Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.285
Filtrar
1.
J R Soc Interface ; 21(217): 20240221, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39106950

RESUMEN

Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng et al. (Meng et al. 2021 Proc. Natl Acad. Sci. USA 118, e2102828118), we find that the first harmonic mode in the driving force acting on each individual cilium can determine the direction of the metachronal wave after considering the finite size of the beating trajectories, which is confirmed by our agent-based numerical simulations. The stable wave patterns, e.g. the travelling direction, can be controlled by the driving forces acting on the cilia, based on which one can change the flow field generated by the cilia. This work can not only help to understand the role of the hydrodynamic interactions in the collective behaviours of cilia, but can also guide future designs of artificial cilia beating in the desired dynamic mode.


Asunto(s)
Cilios , Hidrodinámica , Modelos Biológicos , Cilios/fisiología , Simulación por Computador
2.
Proc Natl Acad Sci U S A ; 121(34): e2408551121, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39145934

RESUMEN

The first steps of vision take place in the ciliary outer segment compartment of photoreceptor cells. The protein composition of outer segments is uniquely suited to perform this function. The most abundant among these proteins is the visual pigment, rhodopsin, whose outer segment trafficking involves intraflagellar transport (IFT). Here, we report three major findings from the analysis of mice in which ciliary transport was acutely impaired by conditional knockouts of IFT-B subunits. First, we demonstrate the existence of a sorting mechanism whereby mislocalized rhodopsin is recruited to and concentrated in extracellular vesicles prior to their release, presumably to protect the cell from adverse effects of protein mislocalization. Second, reducing rhodopsin expression significantly delays photoreceptor degeneration caused by IFT disruption, suggesting that controlling rhodopsin levels may be an effective therapy for some cases of retinal degenerative disease. Last, the loss of IFT-B subunits does not recapitulate a phenotype observed in mutants of the BBSome (another ciliary transport protein complex relying on IFT) in which non-ciliary proteins accumulate in the outer segment. Whereas it is widely thought that the role of the BBSome is to primarily participate in ciliary transport, our data suggest that the BBSome has another major function independent of IFT and possibly related to maintaining the diffusion barrier of the ciliary transition zone.


Asunto(s)
Ratones Noqueados , Rodopsina , Animales , Ratones , Rodopsina/metabolismo , Cilios/metabolismo , Transporte de Proteínas , Transporte Biológico , Flagelos/metabolismo , Compartimento Celular , Vesículas Extracelulares/metabolismo
3.
Cells ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39120290

RESUMEN

Mutations in human CILK1 (ciliogenesis associated kinase 1) are linked to ciliopathies and epilepsy. Homozygous point and nonsense mutations that extinguish kinase activity impair primary cilia function, whereas mutations outside the kinase domain are not well understood. Here, we produced a knock-in mouse equivalent to the human CILK1 A615T variant identified in juvenile myoclonic epilepsy (JME). This residue is in the intrinsically disordered C-terminal region of CILK1 separate from the kinase domain. Mouse embryo fibroblasts (MEFs) with either heterozygous or homozygous A612T mutant alleles exhibited a higher ciliation rate, shorter individual cilia, and upregulation of ciliary Hedgehog signaling. Thus, a single A612T mutant allele was sufficient to impair primary cilia and ciliary signaling in MEFs. Gene expression profiles of wild-type versus mutant MEFs revealed profound changes in cilia-related molecular functions and biological processes. The CILK1 A615T mutant protein was not increased to the same level as the wild-type protein when co-expressed with scaffold protein KATNIP (katanin-interacting protein). Our data show that KATNIP regulation of a JME-associated single-residue variant of CILK1 is compromised, and this impairs the maintenance of primary cilia and Hedgehog signaling.


Asunto(s)
Cilios , Epilepsia , Proteínas Hedgehog , Transducción de Señal , Cilios/metabolismo , Animales , Proteínas Hedgehog/metabolismo , Ratones , Epilepsia/genética , Epilepsia/metabolismo , Epilepsia/patología , Humanos , Fibroblastos/metabolismo , Mutación/genética , Proteínas Serina-Treonina Quinasas
4.
Proc Natl Acad Sci U S A ; 121(32): e2402206121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39088390

RESUMEN

Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.


Asunto(s)
Cilios , Neuronas Dopaminérgicas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Neuroprotección , Enfermedad de Parkinson , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Cilios/metabolismo , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Humanos , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuroprotección/genética , Mutación , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Masculino
5.
Cell Death Dis ; 15(8): 581, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122680

RESUMEN

The primary cilium behaves as a platform for sensing and integrating extracellular cues to control a plethora of cellular activities. However, the functional interaction of this sensory organelle with epithelial-mesenchymal transition (EMT) during pulmonary fibrosis remains unclear. Here, we reveal a critical role for cylindromatosis (CYLD) in reciprocally linking the EMT program and ciliary homeostasis during pulmonary fibrosis. A close correlation between the EMT program and primary cilia is observed in bleomycin-induced pulmonary fibrosis as well as TGF-ß-induced EMT model. Mechanistic study reveals that downregulation of CYLD underlies the crosstalk between EMT and ciliary homeostasis by inactivating histone deacetylase 6 (HDAC6) during pulmonary fibrosis. Moreover, manipulation of primary cilia is an effective means to modulate the EMT program. Collectively, these results identify a pivotal role for the CYLD/HDAC6 signaling in regulating the reciprocal interplay between the EMT program and ciliary homeostasis during pulmonary fibrosis.


Asunto(s)
Cilios , Enzima Desubiquitinante CYLD , Transición Epitelial-Mesenquimal , Histona Desacetilasa 6 , Homeostasis , Fibrosis Pulmonar , Transducción de Señal , Histona Desacetilasa 6/metabolismo , Histona Desacetilasa 6/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Animales , Cilios/metabolismo , Cilios/patología , Enzima Desubiquitinante CYLD/metabolismo , Ratones , Humanos , Bleomicina , Ratones Endogámicos C57BL , Factor de Crecimiento Transformador beta/metabolismo , Masculino
6.
Phys Rev Lett ; 133(4): 048302, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39121428

RESUMEN

Direct mechanical coupling is known to be critical for establishing synchronization among cilia. However, the actual role of the connections is still elusive-partly because controlled experiments in living samples are challenging. Here, we employ an artificial ciliary system to address this issue. Two cilia are formed by chains of self-propelling robots and anchored to a shared base so that they are purely mechanically coupled. The system mimics biological ciliary beating but allows fine control over the beating dynamics. With different schemes of mechanical coupling, artificial cilia exhibit rich motility patterns. Particularly, their synchronous beating display two distinct modes-analogous to those observed in C. reinhardtii, the biciliated model organism for studying synchronization. Close examination suggests that the system evolves towards the most dissipative mode. Using this guideline in both simulations and experiments, we are able to direct the system into a desired state by altering the modes' respective dissipation. Our results have significant implications in understanding the synchronization of cilia.


Asunto(s)
Biomimética , Cilios , Robótica , Cilios/fisiología , Biomimética/métodos , Modelos Biológicos , Chlamydomonas reinhardtii/fisiología
7.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126056

RESUMEN

Obesity-related ciliopathies, as a group of ciliopathies including Alström Syndrome and Bardet-Biedl Syndrome, exhibit distinct genetic and phenotypic variability. The understanding of these diseases is highly significant for understanding the functions of primary cilia in the human body, particularly regarding the relationship between obesity and primary cilia. The diagnosis of these diseases primarily relies on clinical presentation and genetic testing. However, there is a significant lack of research on biomarkers to elucidate the variability in clinical manifestations, disease progression, prognosis, and treatment responses. Through an extensive literature review, the paper focuses on obesity-related ciliopathies, reviewing the advancements in the field and highlighting the potential roles of biomarkers in the clinical presentation, diagnosis, and prognosis of these diseases.


Asunto(s)
Síndrome de Bardet-Biedl , Biomarcadores , Ciliopatías , Obesidad , Humanos , Obesidad/metabolismo , Obesidad/genética , Ciliopatías/genética , Ciliopatías/metabolismo , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/metabolismo , Cilios/metabolismo , Cilios/patología , Síndrome de Alstrom/genética , Síndrome de Alstrom/metabolismo , Animales
8.
Curr Biol ; 34(16): R786-R788, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39163842

RESUMEN

Multiciliated cells produce over a hundred motile cilia anchored to the membrane by modified centrioles. Recent work has characterized an alternative cell cycle used by this post-mitotic cell type to generate additional centrioles without undergoing cell division.


Asunto(s)
Ciclo Celular , Cilios , Cilios/fisiología , Ciclo Celular/fisiología , Animales , Centriolos/fisiología , Centriolos/metabolismo
9.
ACS Chem Biol ; 19(8): 1733-1742, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39106364

RESUMEN

Primary cilia are membrane-covered microtubule-based structures that protrude from the cell surface and are critical for cell signaling and homeostasis during human development and adulthood. Dysregulation of cilia formation, length, and function can lead to a spectrum of human diseases and syndromes known as ciliopathies. Although some genetic and chemical screens have been performed to define important factors that modulate cilia biogenesis and length control, there are currently no clinical treatments that restore cilia length in patients. We report that the microtubule-targeting agent MI-181(mitotic inhibitor-181) is a potent modulator of cilia length and biogenesis. Treatment of retinal pigment epithelial-1 cells with MI-181 induced an increase in the average size of cilia and in the percent ciliated cells under nonstarved conditions. Importantly, MI-181 was effective at rescuing cilia length and ciliation defects in cells that had been treated with the intraflagellar transport inhibitor Ciliobrevin D or the O-GlcNAc transferase inhibitor OSMI-1. Most importantly, MI-181 induced an increase in cilia length and restored ciliation in cells with compromised shortened cilia at low nanomolar concentrations and did not show an inhibitory response at high concentrations. Therefore, MI-181 represents a lead molecule for developing drugs targeting ciliopathies characterized by shortened cilia.


Asunto(s)
Cilios , Cilios/efectos de los fármacos , Cilios/metabolismo , Humanos , Línea Celular , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Ciliopatías/metabolismo , Ciliopatías/patología
10.
J Cell Biol ; 223(10)2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39137043

RESUMEN

Primary cilia on granule cell neuron progenitors in the developing cerebellum detect sonic hedgehog to facilitate proliferation. Following differentiation, cerebellar granule cells become the most abundant neuronal cell type in the brain. While granule cell cilia are essential during early developmental stages, they become infrequent upon maturation. Here, we provide nanoscopic resolution of cilia in situ using large-scale electron microscopy volumes and immunostaining of mouse cerebella. In many granule cells, we found intracellular cilia, concealed from the external environment. Cilia were disassembled in differentiating granule cell neurons-in a process we call cilia deconstruction-distinct from premitotic cilia resorption in proliferating progenitors. In differentiating granule cells, cilia deconstruction involved unique disassembly intermediates, and, as maturation progressed, mother centriolar docking at the plasma membrane. Unlike ciliated neurons in other brain regions, our results show the deconstruction of concealed cilia in differentiating granule cells, which might prevent mitogenic hedgehog responsiveness. Ciliary deconstruction could be paradigmatic of cilia removal during differentiation in other tissues.


Asunto(s)
Diferenciación Celular , Cerebelo , Cilios , Proteínas Hedgehog , Neuronas , Cilios/metabolismo , Cilios/ultraestructura , Animales , Neuronas/metabolismo , Neuronas/citología , Neuronas/ultraestructura , Ratones , Cerebelo/metabolismo , Cerebelo/citología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Neurogénesis , Centriolos/metabolismo , Centriolos/ultraestructura , Ratones Endogámicos C57BL
11.
PLoS Biol ; 22(8): e3002685, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138140

RESUMEN

During Hedgehog (Hh) signal transduction in development and disease, the atypical G protein-coupled receptor (GPCR) SMOOTHENED (SMO) communicates with GLI transcription factors by binding the protein kinase A catalytic subunit (PKA-C) and physically blocking its enzymatic activity. Here, we show that GPCR kinase 2 (GRK2) orchestrates this process during endogenous mouse and zebrafish Hh pathway activation in the primary cilium. Upon SMO activation, GRK2 rapidly relocalizes from the ciliary base to the shaft, triggering SMO phosphorylation and PKA-C interaction. Reconstitution studies reveal that GRK2 phosphorylation enables active SMO to bind PKA-C directly. Lastly, the SMO-GRK2-PKA pathway underlies Hh signal transduction in a range of cellular and in vivo models. Thus, GRK2 phosphorylation of ciliary SMO and the ensuing PKA-C binding and inactivation are critical initiating events for the intracellular steps in Hh signaling. More broadly, our study suggests an expanded role for GRKs in enabling direct GPCR interactions with diverse intracellular effectors.


Asunto(s)
Cilios , Proteínas Quinasas Dependientes de AMP Cíclico , Quinasa 2 del Receptor Acoplado a Proteína-G , Proteínas Hedgehog , Transducción de Señal , Receptor Smoothened , Pez Cebra , Animales , Cilios/metabolismo , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Proteínas Hedgehog/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Ratones , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Pez Cebra/metabolismo , Fosforilación , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células 3T3 NIH
12.
Phys Rev E ; 110(1-1): 014409, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39160939

RESUMEN

Large groups of active cilia collectively beat in a fluid medium as metachronal waves, essential for some microorganisms motility and for flow generation in mucociliary clearance. Several models can predict the emergence of metachronal waves, but what controls the properties of metachronal waves is still unclear. Here, we numerically investigate the respective impacts of active beating and viscous dissipation on the properties of metachronal waves in a collection of oscillators, using a simple model for cilia in the presence of noise on regular lattices in one and two dimensions. We characterize the wave using spatial correlation and the frequency of collective beating. Our results clearly show that the viscosity of the fluid medium does not affect the wavelength; the activity of the cilia does. These numerical results are supported by a dimensional analysis, which shows that the result of wavelength invariance is robust against the model taken for sustained beating and the structure of hydrodynamic coupling. Interestingly, the enhancement of cilia activity increases the wavelength and decreases the beating frequency, keeping the wave velocity almost unchanged. These results might have significance in understanding paramecium locomotion and mucociliary clearance diseases.


Asunto(s)
Cilios , Hidrodinámica , Modelos Biológicos , Cilios/fisiología , Viscosidad
13.
Int J Mol Sci ; 25(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39125708

RESUMEN

Single cilia, 100 nm in diameter and 10 µm in length, were isolated from mouse tracheae with Triton X-100 (0.02%) treatment, and the effects of pH on ciliary beating were examined by measuring the ciliary beat frequency (CBF) and the ciliary bend distance (CBD-an index of amplitude) using a high-speed video microscope (250 fps). ATP (2.5 mM) plus 8Br-cAMP (10 µM) reactivated the CBF and CBD in the isolated cilia, similar to the cilia of in vivo tracheae. In the reactivated isolated cilia, an elevation in pH from 7.0 to 8.0 increased the CBF from 3 to 15 Hz and the CBD from 0.6 to 1.5 µm. The pH elevation also increased the velocity of the effective stroke; however, it did not increase the recovery stroke, and, moreover, it decreased the intervals between beats. This indicates that H+ (pHi) directly acts on the axonemal machinery to regulate CBF and CBD. In isolated cilia priorly treated with 1 µM PKI-amide (a PKA inhibitor), 8Br-cAMP did not increase the CBF or CBD in the ATP-stimulated isolated cilia. pH modulates the PKA signal, which enhances the axonemal beating generated by the ATP-activated inner and outer dyneins.


Asunto(s)
Adenosina Trifosfato , Cilios , AMP Cíclico , Tráquea , Animales , Cilios/efectos de los fármacos , Cilios/metabolismo , Adenosina Trifosfato/metabolismo , Concentración de Iones de Hidrógeno , Tráquea/metabolismo , Tráquea/efectos de los fármacos , Ratones , AMP Cíclico/metabolismo , Masculino
14.
Int J Mol Sci ; 25(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125883

RESUMEN

Bardet-Biedl syndrome (BBS) is a rare recessive multisystem disorder characterized by retinitis pigmentosa, obesity, postaxial polydactyly, cognitive deficits, and genitourinary defects. BBS is clinically variable and genetically heterogeneous, with 26 genes identified to contribute to the disorder when mutated, the majority encoding proteins playing role in primary cilium biogenesis, intraflagellar transport, and ciliary trafficking. Here, we report on an 18-year-old boy with features including severe photophobia and central vision loss since childhood, hexadactyly of the right foot and a supernumerary nipple, which were suggestive of BBS. Genetic analyses using targeted resequencing and exome sequencing failed to provide a conclusive genetic diagnosis. Whole-genome sequencing (WGS) allowed us to identify compound heterozygosity for a missense variant and a large intragenic deletion encompassing exon 12 in BBS9 as underlying the condition. We assessed the functional impact of the identified variants and demonstrated that they impair BBS9 function, with significant consequences for primary cilium formation and morphology. Overall, this study further highlights the usefulness of WGS in the diagnostic workflow of rare diseases to reach a definitive diagnosis. This report also remarks on a requirement for functional validation analyses to more effectively classify variants that are identified in the frame of the diagnostic workflow.


Asunto(s)
Síndrome de Bardet-Biedl , Secuenciación Completa del Genoma , Síndrome de Bardet-Biedl/genética , Síndrome de Bardet-Biedl/diagnóstico , Humanos , Masculino , Adolescente , Cilios/patología , Cilios/genética , Proteínas del Citoesqueleto
15.
J Cell Biol ; 223(11)2024 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-39158699

RESUMEN

Ciliary beat and intraflagellar transport depend on dynein and kinesin motors. The kinesin-9 family members Kif6 and Kif9 are implicated in motile cilia motilities across protists and mammals. How they function and whether they act redundantly, however, remain unclear. Here, we show that Kif6 and Kif9 play distinct roles in mammals. Kif6 forms puncta that move bidirectionally along axonemes, whereas Kif9 appears to oscillate regionally on the ciliary central apparatus. Consistently, only Kif6 displays microtubule-based motor activity in vitro, and its ciliary localization requires its ATPase activity. Kif6 deficiency in mice disrupts coordinated ciliary beat across ependymal tissues and impairs cerebrospinal fluid flow, resulting in severe hydrocephalus and high mortality. Kif9 deficiency causes mild hydrocephalus without obviously affecting the ciliary beat or the lifespan. Kif6-/- and Kif9-/- males are infertile but exhibit oligozoospermia with poor sperm motility and defective forward motion of sperms, respectively. These results suggest Kif6 as a motor for cargo transport and Kif9 as a central apparatus regulator.


Asunto(s)
Cilios , Cinesinas , Ratones Noqueados , Animales , Cinesinas/metabolismo , Cinesinas/genética , Cilios/metabolismo , Masculino , Ratones , Transporte de Proteínas , Motilidad Espermática/genética , Hidrocefalia/metabolismo , Hidrocefalia/genética , Hidrocefalia/patología , Ratones Endogámicos C57BL , Axonema/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Infertilidad Masculina/patología , Humanos , Microtúbulos/metabolismo
16.
Biochem Pharmacol ; 227: 116423, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996930

RESUMEN

The placenta experiences a low-oxygen stage during early pregnancy. Aspirin is an effective preventative treatment for preeclampsia if applied early in pregnancy. Elevation of fibronectin (FN) level has been reported to be associated with preeclampsia; however, the role of FN in the physiological hypoxic phase and whether aspirin exerts its effect on FN at this hypoxic stage remain unknown. We determined pregnancy outcomes by injecting saline or recombinant FN protein into C57BL/6 pregnant mice and one group of FN-injected mice was fed aspirin. The effects of FN, the underlying pathways on trophoblast biology, and cilia formation under hypoxia were investigated in FN-pretreated or FN-knockdown HTR-8/SVneo cells in a hypoxic chamber (0.1 % O2). Preeclampsia-like phenotypes, including blood pressure elevation and proteinuria, developed in FN-injected pregnant mice. The fetal weight of FN-injected mice was significantly lower than that of non-FN-injected mice (p < 0.005). Trophoblast FN expression was upregulated under hypoxia, which could be suppressed by aspirin treatment. FN inhibited trophoblast invasion and migration under hypoxia, and this inhibitory effect occurred through downregulating ZEB1/2, MMP 9 and the Akt and MAPK signaling pathways. Ciliogenesis of trophoblasts was stimulated under hypoxia but was inhibited by FN treatment. Aspirin was shown to reverse the FN-mediated inhibitory effect on trophoblast invasion/migration and ciliogenesis. In conclusion, FN overexpression induces preeclampsia-like symptoms and impairs fetal growth in mice. Aspirin may exert its suppressive effect on FN upregulation and FN-mediated cell function in the hypoxic stage of pregnancy and therefore provides a preventative effect on preeclampsia development.


Asunto(s)
Aspirina , Fibronectinas , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Preeclampsia , Proteínas Proto-Oncogénicas c-akt , Trofoblastos , Animales , Preeclampsia/metabolismo , Preeclampsia/prevención & control , Preeclampsia/patología , Fibronectinas/metabolismo , Fibronectinas/genética , Femenino , Embarazo , Aspirina/farmacología , Trofoblastos/efectos de los fármacos , Trofoblastos/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/fisiología , Humanos , Modelos Animales de Enfermedad , Cilios/efectos de los fármacos , Cilios/metabolismo , Cilios/fisiología , Fenotipo , Hipoxia de la Célula/efectos de los fármacos , Hipoxia de la Célula/fisiología , Hipoxia/metabolismo , Línea Celular
17.
Endocrinology ; 165(8)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001875

RESUMEN

The functional maturation of the pituitary gland requires adequate cell differentiation and vascular network formation. Although spatiotemporal signaling and transcription factors are known to govern pituitary development, the involvement of primary cilia, nonmoving hair-like organelles, remains unclear. In this study, we uncovered the contribution of primary cilia to cell-type determination and vascular network formation during pituitary development. Homozygous knockout mice lacking a ciliary kinase, Dyrk2-/-, exhibit abnormalities in ciliary structure and pituitary hypoplasia, accompanied by varying degrees of failure in differentiation among all types of hormone-producing cells in the anterior lobe. Aberrations in cell differentiation in Dyrk2-/- mice arise from a decrease in the expression of crucial transcription factors, Lhx4, Lhx3, and Prop1, resulting from the inactivity of Hedgehog (Hh) signaling during the early stages of development. Furthermore, the loss of Dyrk2 results in vascular system abnormalities during the middle to late stages of development. Mechanistically, transcriptome analyses revealed the downregulation of vitronectin-integrin αvß3-VEGFR2 signaling, essential for orchestrating vascular development. Collectively, our findings demonstrate that primary cilia play a pivotal role as critical regulators of cell survival, cell determination, and angiogenesis during pituitary gland development through the activation of Hh signaling. These findings expand our understanding of the potential link between pituitary dysfunction in human disorders and ciliopathies.


Asunto(s)
Diferenciación Celular , Cilios , Neovascularización Fisiológica , Hipófisis , Animales , Ratones , Angiogénesis , Cilios/metabolismo , Cilios/fisiología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones Noqueados , Neovascularización Fisiológica/genética , Neovascularización Fisiológica/fisiología , Hipófisis/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Quinasas DyrK/genética
18.
ACS Appl Mater Interfaces ; 16(29): 38733-38743, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985460

RESUMEN

Cilia are hair-like organelles present on cell surfaces. They often exhibit a collective wave-like motion that can enhance fluid or particle transportation function, known as metachronal motion. Inspired by nature, researchers have developed artificial cilia capable of inducing metachronal motion, especially magnetic actuation. However, current methods remain intricate, requiring either control of the magnetic or geometrical properties of individual cilia or the generation of a complex magnetic field. In this paper, we present a novel elegant method that eliminates these complexities and induces metachronal motion of arrays of identical microscopic magnetic artificial cilia by applying a simple rotating uniform magnetic field. The key idea of our method is to place arrays of cilia on surfaces with a specially designed curvature. This results in consecutive cilia experiencing different magnetic field directions at each point in time, inducing a phase lag in their motion, thereby causing collective wave-like motion. Moreover, by tuning the surface curvature profile, we can achieve diverse metachronal patterns analogous to symplectic and antiplectic metachronal motion observed in nature, and we can even devise novel combinations thereof. Furthermore, we characterize the local flow patterns generated by the motion of the cilia, revealing the formation of vortical patterns. Our novel approach simplifies the realization of miniaturized metachronal motion in microfluidic systems and opens the possibility of controlling flow pattern generation and transportation, opening avenues for applications such as lab-on-a-chip technologies, organ-on-a-chip platforms, and microscopic object propulsion.


Asunto(s)
Cilios , Campos Magnéticos , Propiedades de Superficie , Movimiento (Física)
20.
Mol Biol Cell ; 35(9): br16, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39024276

RESUMEN

The outer dynein arm (ODA) is a large, multimeric protein complex essential for ciliary motility. The composition and assembly of ODA are best characterized in the green algae Chlamydomonas reinhardtii, where individual ODA subunits are synthesized and preassembled into a mature complex in the cytosol prior to ciliary import. The single-cellular parasite Trypanosoma brucei contains a motile flagellum essential for cell locomotion and pathogenesis. Similar to human motile cilia, T. brucei flagellum contains a two-headed ODA complex arranged at 24 nm intervals along the axonemal microtubule doublets. The subunit composition and the preassembly of the ODA complex in T. brucei, however, have not been investigated. In this study, we affinity-purified the ODA complex from T. brucei cytoplasmic extract. Proteomic analyses revealed the presence of two heavy chains (ODAα and ODAß), two intermediate chains (IC1and IC2) and several light chains. We showed that both heavy chains and both intermediate chains are indispensable for flagellar ODA assembly. Our study also provided biochemical evidence supporting the presence of a cytoplasmic, preassembly pathway for T. brucei ODA.


Asunto(s)
Axonema , Citoplasma , Dineínas , Flagelos , Proteínas Protozoarias , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolismo , Flagelos/metabolismo , Citoplasma/metabolismo , Axonema/metabolismo , Dineínas/metabolismo , Proteínas Protozoarias/metabolismo , Microtúbulos/metabolismo , Proteómica/métodos , Cilios/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA