and chromatographic techniques. Their structures were determined by extensive analyses of HR-ESI-MS, NMR, and ECD spectra. The schisandracaurins A-E potentially inhibited NO production in LPS-activated RAW264.7 cells with their IC50 values from 21.4 to 30.3 µM.


Asunto(s)
Lignanos , Schisandra , Schisandra/química , Lipopolisacáridos/farmacología , Estructura Molecular , Frutas/química , Lignanos/química , Ciclooctanos/farmacología , Ciclooctanos/análisis , Ciclooctanos/química
9.
Chemistry ; 29(45): e202300755, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37224460

RESUMEN

An increase in the click-to-release reaction rate between cleavable trans-cyclooctenes (TCO) and tetrazines would be beneficial for drug delivery applications. In this work, we have developed a short and stereoselective synthesis route towards highly reactive sTCOs that serve as cleavable linkers, affording quantitative tetrazine-triggered payload release. In addition, the fivefold more reactive sTCO exhibited the same in vivo stability as current TCO linkers when used as antibody linkers in circulation in mice.


Asunto(s)
Ciclooctanos , Sistemas de Liberación de Medicamentos , Animales , Ratones , Ciclooctanos/química
10.
Chem Commun (Camb) ; 59(16): 2243-2246, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36723107

RESUMEN

With the aim of developing the concept of pretargeted click chemistry for the diagnosis of Alzheimer's disease two antibodies specific for amyloid-ß were modified to incorporate trans-cyclooctene functional groups. Two bis(thiosemicarbazone) compounds with pendant 1,2,4,5-tetrazine functional groups were prepared and radiolabelled with positron emitting copper-64. The new copper-64 complexes rapidly react with the trans-cyclooctene functionalized antibodies in a bioorthogonal click reaction and cross the blood-brain barrier in mice.


Asunto(s)
Enfermedad de Alzheimer , Animales , Ratones , Radioisótopos de Cobre/química , Línea Celular Tumoral , Anticuerpos , Péptidos beta-Amiloides/química , Tomografía de Emisión de Positrones/métodos , Imagen Molecular , Ciclooctanos/química , Química Clic/métodos
11.
J Colloid Interface Sci ; 630(Pt A): 804-812, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36279839

RESUMEN

Efficient cyclooctene epoxidation process under mild reaction conditions highly relies on the rational design and synthesis of high-performance heterogeneous catalysts. Herein, we report the facile one-pot synthesis of V2O5/FeVO4 heterostructures featured with heterointerfaces for the boosted epoxidation of cyclooctene. The intensive interfacial electronic interaction between the V2O5 and FeVO4 phases is versatile in the modulation of coordination microenvironment and formation of abundant oxygen vacancies, contributing to the performance enhancement. Under the optimal reaction conditions, a high yield of 87.0% can be achieved with the cyclooctene conversion of 96.5% (initial reaction rate of 55.1 mmol gcat-1 h-1) and cyclooctene oxide selectivity of 90.2%. Additionally, the V2O5/FeVO4 catalyst is stable and recyclable, endowing it a promising prospect for practical applications. This study demonstrates that the application of interface engineering strategy can be an appealing avenue towards the development of high-performance catalysts for epoxidation of cyclooctene and beyond.


Asunto(s)
Ciclooctanos , Catálisis , Ciclooctanos/química
12.
Chemistry ; 29(3): e202203069, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36250260

RESUMEN

Modified trans-cyclooctenes (TCO) are capable of highly efficient molecular manipulations in biological environments, driven by the bioorthogonal reaction with tetrazines (Tz). The development of click-cleavable TCO has fueled the field of in vivo chemistry and enabled the design of therapeutic strategies that have already started to enter the clinic. A key element for most of these approaches is the implementation of a cleavable TCO linker. So far, only one member of this class has been developed, a compound that requires a high synthetic effort, mainly to fulfill the multilayered demands on its chemical structure. To tackle this limitation, we developed a dioxolane-fused cleavable TCO linker (dcTCO) that can be prepared in only five steps by applying an oxidative desymmetrization to achieve diastereoselective introduction of the required functionalities. Based on investigation of the structure, reaction kinetics, stability, and hydrophilicity of dcTCO, we demonstrate its bioorthogonal application in the design of a caged prodrug that can be activated by in-situ Tz-triggered cleavage to achieve a remarkable >1000-fold increase in cytotoxicity.


Asunto(s)
Ciclooctanos , Estrés Oxidativo , Oxidación-Reducción , Cinética , Ciclooctanos/química , Ciclooctanos/uso terapéutico
13.
Bioconjug Chem ; 33(12): 2361-2369, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36459098

RESUMEN

Despite a range of covalent protein modifications, few techniques exist for quantification of protein bioconjugation in cells. Here, we describe a novel method for quantifying in cellulo protein bioconjugation through covalent bond formation with HaloTag. This approach utilizes unnatural amino acid (UAA) mutagenesis to selectively install a small and bioorthogonally reactive handle onto the surface of a protein. We utilized the fast kinetics and high selectivity of inverse electron-demand Diels-Alder cycloadditions to evaluate reactions of tetrazine phenylalanine (TetF) with strained trans-cyclooctene-chloroalkane (sTCO-CA) and trans-cyclooctene lysine (TCOK) with tetrazine-chloroalkane (Tet-CA). Following bioconjugation, the chloroalkane ligand is exposed for labeling by the HaloTag enzyme, allowing for straightforward quantification of bioconjugation via simple western blot analysis. We demonstrate the versatility of this tool for quickly and accurately determining the bioconjugation efficiency of different UAA/chloroalkane pairs and for different sites on different proteins of interest, including EGFP and the estrogen-related receptor ERRα.


Asunto(s)
Compuestos Heterocíclicos , Proteínas , Animales , Proteínas/química , Aminoácidos/química , Fenilalanina , Ciclooctanos/química , Reacción de Cicloadición , Mamíferos/metabolismo
14.
Chembiochem ; 23(23): e202200539, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36333105

RESUMEN

Tetrazine (Tz)-trans-cyclooctene (TCO) ligation is an ultra-fast and highly selective reaction and it is particularly suited to label biomolecules under physiological conditions. As such, a 3 H-Tz based synthon would have wide applications for in vitro/ex vivo assays. In this study, we developed a 3 H-labeled Tz and characterized its potential for application to pretargeted autoradiography. Several strategies were explored to synthesize such a Tz. However, classical approaches such as reductive halogenation failed. For this reason, we designed a Tz containing an aldehyde and explored the possibility of reducing this group with NaBT4 . This approach was successful and resulted in [3 H]-(4-(6-(pyridin-2-yl)-1,2,4,5-tetrazin-3-yl)phenyl)methan-t-ol with a radiochemical yield of 22 %, a radiochemical purity of 96 % and a molar activity of 0.437 GBq/µmol (11.8 Ci/mmol). The compound was successfully applied to pretargeted autoradiography. Thus, we report the synthesis of the first 3 H-labeled Tz and its successful application as a labeling building block.


Asunto(s)
Compuestos Heterocíclicos , Radiofármacos , Línea Celular Tumoral , Radiofármacos/química , Ciclooctanos/química
15.
Chembiochem ; 23(20): e202200363, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35921044

RESUMEN

Bond-cleavage reactions triggered by bioorthogonal tetrazine ligation have emerged as strategies to chemically control the function of (bio)molecules and achieve activation of prodrugs in living systems. While most of these approaches make use of caged amines, current methods for the release of phenols are limited by unfavorable reaction kinetics or insufficient stability of the Tz-responsive reactants. To address this issue, we have implemented a self-immolative linker that enables the connection of cleavable trans-cyclooctenes (TCO) and phenols via carbamate linkages. Based on detailed investigation of the reaction mechanism with several Tz, revealing up to 96 % elimination after 2 hours, we have developed a TCO-caged prodrug with 750-fold reduced cytotoxicity compared to the parent drug and achieved in situ activation upon Tz/TCO click-to-release.


Asunto(s)
Compuestos Heterocíclicos , Profármacos , Fenoles , Compuestos Heterocíclicos/química , Ciclooctanos/química , Aminas , Carbamatos , Línea Celular Tumoral
16.
Molecules ; 27(7)2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35408515

RESUMEN

The effect-directed detection (EDD) of Schisandra rubriflora fruit and leaves extracts was performed to assess their pharmacological properties. The EDD comprised TLC-direct bioautography against Bacillus subtilis, a DPPH assay, as well as α-glucosidase, lipase, tyrosinase, and acetylcholinesterase (AChE) inhibition assays. The leaf extracts showed stronger antioxidant activity than the fruit extract as well as inhibition of tyrosinase and lipase. The fruit extract was found to be extremely active against B. subtilis and to inhibit α-glucosidase and AChE slightly more than the leaf extracts. UHPLC-MS/MS analysis was carried out for the bioactive fractions and pointed to the possible anti-dementia properties of the dibenzocyclooctadiene lignans found in the upper TLC fractions. Gomisin N (518 mg/100 g DW), schisanhenol (454 mg/100 g DW), gomisin G (197 mg/100 g DW), schisandrin A (167 mg/100 g DW), and gomisin O (150 mg/100 g DW) were the quantitatively dominant compounds in the fruit extract. In total, twenty-one lignans were found in the bioactive fractions.


Asunto(s)
Lignanos , Schisandra , Acetilcolinesterasa , Ciclooctanos/química , Frutas/química , Lignanos/química , Lipasa/análisis , Monofenol Monooxigenasa , Extractos Vegetales/química , Schisandra/química , Espectrometría de Masas en Tándem , alfa-Glucosidasas
17.
J Am Chem Soc ; 144(6): 2804-2815, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35108003

RESUMEN

Polymer gels have recently attracted attention for their application in flexible devices, where mechanically robust gels are required. While there are many strategies to produce tough gels by suppressing nanoscale stress concentration on specific polymer chains, it is still challenging to directly verify the toughening mechanism at the molecular level. To solve this problem, the use of the flapping molecular force probe (FLAP) is promising because it can evaluate the nanoscale forces transmitted in the polymer chain network by ratiometric analysis of a stress-dependent dual fluorescence. A flexible conformational change of FLAP enables real-time and reversible responses to the nanoscale forces at the low force threshold, which is suitable for quantifying the percentage of the stressed polymer chains before structural damage. However, the previously reported FLAP only showed a negligible response in solvated environments because undesirable spontaneous planarization occurs in the excited state, even without mechanical force. Here, we have developed a new ratiometric force probe that functions in common organogels. Replacement of the anthraceneimide units in the flapping wings with pyreneimide units largely suppresses the excited-state planarization, leading to the force probe function under wet conditions. The FLAP-doped polyurethane organogel reversibly shows a dual-fluorescence response under sub-MPa compression. Moreover, the structurally modified FLAP is also advantageous in the wide dynamic range of its fluorescence response in solvent-free elastomers, enabling clearer ratiometric fluorescence imaging of the molecular-level stress concentration during crack growth in a stretched polyurethane film.


Asunto(s)
Ciclooctanos/química , Colorantes Fluorescentes/química , Geles/química , Fenazinas/química , Poliuretanos/química , Ciclooctanos/síntesis química , Fluorescencia , Colorantes Fluorescentes/síntesis química , Conformación Molecular , Fenazinas/síntesis química , Estrés Mecánico
18.
J Am Chem Soc ; 144(4): 1647-1662, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35072462

RESUMEN

Described is the spatiotemporally controlled labeling and patterning of biomolecules in live cells through the catalytic activation of bioorthogonal chemistry with light, referred to as "CABL". Here, an unreactive dihydrotetrazine (DHTz) is photocatalytically oxidized in the intracellular environment by ambient O2 to produce a tetrazine that immediately reacts with a trans-cyclooctene (TCO) dienophile. 6-(2-Pyridyl)dihydrotetrazine-3-carboxamides were developed as stable, cell permeable DHTz reagents that upon oxidation produce the most reactive tetrazines ever used in live cells with Diels-Alder kinetics exceeding k2 of 106 M-1 s-1. CABL photocatalysts are based on fluorescein or silarhodamine dyes with activation at 470 or 660 nm. Strategies for limiting extracellular production of singlet oxygen are described that increase the cytocompatibility of photocatalysis. The HaloTag self-labeling platform was used to introduce DHTz tags to proteins localized in the nucleus, mitochondria, actin, or cytoplasm, and high-yielding subcellular activation and labeling with a TCO-fluorophore were demonstrated. CABL is light-dose dependent, and two-photon excitation promotes CABL at the suborganelle level to selectively pattern live cells under no-wash conditions. CABL was also applied to spatially resolved live-cell labeling of an endogenous protein target by using TIRF microscopy to selectively activate intracellular monoacylglycerol lipase tagged with DHTz-labeled small molecule covalent inhibitor. Beyond spatiotemporally controlled labeling, CABL also improves the efficiency of "ordinary" tetrazine ligations by rescuing the reactivity of commonly used 3-aryl-6-methyltetrazine reporters that become partially reduced to DHTzs inside cells. The spatiotemporal control and fast rates of photoactivation and labeling of CABL should enable a range of biomolecular labeling applications in living systems.


Asunto(s)
Colorantes Fluorescentes/química , Luz , Catálisis , Reacción de Cicloadición , Ciclooctanos/química , Escherichia coli/metabolismo , Colorantes Fluorescentes/síntesis química , Células HeLa , Compuestos Heterocíclicos con 1 Anillo/síntesis química , Compuestos Heterocíclicos con 1 Anillo/química , Humanos , Cinética , Proteínas Luminiscentes/química , Microscopía Fluorescente , Oxidación-Reducción
19.
Eur J Med Chem ; 227: 113919, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34688010

RESUMEN

Twenty-one new schisanhenol derivatives were synthesized, and their hepatoprotective effects against liver injury induced by concanavalin A (Con A) were evaluated in vitro using an MTT assay. The data indicated that most derivatives exhibited equivalent or better protective activity than the positive control (dimethyl dicarboxylate biphenyl, DDB) under the same conditions. Among them, compound 1b showed the most potent hepatoprotective activity against Con A-induced immunological injury. Mechanistic studies in vitro revealed that 1b inhibited cell apoptosis and inflammatory responses caused by Con A treatment via IL-6/JAK2/STAT3 signaling pathway. Consistently, it also exhibited significant hepatoprotective activity in mice with Con A-induced immunological liver injury. These results clearly indicated that 1b might be a highly potent hepatoprotective agent targeting IL-6/STAT3 signaling pathway.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ciclooctanos/farmacología , Hígado/efectos de los fármacos , Compuestos Policíclicos/farmacología , Sustancias Protectoras/farmacología , Animales , Células Cultivadas , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Concanavalina A , Ciclooctanos/síntesis química , Ciclooctanos/química , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Interleucina-6/antagonistas & inhibidores , Interleucina-6/sangre , Interleucina-6/metabolismo , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Estructura Molecular , Compuestos Policíclicos/síntesis química , Compuestos Policíclicos/química , Sustancias Protectoras/síntesis química , Sustancias Protectoras/química , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
20.
J Org Chem ; 87(3): 1679-1688, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34743518

RESUMEN

Catalytic enantiodifferentiating photoisomerization of cyclooctene (1Z) included and sensitized by regioisomeric 6-O-(o-, m-, and p-methoxybenzoyl)-ß-cyclodextrins (CDs) was performed under a variety of solvent conditions for higher enantioselectivities. The enantiomeric excess (ee) of chiral (E)-isomer (1E) produced was a critical function of all the internal and external factors examined, in particular, the sensitizer structure and the solvent conditions, to afford (R)-1E in record-high ee's of up to 67% upon sensitization with the meta-substituted ß-CD host in water and salt solutions but neither in 50% aqueous ethanol nor with the ortho- and para-substituted hosts. The mechanistic origin of the sudden ee enhancement achieved under the specific conditions is discussed on the basis of the circular dichroism spectral behaviors upon substrate inclusion and the compensatory enthalpy-entropy relationship of the activation parameters for the enantiodifferentiating photoisomerization.


Asunto(s)
beta-Ciclodextrinas , Ciclooctanos/química , Conformación Molecular , Fotoquímica , Solventes/química , beta-Ciclodextrinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...