Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.352
Filtrar
1.
Water Sci Technol ; 89(9): 2457-2467, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747960

RESUMEN

To investigate the physicochemical conditions necessary to stably remove antibiotic-resistant bacteria (ARB) via contact with activated sludge (AS), the adhesion of ciprofloxacin (CIP)-resistant and -susceptible Escherichia coli to AS was simulated by contact tests in the laboratory. The CIP-resistant E. coli and susceptible E. coli were removed by a 3 log smaller concentration by a 5 h contact test at maximum. Considering the hydraulic retention time of a reaction tank (∼5 h) and step-feeding operation, we considered the removal rate of E. coli in the current simulated contact test to be in agreement with the actual situation where 1-2 log concentrations of E. coli were reported to be removed from an AS reaction tank. With the increase in the AS concentration and/or dissolved oxygen, the removal rate of E. coli increased. The removal rate of CIP-resistant E. coli was greater than that of susceptible E. coli under all experimental conditions. Although the mechanism by which CIP-resistant E. coli preferably adhered to AS was not clearly understood in detail, finding optimum conditions under which bacteria, including ARB, were efficiently removed by the AS process may be possible.


Asunto(s)
Adhesión Bacteriana , Ciprofloxacina , Farmacorresistencia Bacteriana , Escherichia coli , Aguas del Alcantarillado , Ciprofloxacina/farmacología , Escherichia coli/efectos de los fármacos , Aguas del Alcantarillado/microbiología , Adhesión Bacteriana/efectos de los fármacos , Antibacterianos/farmacología
2.
Sci Rep ; 14(1): 10406, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710736

RESUMEN

Active pharmaceutical ingredients have emerged as an environmentally undesirable element because of their widespread exploitation and consequent pollution, which has deleterious effects on living things. In the pursuit of sustainable environmental remediation, biomedical applications, and energy production, there has been a significant focus on two-dimensional materials (2D materials) owing to their unique electrical, optical, and structural properties. Herein, we have synthesized 2D zinc oxide nanosheets (ZnO NSs) using a facile and practicable hydrothermal method and characterized them thoroughly using spectroscopic and microscopic techniques. The 2D nanosheets are used as an efficient photocatalyst for antibiotic (herein, end-user ciprofloxacin (CIP) was used as a model antibiotic) degradation under sunlight. It is observed that ZnO NSs photodegrade ~ 90% of CIP within two hours of sunlight illumination. The molecular mechanism of CIP degradation is proposed based on ex-situ IR analysis. Moreover, the 2D ZNO NSs are used as an antimicrobial agent and exhibit antibacterial qualities against a range of bacterial species, including Escherichia coli, Staphylococcus aureus, and MIC of the bacteria are found to be 5 µg/l and 10 µg/l, respectively. Despite having the biocompatible nature of ZnO, as-synthesized nanosheets have also shown cytotoxicity against two types of cancer cells, i.e. A549 and A375. Thus, ZnO nanosheets showed a nontoxic nature, which can be exploited as promising alternatives in different biomedical applications.


Asunto(s)
Antibacterianos , Antineoplásicos , Nanoestructuras , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Catálisis , Antineoplásicos/farmacología , Antineoplásicos/química , Nanoestructuras/química , Escherichia coli/efectos de los fármacos , Ciprofloxacina/farmacología , Ciprofloxacina/química , Staphylococcus aureus/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Línea Celular Tumoral , Procesos Fotoquímicos , Fotólisis
3.
Microbiology (Reading) ; 170(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38739119

RESUMEN

Introduction. Bacterial keratitis, particularly caused by Pseudomonas aeruginosa, is challenging to treat because of multi-drug tolerance, often associated with the formation of biofilms. Antibiotics in development are typically evaluated against planktonic bacteria in a culture medium, which may not accurately represent the complexity of infections in vivo.Hypothesis/Gap Statement. Developing a reliable, economic ex vivo keratitis model that replicates some complexity of tissue infections could facilitate a deeper understanding of antibiotic efficacy, thus aiding in the optimization of treatment strategies for bacterial keratitis.Methodology. Here we investigated the efficacy of three commonly used antibiotics (gentamicin, ciprofloxacin and meropenem) against Pseudomonas aeruginosa cytotoxic strain PA14 and invasive strain PA01 using an ex vivo porcine keratitis model.Results. Both strains of P. aeruginosa were susceptible to the MIC of the three tested antibiotics. However, significantly higher concentrations were necessary to inhibit bacterial growth in the minimum biofilm eradication concentration (MBEC) assay, with both strains tolerating concentrations greater than 512 mg l-1 of meropenem. When MIC and higher concentrations than MBEC (1024 mg l-1) of antibiotics were applied, ciprofloxacin exhibited the highest potency against both P. aeruginosa strains, followed by meropenem, while gentamicin showed the least potency. Despite this, none of the antibiotic concentrations used effectively cleared the infection, even after 18 h of continuous exposure.Conclusions. Further exploration of antibiotic concentrations and aligning dosing with clinical studies to validate the model is needed. Nonetheless, our ex vivo porcine keratitis model could be a valuable tool for assessing antibiotic efficacy.


Asunto(s)
Antibacterianos , Biopelículas , Ciprofloxacina , Modelos Animales de Enfermedad , Queratitis , Pruebas de Sensibilidad Microbiana , Infecciones por Pseudomonas , Pseudomonas aeruginosa , Animales , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Antibacterianos/farmacología , Porcinos , Infecciones por Pseudomonas/tratamiento farmacológico , Infecciones por Pseudomonas/microbiología , Biopelículas/efectos de los fármacos , Queratitis/microbiología , Queratitis/tratamiento farmacológico , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Meropenem/farmacología
4.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732134

RESUMEN

Ciprofloxacin is a widely used antibiotic in the fluoroquinolone class. It is widely acknowledged by various researchers worldwide, and it has been documented to have a broad range of other pharmacological activities, such as anticancer, antiviral, antimalarial activities, etc. Researchers have been exploring the synthesis of ciprofloxacin derivatives with enhanced biological activities or tailored capability to target specific pathogens. The various biological activities of some of the most potent and promising ciprofloxacin derivatives, as well as the synthetic strategies used to develop them, are thoroughly reviewed in this paper. Modification of ciprofloxacin via 4-oxo-3-carboxylic acid resulted in derivatives with reduced efficacy against bacterial strains. Hybrid molecules containing ciprofloxacin scaffolds displayed promising biological effects. The current review paper provides reported findings on the development of novel ciprofloxacin-based molecules with enhanced potency and intended therapeutic activities which will be of great interest to medicinal chemists.


Asunto(s)
Antibacterianos , Ciprofloxacina , Ciprofloxacina/farmacología , Ciprofloxacina/química , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Antivirales/farmacología , Antivirales/química , Antivirales/síntesis química , Animales , Relación Estructura-Actividad
5.
Biomacromolecules ; 25(5): 2953-2964, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38652682

RESUMEN

Endoscopic submucosal dissection (ESD) is an effective method for resecting early-stage tumors in the digestive system. To achieve a low injection pressure of the injected fluid and continuous elevation of the mucosa following injection during the ESD technique, we introduced an innovative injectable sodium-alginate-based drug-loaded microsphere (Cipro-ThSA) for ESD surgery, which was generated through an emulsion reaction involving cysteine-modified sodium alginate (ThSA) and ciprofloxacin. Cipro-ThSA microspheres exhibited notable adhesiveness, antioxidant activity, and antimicrobial properties, providing a certain level of postoperative wound protection. In vitro cell assays confirmed the decent biocompatibility of the material. Lastly, according to animal experiments involving submucosal elevation of porcine colons, Cipro-ThSA microspheres ensure surgically removable lift height while maintaining the mucosa for approximately 246% longer than saline, which could effectively reduce surgical risks while providing sufficient time for operation. Consequently, the Cipro-ThSA microsphere holds great promise as a novel submucosal injection material, in terms of enhancing the operational safety and effectiveness of ESD surgery.


Asunto(s)
Alginatos , Resección Endoscópica de la Mucosa , Microesferas , Alginatos/química , Animales , Porcinos , Resección Endoscópica de la Mucosa/métodos , Humanos , Ciprofloxacina/administración & dosificación , Ciprofloxacina/química , Ciprofloxacina/farmacología , Cisteína/química
6.
Microbiology (Reading) ; 170(3)2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38568202

RESUMEN

Understanding the evolution of antibiotic resistance is important for combating drug-resistant bacteria. In this work, we investigated the adaptive response of Pseudomonas aeruginosa to ciprofloxacin. Ciprofloxacin-susceptible P. aeruginosa ATCC 9027, CIP-E1 (P. aeruginosa ATCC 9027 exposed to ciprofloxacin for 14 days) and CIP-E2 (CIP-E1 cultured in antibiotic-free broth for 10 days) were compared. Phenotypic responses including cell morphology, antibiotic susceptibility, and production of pyoverdine, pyocyanin and rhamnolipid were assessed. Proteomic responses were evaluated using comparative iTRAQ labelling LC-MS/MS to identify differentially expressed proteins (DEPs). Expression of associated genes coding for notable DEPs and their related regulatory genes were checked using quantitative reverse transcriptase PCR. CIP-E1 displayed a heterogeneous morphology, featuring both filamentous cells and cells with reduced length and width. By contrast, although filaments were not present, CIP-E2 still exhibited size reduction. Considering the MIC values, ciprofloxacin-exposed strains developed resistance to fluoroquinolone antibiotics but maintained susceptibility to other antibiotic classes, except for carbapenems. Pyoverdine and pyocyanin production showed insignificant decreases, whereas there was a significant decrease in rhamnolipid production. A total of 1039 proteins were identified, of which approximately 25 % were DEPs. In general, there were more downregulated proteins than upregulated proteins. Noted changes included decreased OprD and PilP, and increased MexEF-OprN, MvaT and Vfr, as well as proteins of ribosome machinery and metabolism clusters. Gene expression analysis confirmed the proteomic data and indicated the downregulation of rpoB and rpoS. In summary, the response to CIP involved approximately a quarter of the proteome, primarily associated with ribosome machinery and metabolic processes. Potential targets for bacterial interference encompassed outer membrane proteins and global regulators, such as MvaT.


Asunto(s)
Ciprofloxacina , Infecciones por Pseudomonas , Humanos , Ciprofloxacina/farmacología , Pseudomonas aeruginosa/genética , Cromatografía Liquida , Proteómica , Piocianina , Espectrometría de Masas en Tándem , Antibacterianos/farmacología
7.
Sci Rep ; 14(1): 8598, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615146

RESUMEN

Pseudomonas aeruginosa is a major cause of nosocomial infections and the leading cause of chronic lung infections in cystic fibrosis and chronic obstructive pulmonary disease patients. Antibiotic treatment remains challenging because P. aeruginosa is resistant to high concentrations of antibiotics and has a remarkable ability to acquire mutations conferring resistance to multiple groups of antimicrobial agents. Here we report that when P. aeruginosa is plated on ciprofloxacin (cipro) plates, the majority of cipro-resistant (ciproR) colonies observed at and after 48 h of incubation carry mutations in genes related to the Stringent Response (SR). Mutations in one of the major SR components, spoT, were present in approximately 40% of the ciproR isolates. Compared to the wild-type strain, most of these isolates had decreased growth rate, longer lag phase and altered intracellular ppGpp content. Also, 75% of all sequenced mutations were insertions and deletions, with short deletions being the most frequently occurring mutation type. We present evidence that most of the observed mutations are induced on the selective plates in a subpopulation of cells that are not instantly killed by cipro. Our results suggests that the SR may be an important contributor to antibiotic resistance acquisition in P. aeruginosa.


Asunto(s)
Ciprofloxacina , Infecciones por Pseudomonas , Humanos , Ciprofloxacina/farmacología , Pseudomonas aeruginosa/genética , Infecciones por Pseudomonas/tratamiento farmacológico , Antibacterianos/farmacología , Placas Óseas
8.
Sci Rep ; 14(1): 9354, 2024 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-38653744

RESUMEN

Phage-antibiotic combinations to treat bacterial infections are gaining increased attention due to the synergistic effects often observed when applying both components together. Most studies however focus on a single pathogen, although in many clinical cases multiple species are present at the site of infection. The aim of this study was to investigate the anti-biofilm activity of phage-antibiotic/antifungal combinations on single- and dual-species biofilms formed by P. aeruginosa and the fungal pathogen Candida albicans. The Pseudomonas phage Motto in combination with ciprofloxacin had significant anti-biofilm activity. We then compared biofilms formed by P. aeruginosa alone with the dual-species biofilms formed by bacteria and C. albicans. Here, we found that the phage together with the antifungal fluconazole was active against 6-h-old dual-species biofilms but showed only negligible activity against 24-h-old biofilms. This study lays the first foundation for potential therapeutic approaches to treat co-infections caused by bacteria and fungi using phage-antibiotic combinations.


Asunto(s)
Antibacterianos , Antifúngicos , Biopelículas , Candida albicans , Ciprofloxacina , Fagos Pseudomonas , Pseudomonas aeruginosa , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Pseudomonas aeruginosa/virología , Antifúngicos/farmacología , Antibacterianos/farmacología , Fagos Pseudomonas/fisiología , Candida albicans/efectos de los fármacos , Candida albicans/fisiología , Ciprofloxacina/farmacología , Fluconazol/farmacología , Pruebas de Sensibilidad Microbiana
9.
J Appl Microbiol ; 135(4)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587823

RESUMEN

AIM: In this study, it was aimed to examine the antibacterial activity of the essential oil components (EOCs), carvacrol (CAR), cinnamaldehyde (CIN), thymol (TH), alpha pinene (α-PN), eucalyptol (EU), limonene (LIM), and the antibiotics, linezolid (LZD), vancomycin (VAN), gentamicin (GEN), ciprofloxacin (CIP), clindamycin (CLN), and penicillin (PEN) against 50 multidrug resistant Corynebacterium striatum strains, and the synergistic interactions of CAR and CIN with the antibiotics against 10 randomly selected Coryne. striatum strains to explore synergistic interactions to determine if their combined use could enhance antibiotic activity and potentially reduce resistance. METHODS AND RESULTS: The activity of the EOCs and the antibiotics against Coryne. striatum strains isolated from clinical specimens, was examined by broth microdilution method. The synergistic interactions of the EOCs with the antibiotics against 10 randomly selected Coryne. striatum strains were determined by checkerboard method. EOCs, CIN, and CAR and antibiotics, LZD, VAN, GEN, CIP, and CLN were detected to have antibacterial activity against Coryne. striatum strains alone and either synergistic interactions were observed in combinations of the antibiotics with EOCs. CONCLUSIONS: All Coryne. striatum strains were determined to be susceptible to VAN and LZD and resistant to GEN, PEN, CIP, and CLN. Synergistic interactions were observed in all combinations of antibiotics tested with CAR and CIN.


Asunto(s)
Acroleína , Acroleína/análogos & derivados , Antibacterianos , Corynebacterium , Farmacorresistencia Bacteriana Múltiple , Sinergismo Farmacológico , Pruebas de Sensibilidad Microbiana , Monoterpenos , Aceites Volátiles , Antibacterianos/farmacología , Corynebacterium/efectos de los fármacos , Aceites Volátiles/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Acroleína/farmacología , Monoterpenos/farmacología , Cimenos/farmacología , Ciprofloxacina/farmacología , Gentamicinas/farmacología , Vancomicina/farmacología , Linezolid/farmacología , Limoneno/farmacología , Eucaliptol/farmacología , Timol/farmacología , Clindamicina/farmacología , Humanos , Penicilinas/farmacología , Terpenos/farmacología , Ciclohexenos/farmacología , Infecciones por Corynebacterium/microbiología
10.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38674008

RESUMEN

Cysteine and its derivatives, including H2S, can influence bacterial virulence and sensitivity to antibiotics. In minimal sulfate media, H2S is generated under stress to prevent excess cysteine and, together with incorporation into glutathione and export into the medium, is a mechanism of cysteine homeostasis. Here, we studied the features of cysteine homeostasis in LB medium, where the main source of sulfur is cystine, whose import can create excess cysteine inside cells. We used mutants in the mechanisms of cysteine homeostasis and a set of microbiological and biochemical methods, including the real-time monitoring of sulfide and oxygen, the determination of cysteine and glutathione (GSH), and the expression of the Fur, OxyR, and SOS regulons genes. During normal growth, the parental strain generated H2S when switching respiration to another substrate. The mutations affected the onset time, the intensity and duration of H2S production, cysteine and glutathione levels, bacterial growth and respiration rates, and the induction of defense systems. Exposure to chloramphenicol and high doses of ciprofloxacin increased cysteine content and GSH synthesis. A high inverse relationship between log CFU/mL and bacterial growth rate before ciprofloxacin addition was revealed. The study points to the important role of maintaining cysteine homeostasis during normal growth and antibiotic exposure in LB medium.


Asunto(s)
Antibacterianos , Ciprofloxacina , Cisteína , Escherichia coli , Glutatión , Homeostasis , Cisteína/metabolismo , Ciprofloxacina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/crecimiento & desarrollo , Homeostasis/efectos de los fármacos , Glutatión/metabolismo , Antibacterianos/farmacología , Medios de Cultivo/química , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Mutación , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos
11.
ACS Infect Dis ; 10(4): 1351-1360, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38606464

RESUMEN

Fluoroquinolones make up a critically important class of antibacterials administered worldwide to treat human infections. However, their clinical utility has been curtailed by target-mediated resistance, which is caused by mutations in the fluoroquinolone targets, gyrase and topoisomerase IV. An important pathogen that has been affected by this resistance is Neisseria gonorrhoeae, the causative agent of gonorrhea. Over 82 million new cases of this sexually transmitted infection were reported globally in 2020. Despite the impact of fluoroquinolone resistance on gonorrhea treatment, little is known about the interactions of this drug class with its targets in this bacterium. Therefore, we investigated the effects of the fluoroquinolone ciprofloxacin on the catalytic and DNA cleavage activities of wild-type gyrase and topoisomerase IV and the corresponding enzymes that harbor mutations associated with cellular and clinical resistance to fluoroquinolones. Results indicate that ciprofloxacin interacts with both gyrase (its primary target) and topoisomerase IV (its secondary target) through a water-metal ion bridge that has been described in other species. Moreover, mutations in amino acid residues that anchor this bridge diminish the susceptibility of the enzymes for the drug, leading to fluoroquinolone resistance. Results further suggest that ciprofloxacin primarily induces its cytotoxic effects by enhancing gyrase-mediated DNA cleavage as opposed to inhibiting the DNA supercoiling activity of the enzyme. In conclusion, this work links the effects of ciprofloxacin on wild-type and resistant gyrase to results reported for cellular and clinical studies and provides a mechanistic explanation for the targeting and resistance of fluoroquinolones in N. gonorrhoeae.


Asunto(s)
Ciprofloxacina , Gonorrea , Humanos , Ciprofloxacina/farmacología , Fluoroquinolonas/farmacología , Topoisomerasa de ADN IV/genética , Topoisomerasa de ADN IV/metabolismo , Neisseria gonorrhoeae , Gonorrea/tratamiento farmacológico , Gonorrea/microbiología , Girasa de ADN/genética , Girasa de ADN/metabolismo , Pruebas de Sensibilidad Microbiana
12.
Sex Transm Infect ; 100(3): 173-180, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38575313

RESUMEN

OBJECTIVES: International travel combined with sex may contribute to dissemination of antimicrobial-resistant (AMR) Neisseria gonorrhoeae (Ng). To assess the role of travel in Ng strain susceptibility, we compared minimum inhibitory concentrations (MICs) for five antibiotics (ie, azithromycin, ceftriaxone, cefotaxime, cefixime and ciprofloxacin) in strains from clients with an exclusively Dutch sexual network and clients with an additional international sexual network. METHODS: From 2013 to 2019, we recorded recent residence of sexual partners of clients (and of their partners) with Ng at the Center for Sexual Health of Amsterdam. We categorised clients as having: (1) exclusively sexual partners residing in the Netherlands ('Dutch only') or (2) at least one partner residing outside the Netherlands. We categorised the country of residence of sexual partners by World Bank/EuroVoc regions. We analysed the difference of log-transformed MIC of Ng strains between categories using linear or hurdle regression for each antibiotic. RESULTS: We included 3367 gay and bisexual men who had sex with men (GBMSM), 516 women and 525 men who exclusively had sex with women (MSW) with Ng. Compared with GBMSM with a 'Dutch only' network, GBMSM with: (1) a Western European network had higher MICs for ceftriaxone (ß=0.19, 95% CI=0.08 to 0.29), cefotaxime (ß=0.19, 95% CI=0.08 to 0.31) and cefixime (ß=0.06, 95% CI=0.001 to 0.11); (2) a Southern European network had a higher MIC for cefixime (ß=0.10, 95% CI=0.02 to 0.17); and (3) a sub-Saharan African network had a lower MIC for ciprofloxacin (ß=-1.79, 95% CI=-2.84 to -0.74). In women and MSW, higher MICs were found for ceftriaxone in clients with a Latin American and Caribbean network (ß=0.26, 95% CI=0.02 to 0.51). CONCLUSIONS: For three cephalosporin antibiotics, we found Ng strains with slightly higher MICs in clients with partner(s) from Europe or Latin America and the Caribbean. International travel might contribute to the spread of Ng with lower susceptibility. More understanding of the emergence of AMR Ng is needed.


Asunto(s)
Antiinfecciosos , Gonorrea , Salud Sexual , Masculino , Femenino , Humanos , Neisseria gonorrhoeae , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Cefixima/farmacología , Gonorrea/tratamiento farmacológico , Gonorrea/epidemiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Azitromicina/farmacología , Cefotaxima/farmacología , Pruebas de Sensibilidad Microbiana , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana
13.
J Infect Dev Ctries ; 18(3): 399-406, 2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38635612

RESUMEN

INTRODUCTION: Although fluoroquinolones are used to treat methicillin-resistant Staphylococcus aureus (MRSA)-induced infections, acquisition of antibiotic resistance by bacteria has impaired their clinical relevance. We aimed to evaluate the frequency of norA, norB, and norC efflux pump genes-mediating fluoroquinolones resistance and measure their expression levels in MRSA isolates. METHODOLOGY: 126 S. aureus isolates were collected from different clinical samples of adult hospitalized patients and identified by conventional microbiological methods. MRSA was diagnosed by cefoxitin disc diffusion method and minimum inhibitory concentration (MIC) of ciprofloxacin by broth microdilution method. The expression levels of efflux pump genes were measured by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: 80 (63.5%) MRSA isolates were identified and showed high level of resistance to erythromycin (80%), gentamicin (75%), clindamycin (65%) and ciprofloxacin (60 %). norA, norB and norC were detected in 75%, 35% and 55% of the MRSA isolates respectively. norC was the most commonly overexpressed gene measured by qRT-PCR, occurring in 40% of MRSA isolates, followed by norA (35%) and norB (30%). The expression of these genes was significantly higher in ciprofloxacin-resistant than quantitative real-time PCR ciprofloxacin-sensitive MRSA isolates. CONCLUSIONS: This study showed high prevalence and overexpression of efflux pump genes among MRSA isolates which indicates the significant role of these genes in the development of multidrug resistance against antibiotics including fluoroquinolones.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Fluoroquinolonas/farmacología , Staphylococcus aureus , Infecciones Estafilocócicas/microbiología , Proteínas Bacterianas/genética , Ciprofloxacina/farmacología , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana
14.
ACS Appl Mater Interfaces ; 16(15): 18360-18385, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38573741

RESUMEN

Bacterial keratitis (BK) causes visual morbidity/blindness if not treated effectively. Here, ciprofloxacin (CIP)-loaded nanoparticles (NPs) using glycol chitosan (GC) and poly(lactic acid) (PLA) conjugate at three different ratios (CIP@GC(PLA) NPs (1:1,5,15)) were fabricated. CIP@GC(PLA) NPs (1:1) were more effective than other tested ratios, indicating the importance of optimal hydrophobic/hydrophilic balance for corneal penetration and preventing bacterial invasion. The CIP@GC(PLA) (NPs) (1:1) realized the highest association with human corneal epithelial cells, which were nonirritant to the hen's egg-chorioallantoic membrane test (HET-CAM test) and demonstrated significant antibacterial response in the in vitro minimum inhibitory, bactericidal, live-dead cells, zone of inhibition, and biofilm inhibition assays against the keratitis-inducing pathogen Pseudomonas aeruginosa. The antiquorum sensing activity of GC has been explored for the first time. The NPs disrupted the bacterial quorum sensing by inhibiting the production of virulence factors, including acyl homoserine lactones, pyocyanin, and motility, and caused significant downregulation of quorum sensing associated genes. In the in vivo studies, CIP@GC(PLA) NPs (1:1) displayed ocular retention in vivo (∼6 h) and decreased the opacity and the bacterial load effectively. Overall, the CIP@GC(PLA) NP (1:1) is a biofilm-disrupting antiquorum sensing treatment regimen with clinical translation potential in BK.


Asunto(s)
Quitosano , Infecciones Bacterianas del Ojo , Queratitis , Nanopartículas , Animales , Femenino , Humanos , Ciprofloxacina/farmacología , Pollos , Biopelículas , Antibacterianos/farmacología , Poliésteres/farmacología , Percepción de Quorum , Bacterias , Pseudomonas aeruginosa
15.
Asian Pac J Cancer Prev ; 25(4): 1433-1440, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38680005

RESUMEN

OBJECTIVE: aim of this study was to examine the synergistic effect between the antibacterial drug ciprofloxacin and the natural compound laetrile on esophageal cancer cells, specifically focusing on their combined cytotoxic effect. METHODS: The combined cytotoxic effects of two alternative incubation durations (24 and 72 hours) were studied using an esophageal cancer cell line.  Ciprofloxacin, laetrile, and their combinations were tested at concentrations ranging from 1 to 1000 micrograms/milliliter, to enhance the safety of the combination, the concentrations of the combination constituents were reduced by half compared to when they are used individually, the combination index was then calculated to estimate the components' possible synergistic effects. RESULT: The results indicate that the combined cytotoxicity of ciprofloxacin and laetrile was greater than the cytotoxicity of either ciprofloxacin or laetrile alone, the combination cytotoxicity increased with higher concentrations and longer incubation periods, in other words, the cytotoxicity pattern of the combination was time-dependent (cell-cycle specific), and concentration dependent, (cell-cycle non-specific). CONCLUSION: The study found that the combination of ciprofloxacin and laetrile had a greater inhibitory effect on the growth of esophageal cancer cells compared to ciprofloxacin or laetrile alone. This suggests a synergistic effect between the components of the mixture, which can be attributed to a complementary mechanism between the ingredients in the combination.


Asunto(s)
Proliferación Celular , Ciprofloxacina , Sinergismo Farmacológico , Neoplasias Esofágicas , Humanos , Ciprofloxacina/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/patología , Proliferación Celular/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Células Tumorales Cultivadas , Apoptosis/efectos de los fármacos , Antibacterianos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología
16.
Medicina (Kaunas) ; 60(4)2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38674257

RESUMEN

Background and Objectives: The purpose of this study was to investigate the influence induced by magnesium chloride (MgCl2) and zinc gluconate (ZnG) supplementation on liver and kidney injuries experimentally induced with acetaminophen (AAPh) and potentiated by a ciprofloxacin addition in rats. Material and Methods: The experiment was performed on five animal groups: group 1-control, treated for 6 weeks with normal saline, 1 mL/kg; group 2-AAPh, treated for 6 weeks with AAPh, 100 mg/kg/day; group 3-AAPh + C, treated for 6 weeks with AAPh 100 mg/kg/day and ciprofloxacin 50 mg/kg/day, only in the last 14 days of the experiment; group 4-AAPh + C + Mg, with the same treatment as group 3, but in the last 14 days, MgCl2 10 mg/ kg/day was added; and group 5-AAPh + C + Zn, with the same treatment as group 3, but in the last 14 days, zinc gluconate (ZnG), 10 mg/kg/day was added. All administrations were performed by oral gavage. At the end of the experiment, the animals were sacrificed and blood samples were collected for biochemistry examinations. Results: Treatment with AAPh for 6 weeks determined an alteration of the liver function (increases in alanine aminotransferase, aspartate aminotransferase, lactic dehydrogenase, and gamma-glutamyl transferase) and of renal function (increases in serum urea and creatinine) (p < 0.001 group 2 vs. group 1 for all mentioned parameters). Furthermore, the antioxidant defense capacity was impaired in group 2 vs. group 1 (superoxide dismutase and glutathione peroxidase activity decreased in group 2 vs. group 1, at 0.001 < p < 0.01 and 0.01 < p < 0.05, respectively). The addition of ciprofloxacin, 50 mg/kg/day during the last 14 days, resulted in further increases in alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine (0.01 < p < 0.05, group 3 vs. group 2). MgCl2 provided a slight protection against the increase in liver enzymes, and a more pronounced protection against the increase in serum urea and creatinine (0.001 < p < 0.01 group 4 vs. group 3). MgCl2 provided a slight protection against the decrease in superoxide dismutase (0.01 < p < 0.05 group 4 vs. group 3), but not against decrease of glutathione peroxidase. The improvement of mentioned parameters could also be seen in the case of ZnG, to a higher extent, especially in the case of alanine aminotransferase and lactic dehydrogenase (0.01 < p < 0.05 group 5 vs. group 4). Conclusions: This study presents further proof for the beneficial effect of magnesium and zinc salts against toxicity induced by different agents, including antibacterials added to the analgesic and antipyretic acetaminophen; the protection is proven on the liver and kidney's function, and the antioxidant profile improvement has a key role, especially in the case of zinc gluconate.


Asunto(s)
Acetaminofén , Ciprofloxacina , Gluconatos , Ratas Wistar , Animales , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Ratas , Gluconatos/farmacología , Gluconatos/uso terapéutico , Masculino , Zinc/farmacología , Zinc/uso terapéutico , Riñón/efectos de los fármacos , Magnesio/uso terapéutico , Magnesio/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Cloruro de Magnesio/farmacología , Cloruro de Magnesio/uso terapéutico , Alanina Transaminasa/sangre , Aspartato Aminotransferasas/sangre , Sinergismo Farmacológico
17.
PLoS Negl Trop Dis ; 18(4): e0012132, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630840

RESUMEN

BACKGROUND: Typhoid fever is a common cause of febrile illness in low- and middle-income countries. While multidrug-resistant (MDR) Salmonella Typhi (S. Typhi) has spread globally, fluoroquinolone resistance has mainly affected Asia. METHODS: Consecutively, 1038 blood cultures were obtained from patients of all age groups with fever and/or suspicion of serious systemic infection admitted at Mnazi Mmoja Hospital, Zanzibar in 2015-2016. S. Typhi were analyzed with antimicrobial susceptibility testing and with short read (61 strains) and long read (9 strains) whole genome sequencing, including three S. Typhi strains isolated in a pilot study 2012-2013. RESULTS: Sixty-three S. Typhi isolates (98%) were MDR carrying blaTEM-1B, sul1 and sul2, dfrA7 and catA1 genes. Low-level ciprofloxacin resistance was detected in 69% (43/62), with a single gyrase mutation gyrA-D87G in 41 strains, and a single gyrA-S83F mutation in the non-MDR strain. All isolates were susceptible to ceftriaxone and azithromycin. All MDR isolates belonged to genotype 4.3.1 lineage I (4.3.1.1), with the antimicrobial resistance determinants located on a composite transposon integrated into the chromosome. Phylogenetically, the MDR subgroup with ciprofloxacin resistance clusters together with two external isolates. CONCLUSIONS: We report a high rate of MDR and low-level ciprofloxacin resistant S. Typhi circulating in Zanzibar, belonging to genotype 4.3.1.1, which is widespread in Southeast Asia and African countries and associated with low-level ciprofloxacin resistance. Few therapeutic options are available for treatment of typhoid fever in the study setting. Surveillance of the prevalence, spread and antimicrobial susceptibility of S. Typhi can guide treatment and control efforts.


Asunto(s)
Antibacterianos , Ciprofloxacina , Farmacorresistencia Bacteriana Múltiple , Genotipo , Pruebas de Sensibilidad Microbiana , Salmonella typhi , Fiebre Tifoidea , Humanos , Salmonella typhi/genética , Salmonella typhi/efectos de los fármacos , Salmonella typhi/aislamiento & purificación , Salmonella typhi/clasificación , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/epidemiología , Tanzanía/epidemiología , Adolescente , Masculino , Niño , Adulto , Adulto Joven , Femenino , Preescolar , Secuenciación Completa del Genoma , Persona de Mediana Edad , Lactante , Anciano
18.
Int J Food Microbiol ; 417: 110708, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38653121

RESUMEN

Salmonella Thompson is a prevalent foodborne pathogen and a major threat to food safety and public health. This study aims to reveal the dissemination mechanism of S. Thompson with co-resistance to ceftriaxone and ciprofloxacin. In this study, 181 S. Thompson isolates were obtained from a retrospective screening on 2118 serotyped Salmonella isolates from foods and patients, which were disseminated in 12 of 16 districts in Shanghai, China. A total of 10 (5.5 %) S. Thompson isolates exhibited resistance to ceftriaxone (MIC ranging from 8 to 32 µg/mL) and ciprofloxacin (MIC ranging from 2 to 8 µg/mL). The AmpC ß-lactamase gene blaCMY-2 and plasmid-mediated quinolone resistance (PMQR) genes of qnrS and qepA were identified in the 9 isolates. Conjugation results showed that the co-transfer of blaCMY-2, qnrS, and qepA occurred on the IncC plasmids with sizes of ∼150 (n = 8) or ∼138 (n = 1) kbp. Three typical modules of ISEcp1-blaCMY-2-blc-sugE, IS26-IS15DIV-qnrS-ISKpn19, and ISCR3-qepA-intl1 were identified in an ST3 IncC plasmid pSH11G0791. Phylogenetic analysis indicated that IncC plasmids evolved into Lineages 1, 2, and 3. IncC plasmids from China including pSH11G0791 in this study fell into Lineage 1 with those from the USA, suggesting their close genotype relationship. In conclusion, to our knowledge, it is the first report of the co-existence of blaCMY-2, qnrS, and qepA in IncC plasmids, and the conjugational transfer contributed to their dissemination in S. Thompson. These findings underline further challenges for the prevention and treatment of Enterobacteriaceae infections posed by IncC plasmids bearing blaCMY-2, qnrS, and qepA.


Asunto(s)
Antibacterianos , Diarrea , Plásmidos , Salmonella enterica , Alimentos Marinos , Humanos , Plásmidos/genética , China , Antibacterianos/farmacología , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Salmonella enterica/efectos de los fármacos , Alimentos Marinos/microbiología , Diarrea/microbiología , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Estudios Retrospectivos , Farmacorresistencia Bacteriana Múltiple/genética , Ciprofloxacina/farmacología , Ceftriaxona/farmacología , Proteínas Bacterianas/genética , Serogrupo , Microbiología de Alimentos
19.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38587815

RESUMEN

AIMS: Drug repurposing is an attractive strategy to control biofilm-related infectious diseases. In this study, two drugs (montelukast and cefoperazone) with well-established therapeutic applications were tested on Pseudomonas aeruginosa quorum sensing (QS) inhibition and biofilm control. METHODS AND RESULTS: The activity of montelukast and cefoperazone was evaluated for Pqs signal inhibition, pyocyanin synthesis, and prevention and eradication of Ps. aeruginosa biofilms. Cefoperazone inhibited the Pqs system by hindering the production of the autoinducer molecules 2-heptyl-4-hydroxyquinoline (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (the Pseudomonas quinolone signal or PQS), corroborating in silico results. Pseudomonas aeruginosa pyocyanin production was reduced by 50%. The combination of the antibiotics cefoperazone and ciprofloxacin was synergistic for Ps. aeruginosa biofilm control. On the other hand, montelukast had no relevant effects on the inhibition of the Pqs system and against Ps. aeruginosa biofilm. CONCLUSION: This study provides for the first time strong evidence that cefoperazone interacts with the Pqs system, hindering the formation of the autoinducer molecules HHQ and PQS, reducing Ps. aeruginosa pathogenicity and virulence. Cefoperazone demonstrated a potential to be used in combination with less effective antibiotics (e.g. ciprofloxacin) to potentiate the biofilm control action.


Asunto(s)
Acetatos , Antibacterianos , Biopelículas , Cefoperazona , Ciclopropanos , Pseudomonas aeruginosa , Quinolinas , Percepción de Quorum , Sulfuros , Pseudomonas aeruginosa/efectos de los fármacos , Biopelículas/efectos de los fármacos , Sulfuros/farmacología , Percepción de Quorum/efectos de los fármacos , Antibacterianos/farmacología , Acetatos/farmacología , Quinolinas/farmacología , Ciclopropanos/farmacología , Cefoperazona/farmacología , Pruebas de Sensibilidad Microbiana , Piocianina/metabolismo , Ciprofloxacina/farmacología , Quinolonas/farmacología
20.
Sci Total Environ ; 930: 172715, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38663595

RESUMEN

Antibiotics and quaternary ammonium compounds (QACs) usually co-exist in wastewater treatment plants. Hence, three sequencing batch reactors were established and named as R1, R2 and R3, to investigate the effects of individual and combined exposure of different concentrations of ciprofloxacin (CIP) (0.2, 1.0 and 2.0 mg/L) and dialkyldimethyl ammonium compound (DADMAC) (0.4, 2.0 and 4.0 mg/L) on the performance, microbial community structures and resistance genes (RGs) in nitrifying system during 150 days. Results showed that CIP had a slight effect on ammonia oxidation activity, while 2.0 and 4.0 mg/L DADAMAC could obviously inhibit it, and the combination of CIP and DADMAC had a synergistic inhibitory effect. Besides, both CIP and DADMAC caused partial nitrification, and the order of nitrite accumulation rate was ranked as R3 > R2 > R1. The combination of CIP and DADMAC had an antagonistic effect on the increase of sludge particle size and α-Helix/(ß-Sheet + Random coil) was lowest in R3 (0.40). The combination of CIP and DADMAC synergistically stimulated most intracellular RGs in sludge, and the relative abundances of target RGs (e.g., qacEdelta1-01, qacH-01 and qnrS) at the end of operation in R3 were increased by 4.61-18.19 folds compared with those in CK, which were 1.34-5.57 folds higher than the R1 and R2. Moreover, the combination of CIP and DADMAC also promoted the transfer of RGs from sludge to water and enriched more potential hosts of RGs, further promoting the spread of RGs in nitrifying system. Thus, the combined pollution of CIP and DADMAC in wastewaters should attract more attentions.


Asunto(s)
Antibacterianos , Ciprofloxacina , Nitrificación , Eliminación de Residuos Líquidos , Ciprofloxacina/farmacología , Nitrificación/efectos de los fármacos , Antibacterianos/farmacología , Eliminación de Residuos Líquidos/métodos , Compuestos de Amonio Cuaternario , Contaminantes Químicos del Agua , Aguas Residuales , Reactores Biológicos , Farmacorresistencia Bacteriana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...