Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.609
Filtrar
1.
Water Sci Technol ; 89(9): 2457-2467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747960

RESUMEN

To investigate the physicochemical conditions necessary to stably remove antibiotic-resistant bacteria (ARB) via contact with activated sludge (AS), the adhesion of ciprofloxacin (CIP)-resistant and -susceptible Escherichia coli to AS was simulated by contact tests in the laboratory. The CIP-resistant E. coli and susceptible E. coli were removed by a 3 log smaller concentration by a 5 h contact test at maximum. Considering the hydraulic retention time of a reaction tank (∼5 h) and step-feeding operation, we considered the removal rate of E. coli in the current simulated contact test to be in agreement with the actual situation where 1-2 log concentrations of E. coli were reported to be removed from an AS reaction tank. With the increase in the AS concentration and/or dissolved oxygen, the removal rate of E. coli increased. The removal rate of CIP-resistant E. coli was greater than that of susceptible E. coli under all experimental conditions. Although the mechanism by which CIP-resistant E. coli preferably adhered to AS was not clearly understood in detail, finding optimum conditions under which bacteria, including ARB, were efficiently removed by the AS process may be possible.


Asunto(s)
Adhesión Bacteriana , Ciprofloxacina , Farmacorresistencia Bacteriana , Escherichia coli , Aguas del Alcantarillado , Ciprofloxacina/farmacología , Escherichia coli/efectos de los fármacos , Aguas del Alcantarillado/microbiología , Adhesión Bacteriana/efectos de los fármacos , Antibacterianos/farmacología
2.
Sci Rep ; 14(1): 11430, 2024 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769330

RESUMEN

Liver abscess is a potentially life-threatening medical emergency. Prompt empirical antimicrobial with or without percutaneous aspiration or drainage is therapeutic. The rational for using empirical intravenous broad-spectrum antimicrobials upfront instead of oral Fluoroquinolone or Cephalosporin is contentious. In this double blind randomized control clinical trial 69 participants received Ciprofloxacin (500 mg q 12 hourly) and 71 participants received Cefixime (200 mg q 12 hourly) orally for 2 weeks. Both the group received oral Metronidazole (800 mg q 8 hourly) for 2 weeks and percutaneous drainage or aspiration of the abscess was done as per indication and followed-up for 8 weeks. Out of 140 participants, 89.3% (N = 125) achieved clinical cure, 59 (85.5%) in Ciprofloxacin group and 66 (93%) in Cefixime group (p = 0.154). Mean duration of antimicrobial therapy was 16.2 ± 4.3 days, 15.1 ± 4.5 days in Ciprofloxacin group and 16.0 ± 4.2 days in Cefixime group (p = 0.223). Total 15 (10.7%) participants had treatment failure, 10 (14.5%) in Ciprofloxacin group and 5 (7.0%) in Cefixime group (p = 0.154). The most common reason for treatment failure was need of prolong (> 4 weeks) antimicrobial therapy due to persistent hepatic collection requiring drainage, which was significantly (p = 0.036) higher in Ciprofloxacin (14.5%, N = 10) group, compared to the Cefixime (4.2%, N = 3) group. In conclusion, both, the Ciprofloxacin or Cefixime plus Metronidazole for duration of 2-3 weeks were efficacious as empirical oral antimicrobial regimen along with prompt percutaneous drainage or aspiration for the treatment of uncomplicated liver abscess with similar efficacy. Oral Cefixime was better than Ciprofloxacin in term of lesser chance of treatment failure due to persistent collection which is required to be investigated further in larger clinical trial.Trial registration: clinicaltrials.gov PRS ID: NCT03969758, 31/05/2019.


Asunto(s)
Antibacterianos , Cefixima , Ciprofloxacina , Absceso Hepático , Metronidazol , Humanos , Ciprofloxacina/administración & dosificación , Ciprofloxacina/uso terapéutico , Metronidazol/administración & dosificación , Metronidazol/uso terapéutico , Cefixima/uso terapéutico , Cefixima/administración & dosificación , Masculino , Femenino , Persona de Mediana Edad , Adulto , Antibacterianos/administración & dosificación , Antibacterianos/uso terapéutico , Absceso Hepático/tratamiento farmacológico , Absceso Hepático/microbiología , Resultado del Tratamiento , Método Doble Ciego , Quimioterapia Combinada , Drenaje , Anciano
3.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732134

RESUMEN

Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.


Asunto(s)
Antibacterianos , Ciprofloxacina , Ciprofloxacina/farmacología , Ciprofloxacina/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Animales , Relación Estructura-Actividad
4.
Environ Monit Assess ; 196(6): 562, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769235

RESUMEN

Olive leaves were utilized to produce activated biomass for the removal of ciprofloxacin (CIP) from water. The raw biomass (ROLB) was activated with sodium hydroxide, phosphoric acid, and Dead Sea water to create co-precipitated adsorbent (COLB) with improved adsorption performance. The characteristics of the ROLB and COLB were examined using SEM images, BET surface area analyzer, and ATR-FTIR spectroscopy. COLB has a BET surface area of 7.763 m2/g, markedly higher than ROLB's 2.8 m2/g, indicating a substantial increase in adsorption sites. Through investigations on operational parameters, the optimal adsorption efficiency was achieved by COLB is 77.9% within 60 min, obtained at pH 6, and CIP concentration of 2 mg/mL. Isotherm studies indicated that both Langmuir and Freundlich models fit the adsorption data well for CIP onto ROLB and COLB, with R2 values exceeding 0.95, suggesting effective monolayer and heterogeneous surface adsorption. The Langmuir model revealed maximum adsorption capacities of 636 mg/g for ROLB and 1243 mg/g for COLB, highlighting COLB's superior adsorption capability attributed to its enhanced surface characteristics post-modification. Kinetic data fitting the pseudo-second-order model with R2 of 0.99 for ROLB and 1 for COLB, along with a higher calculated qe for COLB, suggest its modified surface provides more effective binding sites for CIP, enhancing adsorption capacity. Thermodynamic analysis revealed that the adsorption process is spontaneous (∆Go < 0), and exothermic (∆Ho < 0), and exhibits a decrease in randomness (∆So < 0) as the process progresses. The ΔH° value of 10.6 kJ/mol for ROLB signifies physisorption, whereas 35.97 kJ/mol for COLB implies that CIP adsorption on COLB occurs through a mixed physicochemical process.


Asunto(s)
Biomasa , Ciprofloxacina , Olea , Hojas de la Planta , Termodinámica , Contaminantes Químicos del Agua , Olea/química , Adsorción , Ciprofloxacina/química , Cinética , Contaminantes Químicos del Agua/química , Hojas de la Planta/química , Purificación del Agua/métodos
5.
Sci Total Environ ; 932: 173030, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38719043

RESUMEN

Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.


Asunto(s)
Ciprofloxacina , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Especies Introducidas , Eichhornia/metabolismo , Eichhornia/fisiología , Antibacterianos/toxicidad , Hydrocharitaceae/fisiología , Hydrocharitaceae/metabolismo , Biodegradación Ambiental
6.
Aquat Toxicol ; 271: 106925, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718521

RESUMEN

Excessive antibiotic use has led to the spread of antibiotic resistance genes (ARGs), impacting gut microbiota and host health. However, the effects of antibiotics on amphibian populations remain unclear. We investigated the impact of oxytetracycline (OTC) and ciprofloxacin (CIP) on Chinese giant salamanders (Andrias davidianus), focusing on gut microbiota, ARGs, and gene expression by performing metagenome and transcriptome sequencing. A. davidianus were given OTC (20 or 40 mg/kg) or CIP (50 or 100 mg/kg) orally for 7 days. The results revealed that oral administration of OTC and CIP led to distinct changes in microbial composition and functional potential, with CIP treatment having a greater impact than OTC. Antibiotic treatment also influenced the abundance of ARGs, with an increase in fluoroquinolone and multi-drug resistance genes observed post-treatment. The construction of metagenome-assembled genomes (MAGs) accurately validated that CIP intervention enriched fish-associated potential pathogens Aeromonas hydrophila carrying an increased number of ARGs. Additionally, mobile genetic elements (MGEs), such as phages and plasmids, were implicated in the dissemination of ARGs. Transcriptomic analysis of the gut revealed significant alterations in gene expression, particularly in immune-related pathways, with differential effects observed between OTC and CIP treatments. Integration of metagenomic and transcriptomic data highlighted potential correlations between gut gene expression and microbial composition, suggesting complex interactions between the host gut and its gut microbiota in response to antibiotic exposure. These findings underscore the importance of understanding the impact of antibiotic intervention on the gut microbiome and host health in amphibians, particularly in the context of antibiotic resistance and immune function.


Asunto(s)
Antibacterianos , Ciprofloxacina , Microbioma Gastrointestinal , Oxitetraciclina , Urodelos , Animales , Oxitetraciclina/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Ciprofloxacina/farmacología , Ciprofloxacina/toxicidad , Urodelos/genética , Urodelos/microbiología , Antibacterianos/toxicidad , Antibacterianos/farmacología , Transcriptoma/efectos de los fármacos , Metagenoma , Metagenómica , Perfilación de la Expresión Génica , Contaminantes Químicos del Agua/toxicidad , Aeromonas hydrophila/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
7.
Chemosphere ; 358: 142193, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697562

RESUMEN

Biochar has been utilized to reduce ciprofloxacin (CIP) residues in soil. However, little is known about the effect of biochar-derived dissolved organic matter (DOM) on residual CIP transformation. Thus, we analyzed the residual soil CIP as influenced by biochar generated from rice straw (RS3 and RS6), pig manure (PM3 and PM6), and cockroach shell (CS3 and CS6) at 300 °C and 600 °C. The three-dimensional excitation-emission matrix (3D-EEM), parallel factor analysis (PARAFAC) and two-dimensional correlation spectral analysis (2D-COS) were used to describe the potential variation in the DOM-CIP interaction. Compared with CK, biochar amendment increased the water-soluble CIP content by 160.7% (RS3), 55.2% (RS6), 534.1% (PM3), 277.5% (PM6), 1160.6% (CS3) and 703.9% (CS6), indicating that the biochar feedstock controlled the soil CIP release. The content of water-soluble CIP was positively correlated with the content of dissolved organic carbon (r = 0.922, p < 0.01) and dissolved organic nitrogen (r = 0.898, p < 0.01), suggesting that the major influence of the water-soluble CIP increase was DOM. The fluorescence quenching experiment showed that the interaction between DOM and CIP triggered static quenching and the creation of a DOM complex. The mean log K of protein-like material (4.977) was higher than that of terrestrial humus-like material (3.491), suggesting that the protein-like material complexed CIP was more stable than the humus-like material. Compared with pyrolysis at 300 °C, pyrolysis at 600 °C decreased the stability of the complex of protein-like material and CIP by 0.44 (RS), 1.689 (PM) and 0.548 (CS). This result suggested that the influence of temperature change was more profound on PM biochar-derived DOM than on RS and CS. These insights are essential for understanding CIP transportation in soil and controlling CIP contamination with biochar.


Asunto(s)
Carbón Orgánico , Ciprofloxacina , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Suelo/química , Ciprofloxacina/química , Ciprofloxacina/análisis , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Animales , Estiércol/análisis , Oryza/química , Antibacterianos/química , Antibacterianos/análisis , Porcinos
8.
Environ Geochem Health ; 46(6): 185, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695908

RESUMEN

Microplastics (MPs), as emerging contaminants, usually experience aging processes in natural environments and further affect their interactions with coexisted contaminants, resulting in unpredictable ecological risks. Herein, the effect of MPs aging on their adsorption for coexisting antibiotics and their joint biotoxicity have been investigated. Results showed that the adsorption capacity of aged polystyrene (PS, 100 d and 50 d) for ciprofloxacin (CIP) was 1.10-4.09 times higher than virgin PS due to the larger BET surface area and increased oxygen-containing functional groups of aged PS. Following the increased adsorption capacity of aged PS, the joint toxicity of aged PS and CIP to Shewanella Oneidensis MR-1 (MR-1) was 1.03-1.34 times higher than virgin PS and CIP. Combined with the adsorption process, CIP posed higher toxicity to MR-1 compared to aged PS due to the rapid adsorption of aged PS for CIP in the first 12 h. After that, the adsorption process tended to be gentle and hence the joint toxicity to MR-1 was gradually dominated by aged PS. A similar transformation between the adsorption rate and the joint toxicity of PS and CIP was observed under different conditions. This study supplied a novel perception of the synergistic effects of PS aging and CIP on ecological health.


Asunto(s)
Ciprofloxacina , Poliestirenos , Shewanella , Ciprofloxacina/química , Ciprofloxacina/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Adsorción , Shewanella/efectos de los fármacos , Microplásticos/toxicidad , Microplásticos/química , Antibacterianos/química , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
9.
Sci Rep ; 14(1): 10406, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710736

RESUMEN

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Asunto(s)
Antibacterianos , Antineoplásicos , Nanoestructuras , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Catálisis , Antineoplásicos/farmacología , Antineoplásicos/química , Nanoestructuras/química , Escherichia coli/efectos de los fármacos , Ciprofloxacina/farmacología , Ciprofloxacina/química , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Línea Celular Tumoral , Procesos Fotoquímicos , Fotólisis
10.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739119

RESUMEN

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Asunto(s)
Antibacterianos , Biopelículas , Ciprofloxacina , Modelos Animales de Enfermedad , Queratitis , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Porcinos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Biopelículas/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Meropenem/farmacología
11.
Chemosphere ; 358: 142237, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705406

RESUMEN

In this study, a novel Ce2MgMoO6/CNFs (cerium magnesium molybdite double perovskite decorated on carbon nanofibers) nanocomposite was developed for selective and ultra-sensitive detection of ciprofloxacin (CFX). Physical characterization and analytical techniques were used to explore the morphology, structure, and electrocatalytic characteristics of the Ce2MgMoO6/CNFs nanocomposite. The sensor has a wide linear range (0.005-7.71 µM and 9.75-77.71 µM), a low limit of detection (0.012 µM), high sensitivity (0.807 µA µM-1 cm-2 nM), remarkable repeatability, and an appreciable storage stability. Here, we used density functional theory to investigate CFX and oxidized CFX as well as the locations of the energy levels and electron transfer sites. Furthermore, the Ce2MgMoO6/CNFs-modified electrode was successfully tested in food samples (milk and honey), indicating an acceptable response with a recovery percentage and relative standard deviation of less than 4%, which is comparable to that of GC-MS. Finally, the developed sensor exhibited high selectivity and stability for CFX detection.


Asunto(s)
Carbono , Ciprofloxacina , Miel , Leche , Nanocompuestos , Nanofibras , Óxidos , Nanocompuestos/química , Ciprofloxacina/análisis , Ciprofloxacina/química , Óxidos/química , Leche/química , Nanofibras/química , Animales , Miel/análisis , Carbono/química , Molibdeno/química , Límite de Detección , Compuestos de Calcio/química , Titanio/química , Teoría Funcional de la Densidad , Técnicas Electroquímicas/métodos , Cerio/química , Contaminación de Alimentos/análisis , Electrodos , Magnesio/química , Magnesio/análisis
12.
Mymensingh Med J ; 33(2): 350-355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38557509

RESUMEN

Evaluation of the in vitro antibacterial activity of Methanolic extracts isolated from Black pepper seeds (Piper nigrum L.) against two infection causing pathogens, Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. Between July 2022 and June 2023, this experimental study was conducted at the Mymensingh Medical College's Department of Pharmacology and Therapeutics in conjunction with the Department of Microbiology. Using the disc diffusion and broth dilution methods, the antibacterial activity of methanolic extract of black pepper seeds (MBPE) was evaluated at various doses. The solvents Methanol and 10.0% Di Methyl Sulfoxide (DMSO) were used to make the extract. Using the broth dilution procedure, the conventional antibiotic Ciprofloxacin was utilized and the outcome was contrasted with that of Methanol extracts. Methanolic extract of black pepper seeds (MBPE) at seven distinct concentrations (100, 80, 60, 40, 20, 10 and 5 mg/ml) were utilized, then later in chosen concentrations as needed to confirm the extracts' more precise margin of antimicrobial sensitivity. At 80 mg/ml and above doses of the MBPE, it had an inhibitory impact against the aforementioned microorganisms. For Staphylococcus aureus and Escherichia coli the MIC were 60 and 75 mg/ml in MBPE respectively. As of the MIC of Ciprofloxacin was 1µg/ml against Staphylococcus aureus and Escherichia coli. In comparison to MICs of MBPE for the test organisms, the MIC of Ciprofloxacin was the lowest. This study clearly shows that Staphylococcus aureus and Escherichia coli are sensitive to the methanolic extract of black pepper seeds' antibacterial properties.


Asunto(s)
Piper nigrum , Staphylococcus aureus , Humanos , Metanol , Extractos Vegetales/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Ciprofloxacina , Semillas , Escherichia coli
13.
ACS Appl Mater Interfaces ; 16(15): 18360-18385, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573741

RESUMEN

Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.


Asunto(s)
Quitosano , Infecciones Bacterianas del Ojo , Queratitis , Nanopartículas , Animales , Femenino , Humanos , Ciprofloxacina/farmacología , Pollos , Biopelículas , Antibacterianos/farmacología , Poliésteres/farmacología , Percepción de Quorum , Bacterias , Pseudomonas aeruginosa
14.
ACS Infect Dis ; 10(4): 1351-1360, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606464

RESUMEN

Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.


Asunto(s)
Ciprofloxacina , Gonorrea , Humanos , Ciprofloxacina/farmacología , Fluoroquinolonas/farmacología , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , Neisseria gonorrhoeae , Gonorrea/tratamiento farmacológico , Gonorrea/microbiología , Girasa de ADN/genética , Girasa de ADN/metabolismo , Pruebas de Sensibilidad Microbiana
15.
Sensors (Basel) ; 24(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38610339

RESUMEN

Antibiotic residues have become a worldwide public safety issue. It is vital to detect multiple antibiotics simultaneously using sensors. A new and efficient method is proposed for the combined detection of two antibiotics (enrofloxacin (Enro) and ciprofloxacin (Cip)) in milk using surface plasmon resonance (SPR) sensors. Based on the principle of immunosuppression, two antibiotic antigens (for Enro and Cip) were immobilized on an optical fiber surface with conjugates of bovine serum albumin using dopamine (DA) polymerization. Each single antigen was bound to its corresponding antibody to derive standard curves for Enro and Cip. The fiber-optic sensor's sensitivity was 2900 nm/RIU. Detection limits were calculated to be 1.20 ng/mL for Enro and 0.81 ng/mL for Cip. The actual system's recovery rate was obtained by testing Enro and Cip in milk samples; enrofloxacin's and ciprofloxacin's mean recoveries from the milk samples were 96.46-120.46% and 96.74-126.9%, respectively. In addition, several different regeneration solutions were tested to analyze the two target analytes' regeneration ability; NaOH and Gly-HCl solutions were found to have the best regeneration ability.


Asunto(s)
Antibacterianos , Resonancia por Plasmón de Superficie , Enrofloxacina , Ciprofloxacina , Tecnología de Fibra Óptica
16.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612501

RESUMEN

Increased evidence has documented a direct association between Ciprofloxacin (CFX) intake and significant disruption to the normal functions of connective tissues, leading to severe health conditions (such as tendonitis, tendon rupture and retinal detachment). Additionally, CFX is recognized as a potential emerging pollutant, as it seems to impact both animal and human food chains, resulting in severe health implications. Consequently, there is a compelling need for the precise, swift and selective detection of this fluoroquinolone-class antibiotic. Herein, we present a novel graphene-based electrochemical sensor designed for Ciprofloxacin (CFX) detection and discuss its practical utility. The graphene material was synthesized using a relatively straightforward and cost-effective approach involving the electrochemical exfoliation of graphite, through a pulsing current, in 0.05 M sodium sulphate (Na2SO4), 0.05 M boric acid (H3BO3) and 0.05 M sodium chloride (NaCl) solution. The resulting material underwent systematic characterization using scanning electron microscopy/energy dispersive X-ray analysis, X-ray powder diffraction and Raman spectroscopy. Subsequently, it was employed in the fabrication of modified glassy carbon surfaces (EGr/GC). Linear Sweep Voltammetry studies revealed that CFX experiences an irreversible oxidation process on the sensor surface at approximately 1.05 V. Under optimal conditions, the limit of quantification was found to be 0.33 × 10-8 M, with a corresponding limit of detection of 0.1 × 10-8 M. Additionally, the developed sensor's practical suitability was assessed using commercially available pharmaceutical products.


Asunto(s)
Ciprofloxacina , Grafito , Animales , Humanos , Fluoroquinolonas , Carbono , Electrodos
17.
Sci Rep ; 14(1): 8598, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615146

RESUMEN

Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.


Asunto(s)
Ciprofloxacina , Infecciones por Pseudomonas , Humanos , Ciprofloxacina/farmacología , Pseudomonas aeruginosa/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Antibacterianos/farmacología , Placas Óseas
18.
Sci Rep ; 14(1): 9144, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644378

RESUMEN

In this research, different Co2+ doped ZnO nanoparticles (NPs) were hydrothermally synthesized by an environmentally friendly, sustainable technique using the extract of P. capillacea for the first time. Co-ZnO was characterized and confirmed by FTIR, XPS, XRD, BET, EDX, SEM, TEM, DRS UV-Vis spectroscopy, and TGA analyses. Dislocation density, micro strains, lattice parameters and volume of the unit cell were measured using XRD results. XRD suggests that the average size of these NPs was between 44.49 and 65.69 nm with a hexagonal wurtzite structure. Tauc plot displayed that the optical energy bandgap of ZnO NPs (3.18) slowly declines with Co doping (2.96 eV). Near complete removal of the ciprofloxacin (CIPF) antibiotic was attained using Green 5% of Hy-Co-ZnO in the existence of visible LED light which exhibited maximum degradation efficiency (99%) within 120 min for 30 ppm CIPF initial concentration. The photodegradation mechanism of CIPF using Green Hy-Co-ZnO NPs followed the Pseudo-first-order kinetics. The Green Hy-Co-ZnO NPs improved photocatalytic performance toward CIPF for 3 cycles. The experiments were designed using the RSM (CCD) method for selected parameters such as catalyst dosage, antibiotic dosage, shaking speed, and pH. The maximal CIPF degradation efficiency (96.4%) was achieved under optimum conditions of 39.45 ppm CIPF dosage, 60.56 mg catalyst dosage, 177.33 rpm shaking speed and pH 7.57.


Asunto(s)
Antibacterianos , Ciprofloxacina , Cobalto , Luz , Fotólisis , Óxido de Zinc , Óxido de Zinc/química , Ciprofloxacina/química , Cobalto/química , Antibacterianos/química , Nanopartículas del Metal/química , Tecnología Química Verde/métodos , Nanopartículas/química , Cinética , Catálisis
19.
Sex Transm Infect ; 100(3): 173-180, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38575313

RESUMEN

OBJECTIVES: International travel combined with sex may contribute to dissemination of antimicrobial-resistant (AMR) Neisseria gonorrhoeae (Ng). To assess the role of travel in Ng strain susceptibility, we compared minimum inhibitory concentrations (MICs) for five antibiotics (ie, azithromycin, ceftriaxone, cefotaxime, cefixime and ciprofloxacin) in strains from clients with an exclusively Dutch sexual network and clients with an additional international sexual network. METHODS: From 2013 to 2019, we recorded recent residence of sexual partners of clients (and of their partners) with Ng at the Center for Sexual Health of Amsterdam. We categorised clients as having: (1) exclusively sexual partners residing in the Netherlands ('Dutch only') or (2) at least one partner residing outside the Netherlands. We categorised the country of residence of sexual partners by World Bank/EuroVoc regions. We analysed the difference of log-transformed MIC of Ng strains between categories using linear or hurdle regression for each antibiotic. RESULTS: We included 3367 gay and bisexual men who had sex with men (GBMSM), 516 women and 525 men who exclusively had sex with women (MSW) with Ng. Compared with GBMSM with a 'Dutch only' network, GBMSM with: (1) a Western European network had higher MICs for ceftriaxone (ß=0.19, 95% CI=0.08 to 0.29), cefotaxime (ß=0.19, 95% CI=0.08 to 0.31) and cefixime (ß=0.06, 95% CI=0.001 to 0.11); (2) a Southern European network had a higher MIC for cefixime (ß=0.10, 95% CI=0.02 to 0.17); and (3) a sub-Saharan African network had a lower MIC for ciprofloxacin (ß=-1.79, 95% CI=-2.84 to -0.74). In women and MSW, higher MICs were found for ceftriaxone in clients with a Latin American and Caribbean network (ß=0.26, 95% CI=0.02 to 0.51). CONCLUSIONS: For three cephalosporin antibiotics, we found Ng strains with slightly higher MICs in clients with partner(s) from Europe or Latin America and the Caribbean. International travel might contribute to the spread of Ng with lower susceptibility. More understanding of the emergence of AMR Ng is needed.


Asunto(s)
Antiinfecciosos , Gonorrea , Salud Sexual , Masculino , Femenino , Humanos , Neisseria gonorrhoeae , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Cefixima/farmacología , Gonorrea/tratamiento farmacológico , Gonorrea/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Azitromicina/farmacología , Cefotaxima/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana
20.
J Infect Dev Ctries ; 18(3): 399-406, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38635612

RESUMEN

INTRODUCTION: Although fluoroquinolones are used to treat methicillin-resistant Staphylococcus aureus (MRSA)-induced infections, acquisition of antibiotic resistance by bacteria has impaired their clinical relevance. We aimed to evaluate the frequency of norA, norB, and norC efflux pump genes-mediating fluoroquinolones resistance and measure their expression levels in MRSA isolates. METHODOLOGY: 126 S. aureus isolates were collected from different clinical samples of adult hospitalized patients and identified by conventional microbiological methods. MRSA was diagnosed by cefoxitin disc diffusion method and minimum inhibitory concentration (MIC) of ciprofloxacin by broth microdilution method. The expression levels of efflux pump genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: 80 (63.5%) MRSA isolates were identified and showed high level of resistance to erythromycin (80%), gentamicin (75%), clindamycin (65%) and ciprofloxacin (60 %). norA, norB and norC were detected in 75%, 35% and 55% of the MRSA isolates respectively. norC was the most commonly overexpressed gene measured by qRT-PCR, occurring in 40% of MRSA isolates, followed by norA (35%) and norB (30%). The expression of these genes was significantly higher in ciprofloxacin-resistant than quantitative real-time PCR ciprofloxacin-sensitive MRSA isolates. CONCLUSIONS: This study showed high prevalence and overexpression of efflux pump genes among MRSA isolates which indicates the significant role of these genes in the development of multidrug resistance against antibiotics including fluoroquinolones.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Fluoroquinolonas/farmacología , Staphylococcus aureus , Infecciones Estafilocócicas/microbiología , Proteínas Bacterianas/genética , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...