Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 384
Filtrar
1.
J Cell Biol ; 222(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36705601

RESUMEN

Proper chromosome segregation is crucial for cell division. In eukaryotes, this is achieved by the kinetochore, an evolutionarily conserved multiprotein complex that physically links the DNA to spindle microtubules and takes an active role in monitoring and correcting erroneous spindle-chromosome attachments. Our mechanistic understanding of these functions and how they ensure an error-free outcome of mitosis is still limited, partly because we lack a complete understanding of the kinetochore structure in the cell. In this study, we use single-molecule localization microscopy to visualize individual kinetochore complexes in situ in budding yeast. For major kinetochore proteins, we measured their abundance and position within the metaphase kinetochore. Based on this comprehensive dataset, we propose a quantitative model of the budding yeast kinetochore. While confirming many aspects of previous reports based on bulk imaging, our results present a unifying nanoscale model of the kinetochore in budding yeast.


Asunto(s)
Cinetocoros , Saccharomyces cerevisiae , Segregación Cromosómica , Cinetocoros/ultraestructura , Microtúbulos/genética , Microtúbulos/metabolismo , Mitosis , Huso Acromático/genética , Saccharomyces cerevisiae/genética
2.
J Cell Biol ; 222(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36705602

RESUMEN

The key to ensuring proper chromosome segregation during mitosis is the kinetochore (KT), a tightly regulated multiprotein complex that links the centromeric chromatin to the spindle microtubules and as such leads the segregation process. Understanding its architecture, function, and regulation is therefore essential. However, due to its complexity and dynamics, only its individual subcomplexes could be studied in structural detail so far. In this study, we construct a nanometer-precise in situ map of the human-like regional KT of Schizosaccharomyces pombe using multi-color single-molecule localization microscopy. We measure each protein of interest (POI) in conjunction with two references, cnp1CENP-A at the centromere and sad1 at the spindle pole. This allows us to determine cell cycle and mitotic plane, and to visualize individual centromere regions separately. We determine protein distances within the complex using Bayesian inference, establish the stoichiometry of each POI and, consequently, build an in situ KT model with unprecedented precision, providing new insights into the architecture.


Asunto(s)
Cinetocoros , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Teorema de Bayes , Centrómero/metabolismo , Segregación Cromosómica , Cinetocoros/ultraestructura , Mitosis , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático/metabolismo
3.
Nat Commun ; 12(1): 5931, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635673

RESUMEN

The chromatin remodeler RSF1 enriched at mitotic centromeres is essential for proper chromosome alignment and segregation and underlying mechanisms remain to be disclosed. We here show that PLK1 recruitment by RSF1 at centromeres creates an activating phosphorylation on Thr236 in the activation loop of Aurora B and this is indispensable for the Aurora B activation. In structural modeling the phosphorylated Thr236 enhances the base catalysis by Asp200 nearby, facilitating the Thr232 autophosphorylation. Accordingly, RSF1-PLK1 is central for Aurora B-mediated microtubule destabilization in error correction. However, under full microtubule-kinetochore attachment RSF1-PLK1 positions at kinetochores, halts activating Aurora B and phosphorylates BubR1, regardless of tension. Spatial movement of RSF1-PLK1 to kinetochores is triggered by Aurora B-mediated phosphorylation of centromeric histone H3 on Ser28. We propose a regulatory RSF1-PLK1 axis that spatiotemporally controls on/off switch on Aurora B. This feedback circuit among RSF1-PLK1-Aurora B may coordinate dynamic microtubule-kinetochore attachment in early mitosis when full tension yet to be generated.


Asunto(s)
Aurora Quinasa B/genética , Proteínas de Ciclo Celular/genética , Segregación Cromosómica , Mitosis , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Transducción de Señal/genética , Transactivadores/genética , Ácido Aspártico/metabolismo , Aurora Quinasa B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Retroalimentación Fisiológica , Regulación de la Expresión Génica , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Nucleares/deficiencia , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Serina/metabolismo , Transactivadores/deficiencia , Quinasa Tipo Polo 1
4.
Open Biol ; 11(9): 210131, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34465213

RESUMEN

Expansion microscopy (ExM) has become a powerful super-resolution method in cell biology. It is a simple, yet robust approach, which does not require any instrumentation or reagents beyond those present in a standard microscopy facility. In this study, we used kinetoplastid parasites Trypanosoma brucei and Leishmania major, which possess a complex, yet well-defined microtubule-based cytoskeleton, to demonstrate that this method recapitulates faithfully morphology of structures as previously revealed by a combination of sophisticated electron microscopy (EM) approaches. Importantly, we also show that due to the rapidness of image acquisition and three-dimensional reconstruction of cellular volumes ExM is capable of complementing EM approaches by providing more quantitative data. This is demonstrated on examples of less well-appreciated microtubule structures, such as the neck microtubule of T. brucei or the pocket, cytosolic and multivesicular tubule-associated microtubules of L. major. We further demonstrate that ExM enables identifying cell types rare in a population, such as cells in mitosis and cytokinesis. Three-dimensional reconstruction of an entire volume of these cells provided details on the morphology of the mitotic spindle and the cleavage furrow. Finally, we show that established antibody markers of major cytoskeletal structures function well in ExM, which together with the ability to visualize proteins tagged with small epitope tags will facilitate studies of the kinetoplastid cytoskeleton.


Asunto(s)
Cinetocoros/metabolismo , Kinetoplastida/metabolismo , Leishmania major/metabolismo , Microscopía Electrónica/métodos , Microtúbulos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/metabolismo , Cinetocoros/ultraestructura , Kinetoplastida/ultraestructura , Leishmania major/ultraestructura , Microtúbulos/ultraestructura , Trypanosoma brucei brucei/ultraestructura
5.
Curr Genet ; 67(4): 511-518, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33745061

RESUMEN

This review describes the current models for how the subunit abundance of the Ndc80 complex, a key kinetochore component, is regulated in budding yeast and metazoan meiosis. The past decades of kinetochore research have established the Ndc80 complex to be a key microtubule interactor and a central hub for regulating chromosome segregation. Recent studies further demonstrate that Ndc80 is the limiting kinetochore subunit that dictates the timing of kinetochore activation in budding yeast meiosis. Here, we discuss the molecular circuits that regulate Ndc80 protein synthesis and degradation in budding yeast meiosis and compare the findings with those from metazoans. We envision the regulatory principles discovered in budding yeast to be conserved in metazoans, thereby providing guidance into future investigations on kinetochore regulation in human health and disease.


Asunto(s)
Segregación Cromosómica/genética , Proteínas del Citoesqueleto/ultraestructura , Meiosis/genética , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas del Citoesqueleto/genética , Humanos , Cinetocoros/ultraestructura , Microtúbulos/genética , Proteínas Nucleares/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura
6.
EMBO J ; 40(5): e105671, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33463726

RESUMEN

The CENP-A nucleosome is a key structure for kinetochore assembly. Once the CENP-A nucleosome is established in the centromere, additional proteins recognize the CENP-A nucleosome to form a kinetochore. CENP-C and CENP-N are CENP-A binding proteins. We previously demonstrated that vertebrate CENP-C binding to the CENP-A nucleosome is regulated by CDK1-mediated CENP-C phosphorylation. However, it is still unknown how the phosphorylation of CENP-C regulates its binding to CENP-A. It is also not completely understood how and whether CENP-C and CENP-N act together on the CENP-A nucleosome. Here, using cryo-electron microscopy (cryo-EM) in combination with biochemical approaches, we reveal a stable CENP-A nucleosome-binding mode of CENP-C through unique regions. The chicken CENP-C structure bound to the CENP-A nucleosome is stabilized by an intramolecular link through the phosphorylated CENP-C residue. The stable CENP-A-CENP-C complex excludes CENP-N from the CENP-A nucleosome. These findings provide mechanistic insights into the dynamic kinetochore assembly regulated by CDK1-mediated CENP-C phosphorylation.


Asunto(s)
Proteína A Centromérica/metabolismo , Centrómero/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Microscopía por Crioelectrón/métodos , Cinetocoros/metabolismo , Nucleosomas/metabolismo , Animales , Centrómero/ultraestructura , Proteína A Centromérica/ultraestructura , Pollos , Proteínas Cromosómicas no Histona/ultraestructura , Cinetocoros/ultraestructura , Modelos Moleculares , Nucleosomas/ultraestructura , Fosforilación , Conformación Proteica
7.
Curr Biol ; 30(24): 4869-4881.e5, 2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33035484

RESUMEN

The nanoscale protein architecture of the kinetochore plays an integral role in specifying the mechanisms underlying its functions in chromosome segregation. However, defining this architecture in human cells remains challenging because of the large size and compositional complexity of the kinetochore. Here, we use Förster resonance energy transfer to reveal the architecture of individual kinetochore-microtubule attachments in human cells. We find that the microtubule-binding domains of the Ndc80 complex cluster at the microtubule plus end. This clustering occurs only after microtubule attachment, and it increases proportionally with centromeric tension. Surprisingly, Ndc80 complex clustering is independent of the organization and number of its centromeric receptors. Moreover, this clustering is similar in yeast and human kinetochores despite significant differences in their centromeric organizations. These and other data suggest that the microtubule-binding interface of the human kinetochore behaves like a flexible "lawn" despite being nucleated by repeating biochemical subunits.


Asunto(s)
Centrómero/metabolismo , Segregación Cromosómica , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/aislamiento & purificación , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/aislamiento & purificación , Proteínas del Citoesqueleto/metabolismo , Proteínas del Citoesqueleto/ultraestructura , Transferencia Resonante de Energía de Fluorescencia , Técnicas de Silenciamiento del Gen , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Cinetocoros/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Saccharomyces cerevisiae
8.
PLoS Genet ; 16(7): e1008918, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32730246

RESUMEN

Holocentric chromosomes possess multiple kinetochores along their length rather than the single centromere typical of other chromosomes [1]. They have been described for the first time in cytogenetic experiments dating from 1935 and, since this first observation, the term holocentric chromosome has referred to chromosomes that: i. lack the primary constriction corresponding to centromere observed in monocentric chromosomes [2]; ii. possess multiple kinetochores dispersed along the chromosomal axis so that microtubules bind to chromosomes along their entire length and move broadside to the pole from the metaphase plate [3]. These chromosomes are also termed holokinetic, because, during cell division, chromatids move apart in parallel and do not form the classical V-shaped figures typical of monocentric chromosomes [4-6]. Holocentric chromosomes evolved several times during both animal and plant evolution and are currently reported in about eight hundred diverse species, including plants, insects, arachnids and nematodes [7,8]. As a consequence of their diffuse kinetochores, holocentric chromosomes may stabilize chromosomal fragments favouring karyotype rearrangements [9,10]. However, holocentric chromosome may also present limitations to crossing over causing a restriction of the number of chiasma in bivalents [11] and may cause a restructuring of meiotic divisions resulting in an inverted meiosis [12].


Asunto(s)
Caenorhabditis elegans/genética , Cromosomas/genética , Cinetocoros/ultraestructura , Meiosis/genética , Animales , Caenorhabditis elegans/citología , Centrómero/genética , Centrómero/ultraestructura , Cromátides/genética , Cromátides/ultraestructura , Segregación Cromosómica/genética , Cromosomas/ultraestructura , Cariotipo , Plantas/genética
9.
Nature ; 574(7777): 278-282, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31578520

RESUMEN

In eukaryotes, accurate chromosome segregation in mitosis and meiosis maintains genome stability and prevents aneuploidy. Kinetochores are large protein complexes that, by assembling onto specialized Cenp-A nucleosomes1,2, function to connect centromeric chromatin to microtubules of the mitotic spindle3,4. Whereas the centromeres of vertebrate chromosomes comprise millions of DNA base pairs and attach to multiple microtubules, the simple point centromeres of budding yeast are connected to individual microtubules5,6. All 16 budding yeast chromosomes assemble complete kinetochores using a single Cenp-A nucleosome (Cenp-ANuc), each of which is perfectly centred on its cognate centromere7-9. The inner and outer kinetochore modules are responsible for interacting with centromeric chromatin and microtubules, respectively. Here we describe the cryo-electron microscopy structure of the Saccharomyces cerevisiae inner kinetochore module, the constitutive centromere associated network (CCAN) complex, assembled onto a Cenp-A nucleosome (CCAN-Cenp-ANuc). The structure explains the interdependency of the constituent subcomplexes of CCAN and shows how the Y-shaped opening of CCAN accommodates Cenp-ANuc to enable specific CCAN subunits to contact the nucleosomal DNA and histone subunits. Interactions with the unwrapped DNA duplex at the two termini of Cenp-ANuc are mediated predominantly by a DNA-binding groove in the Cenp-L-Cenp-N subcomplex. Disruption of these interactions impairs assembly of CCAN onto Cenp-ANuc. Our data indicate a mechanism of Cenp-A nucleosome recognition by CCAN and how CCAN acts as a platform for assembly of the outer kinetochore to link centromeres to the mitotic spindle for chromosome segregation.


Asunto(s)
Proteína A Centromérica/metabolismo , Cinetocoros/química , Cinetocoros/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Nucleosomas/química , Nucleosomas/metabolismo , Proteína A Centromérica/química , Proteína A Centromérica/ultraestructura , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN/ultraestructura , Cinetocoros/ultraestructura , Modelos Moleculares , Complejos Multiproteicos/ultraestructura , Nucleosomas/ultraestructura , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
10.
FEBS Lett ; 593(20): 2889-2907, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31469407

RESUMEN

In mitosis, the spindle assembly checkpoint (SAC) monitors the formation of microtubule-kinetochore attachments during capture of chromosomes by the mitotic spindle. Spindle assembly is complete once there are no longer any unattached kinetochores. Here, we will discuss the mechanism and key components of spindle checkpoint signalling. Unattached kinetochores bind the principal spindle checkpoint kinase monopolar spindle 1 (MPS1). MPS1 triggers the recruitment of other spindle checkpoint proteins and the formation of a soluble inhibitor of anaphase, thus preventing exit from mitosis. On microtubule attachment, kinetochores become checkpoint silent due to the actions of PP2A-B56 and PP1. This SAC responsive period has to be coordinated with mitotic spindle formation to ensure timely mitotic exit and accurate chromosome segregation. We focus on the molecular mechanisms by which the SAC permissive state is created, describing a central role for CDK1-cyclin B1 and its counteracting phosphatase PP2A-B55. Furthermore, we discuss how CDK1-cyclin B1, through its interaction with MAD1, acts as an integral component of the SAC, and actively orchestrates checkpoint signalling and thus contributes to the faithful execution of mitosis.


Asunto(s)
Proteína Quinasa CDC2/genética , Ciclina B1/genética , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Microtúbulos/metabolismo , Huso Acromático/metabolismo , Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica , Cromosomas Humanos/química , Cromosomas Humanos/metabolismo , Ciclina B1/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Cinetocoros/ultraestructura , Microtúbulos/ultraestructura , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal , Huso Acromático/ultraestructura
11.
J Mol Biol ; 431(22): 4444-4454, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31425683

RESUMEN

Kinetochores are the multiprotein complexes that link chromosomal centromeres to mitotic-spindle microtubules. Budding yeast centromeres comprise three sequential "centromere-determining elements", CDEI, II, and III. CDEI (8 bp) and CDEIII (∼25 bp) are conserved between Kluyveromyces lactis and Saccharomyces cerevisiae, but CDEII in the former is twice as long (160 bp) as CDEII in the latter (80 bp). The CBF3 complex recognizes CDEIII and is required for assembly of a centromeric nucleosome, which in turn recruits other kinetochore components. To understand differences in centromeric nucleosome assembly between K. lactis and S. cerevisiae, we determined the structure of a K. lactis CBF3 complex by electron cryomicroscopy at ∼4 Å resolution and compared it with published structures of S. cerevisiae CBF3. We show differences in the pose of Ndc10 and discuss potential models of the K. lactis centromeric nucleosome that account for the extended CDEII length.


Asunto(s)
Centrómero/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Kluyveromyces/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Centrómero/ultraestructura , Microscopía por Crioelectrón , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Kluyveromyces/ultraestructura , Saccharomyces cerevisiae/ultraestructura
12.
J Biol Chem ; 294(38): 14119-14134, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31366733

RESUMEN

The successful assembly and regulation of the kinetochore are critical for the equal and accurate segregation of genetic material during the cell cycle. CENP-C (centromere protein C), a conserved inner kinetochore component, has been broadly characterized as a scaffolding protein and is required for the recruitment of multiple kinetochore proteins to the centromere. At its C terminus, CENP-C harbors a conserved cupin domain that has an established role in protein dimerization. Although the crystal structure of the Saccharomyces cerevisiae Mif2CENP-C cupin domain has been determined, centromeric organization and kinetochore composition vary greatly between S. cerevisiae (point centromere) and other eukaryotes (regional centromere). Therefore, whether the structural and functional role of the cupin domain is conserved throughout evolution requires investigation. Here, we report the crystal structures of the Schizosaccharomyces pombe and Drosophila melanogaster CENP-C cupin domains at 2.52 and 1.81 Å resolutions, respectively. Although the central jelly roll architecture is conserved among the three determined CENP-C cupin domain structures, the cupin domains from organisms with regional centromeres contain additional structural features that aid in dimerization. Moreover, we found that the S. pombe Cnp3CENP-C jelly roll fold harbors an inner binding pocket that is used to recruit the meiosis-specific protein Moa1. In summary, our results unveil the evolutionarily conserved and unique features of the CENP-C cupin domain and uncover the mechanism by which it functions as a recruitment factor.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/ultraestructura , Animales , Proteínas de Ciclo Celular/metabolismo , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Cristalografía por Rayos X/métodos , Proteínas de Unión al ADN/metabolismo , Dimerización , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/ultraestructura , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo
13.
EMBO Rep ; 20(8): e47905, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31290587

RESUMEN

The accuracy of the two sequential meiotic divisions in oocytes is essential for creating a haploid gamete with a normal chromosomal content. Here, we have analysed the 3D dynamics of chromosomes during the second meiotic division in live mouse oocytes. We find that chromosomes form stable kinetochore-microtubule attachments at the end of prometaphase II stage that are retained until anaphase II onset. Remarkably, we observe that more than 20% of the kinetochore-microtubule attachments at the metaphase II stage are merotelic or lateral. However, < 1% of all chromosomes at onset of anaphase II are found to lag at the spindle equator and < 10% of the laggards missegregate and give rise to aneuploid gametes. Our results demonstrate that aberrant kinetochore-microtubule attachments are not corrected at the metaphase stage of the second meiotic division. Thus, the accuracy of the chromosome segregation process in mouse oocytes during meiosis II is ensured by an efficient correction process acting at the anaphase stage.


Asunto(s)
Anafase , Cinetocoros/ultraestructura , Metafase , Microtúbulos/ultraestructura , Oocitos/ultraestructura , Secuencia de Aminoácidos , Animales , Cromátides/metabolismo , Cromátides/ultraestructura , Segregación Cromosómica , Femenino , Humanos , Cinetocoros/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microtúbulos/metabolismo , Oocitos/metabolismo , Espermatocitos/metabolismo , Espermatocitos/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura , Imagen de Lapso de Tiempo
14.
Elife ; 82019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31194673

RESUMEN

Kinetochores are the chromosomal attachment points for spindle microtubules. They are also signaling hubs that control major cell cycle transitions and coordinate chromosome folding. Most well-studied eukaryotes rely on a conserved set of factors, which are divided among two loosely-defined groups, for these functions. Outer kinetochore proteins contact microtubules or regulate this contact directly. Inner kinetochore proteins designate the kinetochore assembly site by recognizing a specialized nucleosome containing the H3 variant Cse4/CENP-A. We previously determined the structure, resolved by cryo-electron microscopy (cryo-EM), of the yeast Ctf19 complex (Ctf19c, homologous to the vertebrate CCAN), providing a high-resolution view of inner kinetochore architecture (Hinshaw and Harrison, 2019). We now extend these observations by reporting a near-atomic model of the Ctf3 complex, the outermost Ctf19c sub-assembly seen in our original cryo-EM density. The model is sufficiently well-determined by the new data to enable molecular interpretation of Ctf3 recruitment and function.


Asunto(s)
Cinetocoros/química , Cinetocoros/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cinetocoros/ultraestructura , Modelos Moleculares , Unión Proteica , Proteínas de Saccharomyces cerevisiae/ultraestructura
15.
J Cell Biol ; 218(2): 455-473, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30504246

RESUMEN

In dividing cells, depolymerizing spindle microtubules move chromosomes by pulling at their kinetochores. While kinetochore subcomplexes have been studied extensively in vitro, little is known about their in vivo structure and interactions with microtubules or their response to spindle damage. Here we combine electron cryotomography of serial cryosections with genetic and pharmacological perturbation to study the yeast chromosome segregation machinery in vivo. Each kinetochore microtubule has one (rarely, two) Dam1C/DASH outer kinetochore assemblies. Dam1C/DASH contacts the microtubule walls and does so with its flexible "bridges"; there are no contacts with the protofilaments' curved tips. In metaphase, ∼40% of the Dam1C/DASH assemblies are complete rings; the rest are partial rings. Ring completeness and binding position along the microtubule are sensitive to kinetochore attachment and tension, respectively. Our study and those of others support a model in which each kinetochore must undergo cycles of conformational change to couple microtubule depolymerization to chromosome movement.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Cromosomas Fúngicos , Cinetocoros , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae , Huso Acromático , Cromosomas Fúngicos/metabolismo , Cromosomas Fúngicos/ultraestructura , Microscopía por Crioelectrón , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
16.
J Cell Sci ; 132(4)2019 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-30578316

RESUMEN

Kinesin-13 motors regulate precise microtubule dynamics and limit microtubule length throughout metazoans by depolymerizing microtubule ends. Recently, the kinesin-13 motor family member MCAK (also known Kif2C) has been proposed to undergo large conformational changes during its catalytic cycle, as it switches from being in solution to being bound to microtubules. Here, we reveal that MCAK has a compact conformation in solution through crosslinking and electron microscopy experiments. When MCAK is bound to the microtubule ends, it adopts an extended conformation with the N-terminus and neck region of MCAK interacting with the microtubule. Interestingly, the region of MCAK that interacts with the microtubule is the region phosphorylated by Aurora B and contains an end binding (EB) protein-binding motif. The level of phosphorylation of the N-terminus results in a graded microtubule depolymerase activity. Here, we show that the N-terminus of MCAK forms a platform to integrate Aurora B kinase downstream signals and in response fine-tunes its depolymerase activity during mitosis. We propose that this allosteric control mechanism allows decoupling of the N-terminus from the motor domain of MCAK to allow MCAK depolymerase activity at kinetochores.


Asunto(s)
Aurora Quinasa B/química , Cinesinas/química , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Animales , Aurora Quinasa B/genética , Aurora Quinasa B/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/ultraestructura , Mitosis , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera
17.
Elife ; 72018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30547880

RESUMEN

Accurate chromosome segregation relies on bioriented amphitelic attachments of chromosomes to microtubules of the mitotic spindle, in which sister chromatids are connected to opposite spindle poles. BUB-1 is a protein of the Spindle Assembly Checkpoint (SAC) that coordinates chromosome attachment with anaphase onset. BUB-1 is also required for accurate sister chromatid segregation independently of its SAC function, but the underlying mechanism remains unclear. Here we show that, in Caenorhabditis elegans embryos, BUB-1 accelerates the establishment of non-merotelic end-on kinetochore-microtubule attachments by recruiting the RZZ complex and its downstream partner dynein-dynactin at the kinetochore. In parallel, BUB-1 limits attachment maturation by the SKA complex. This activity opposes kinetochore-microtubule attachment stabilisation promoted by CLS-2CLASP-dependent kinetochore-microtubule assembly. BUB-1 is therefore a SAC component that coordinates the function of multiple downstream kinetochore-associated proteins to ensure accurate chromosome segregation.


Asunto(s)
Anafase , Proteínas de Caenorhabditis elegans/genética , Segregación Cromosómica , Cinetocoros/metabolismo , Puntos de Control de la Fase M del Ciclo Celular , Proteínas Serina-Treonina Quinasas/genética , Huso Acromático/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Complejo Dinactina/genética , Complejo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Embrión no Mamífero , Regulación de la Expresión Génica , Cinetocoros/ultraestructura , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Huso Acromático/ultraestructura
18.
Elife ; 72018 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-30475206

RESUMEN

Several studies have shown that RNAi-mediated depletion of splicing factors (SFs) results in mitotic abnormalities. However, it is currently unclear whether these abnormalities reflect defective splicing of specific pre-mRNAs or a direct role of the SFs in mitosis. Here, we show that two highly conserved SFs, Sf3A2 and Prp31, are required for chromosome segregation in both Drosophila and human cells. Injections of anti-Sf3A2 and anti-Prp31 antibodies into Drosophila embryos disrupt mitotic division within 1 min, arguing strongly against a splicing-related mitotic function of these factors. We demonstrate that both SFs bind spindle microtubules (MTs) and the Ndc80 complex, which in Sf3A2- and Prp31-depleted cells is not tightly associated with the kinetochores; in HeLa cells the Ndc80/HEC1-SF interaction is restricted to the M phase. These results indicate that Sf3A2 and Prp31 directly regulate interactions among kinetochores, spindle microtubules and the Ndc80 complex in both Drosophila and human cells.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Mitosis , Proteínas Nucleares/genética , Factores de Empalme de ARN/genética , Animales , Anticuerpos Neutralizantes/farmacología , Segregación Cromosómica/efectos de los fármacos , Secuencia Conservada , Proteínas del Citoesqueleto , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Proteínas del Ojo/antagonistas & inhibidores , Proteínas del Ojo/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Cinetocoros/efectos de los fármacos , Cinetocoros/metabolismo , Cinetocoros/ultraestructura , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestructura , Mitosis/efectos de los fármacos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores de Empalme de ARN/antagonistas & inhibidores , Factores de Empalme de ARN/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Huso Acromático/efectos de los fármacos , Huso Acromático/metabolismo , Huso Acromático/ultraestructura
19.
Nat Commun ; 9(1): 3571, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177685

RESUMEN

Mitosis relies on forces generated in the spindle, a micro-machine composed of microtubules and associated proteins. Forces are required for the congression of chromosomes to the metaphase plate and their separation in anaphase. However, besides forces, torques may exist in the spindle, yet they have not been investigated. Here we show that the spindle is chiral. Chirality is evident from the finding that microtubule bundles in human spindles follow a left-handed helical path, which cannot be explained by forces but rather by torques. Kinesin-5 (Kif11/Eg5) inactivation abolishes spindle chirality. Our theoretical model predicts that bending and twisting moments may generate curved shapes of bundles. We found that bundles turn by about -2 deg µm-1 around the spindle axis, which we explain by a twisting moment of roughly -10 pNµm. We conclude that torques, in addition to forces, exist in the spindle and determine its chiral architecture.


Asunto(s)
Cinetocoros/fisiología , Microtúbulos/fisiología , Huso Acromático/fisiología , Torque , Línea Celular Tumoral , Células HeLa , Humanos , Cinesinas/genética , Cinetocoros/ultraestructura , Microscopía Confocal , Microtúbulos/ultraestructura , Modelos Teóricos , Huso Acromático/genética , Huso Acromático/ultraestructura
20.
Exp Cell Res ; 371(2): 435-443, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-30195030

RESUMEN

Nucleoporins (Nups) are a large and diverse family of proteins that mediate nucleocytoplasmic transport at interphase of vertebrate cells. Nups also function in mitosis progression. However, whether Nups are involved in oocyte meiosis progression is still rarely known. In this study, we delineated the roles and regulatory mechanisms of Nucleoporin35 (Nup35) during oocyte meiotic maturation. The immunofluorescent signal of Nup35 was localized in the nuclear membrane at germinal vesicle (GV) stage, the microtubules and spindle at pro-metaphase I (pro-MI), metaphase I (MI), and metaphase II (MII), but to the spindle poles at anaphase I (AI) and telophase I (TI). The dynamic localization pattern of Nup35 during oocyte meiotic maturation implied its specific roles. We also found that Nup35 existed as a putatively phosphorylated form after resumption of meiosis (GVBD), but not at GV stage, implying its functional switch from nuclear membrane to meiotic progression. Further study uncovered that knockdown of Nup35 by specific siRNA significantly compromised the extrusion of first polar body (PBE), but not GVBD, with defects of spindle assembly and chromosome alignment and dissociated some localization signal of p-ERK1/2 from spindle poles to cytoplasm. A defective kinetochore - microtubule attachment (K-MT) was also identified in oocytes after knockdown of Nup35, which activates spindle assembly checkpoint. In conclusion, our results suggest that Nup35 is putatively phosphorylated and released to the cytoplasm after resumption of meiosis, and regulates spindle assembly and chromosome alignment.


Asunto(s)
Cinetocoros/metabolismo , Meiosis , Microtúbulos/metabolismo , Proteínas de Complejo Poro Nuclear/genética , Oocitos/metabolismo , Huso Acromático/metabolismo , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica , Cinetocoros/ultraestructura , Ratones , Microtúbulos/ultraestructura , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/antagonistas & inhibidores , Proteínas de Complejo Poro Nuclear/metabolismo , Oocitos/ultraestructura , Fosforilación , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Huso Acromático/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...