Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Cancer Cell ; 42(5): 885-903.e4, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38608702

RESUMEN

With limited treatment options, cachexia remains a major challenge for patients with cancer. Characterizing the interplay between tumor cells and the immune microenvironment may help identify potential therapeutic targets for cancer cachexia. Herein, we investigate the critical role of macrophages in potentiating pancreatic cancer induced muscle wasting via promoting TWEAK (TNF-like weak inducer of apoptosis) secretion from the tumor. Specifically, depletion of macrophages reverses muscle degradation induced by tumor cells. Macrophages induce non-autonomous secretion of TWEAK through CCL5/TRAF6/NF-κB pathway. TWEAK promotes muscle atrophy by activating MuRF1 initiated muscle remodeling. Notably, tumor cells recruit and reprogram macrophages via the CCL2/CCR2 axis and disrupting the interplay between macrophages and tumor cells attenuates muscle wasting. Collectively, this study identifies a feedforward loop between pancreatic cancer cells and macrophages, underlying the non-autonomous activation of TWEAK secretion from tumor cells thereby providing promising therapeutic targets for pancreatic cancer cachexia.


Asunto(s)
Caquexia , Citocina TWEAK , Macrófagos , Neoplasias Pancreáticas , Caquexia/metabolismo , Caquexia/etiología , Caquexia/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/complicaciones , Citocina TWEAK/metabolismo , Animales , Humanos , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , Línea Celular Tumoral , Microambiente Tumoral , Atrofia Muscular/metabolismo , Atrofia Muscular/etiología , Atrofia Muscular/patología , Quimiocina CCL5/metabolismo , Transducción de Señal , Factor 6 Asociado a Receptor de TNF/metabolismo , Factores de Necrosis Tumoral/metabolismo , Receptores CCR2/metabolismo , Quimiocina CCL2/metabolismo , Ratones Endogámicos C57BL
2.
Exp Gerontol ; 188: 112390, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38437928

RESUMEN

BACKGROUND: Sarcopenia is a harmful condition common among older adults for which no treatment is available. Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor inducible 14 (FN14) are known to play important roles in the pathogenesis of sarcopenia. This study investigated alterations in methylation in TWEAK and Fn14 to identify potential targets for the managing sarcopenia. MATERIALS AND METHODS: Through an epidemiological investigation, we detected methylation of CpG islands (CpGs) in TWEAK and Fn14 in community-dwelling older adult of Xinjiang by bisulfite sequencing. Significant CpGs associated with sarcopenia were selected for detection in 152 older individuals by pyrosequencing. Associations between CpG methylation, plasma inflammatory marker levels, and sarcopenia were analyzed. RESULTS: Of 38 CpGs in TWEAK and 30 CpGs in Fn14 detected in 60 individuals, 6 CpGs showed lower methylation in sarcopenia patients compared with control individuals. In 152 older adults, covariance analysis with adjustment for age, gender, triglyceride level, obesity, diabetes, and hypertension showed that the methylation levels of 6 CpGs (CpG8, CpG12, CpG13, CpG20 and CpG21of TWEAK, and CpG24 of Fn14) were significantly lower in sarcopenia patients than in control individuals. With adjustment for additional confounding factors, covariate variance analysis showed that plasma TWEAK, TNF-α and IL-10 levels in the sarcopenia group were significant higher than those in the control group (P = 0.007, P < 0.001, P = 0.003). Multivariate logistic regression analysis showed that CpG8, CpG13, CpG21, and total methylation of TWEAK (OR = 0.767, 95 % CI = 0.622-0.947; OR = 0.740, 95 % CI = 0.583-0.941; OR = 0.734, 95 % CI = 0.561-0.958; OR = 0.883, 95 % CI = 0.795-0.980) as well as CpG22 and total methylation of Fn14 were significantly associated with sarcopenia (OR = 826, 95 % CI = 0.704-0.968; OR = 0.918, 95 % CI = 0.852-0.989). From partial correlation analysis, plasma TWEAK was correlated with plasma TNF-α (r = 0.172, P = 0.042). CONCLUSION: Sarcopenia is associated with hypomethylation of TWEAK and increased plasma levels of TWEAK and its downstream inflammatory factor TNF-α in a community-dwelling population of older adults in Xinjiang.


Asunto(s)
Sarcopenia , Factor de Necrosis Tumoral alfa , Anciano , Humanos , Apoptosis , Estudios de Casos y Controles , Citocina TWEAK/metabolismo , Sarcopenia/genética , Receptor de TWEAK/genética , Receptor de TWEAK/metabolismo
3.
Eur J Clin Invest ; 54(6): e14181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38361320

RESUMEN

BACKGROUND: Successful recanalization does not lead to complete tissue reperfusion in a considerable percentage of ischemic stroke patients. This study aimed to identify biomarkers associated with futile recanalization. Leukoaraiosis predicts poor outcomes of this phenomenon. Soluble tumour necrosis factor-like weak inducer of apoptosis (sTWEAK), which is associated with leukoaraiosis degrees, could be a potential biomarker. METHODS: This study includes two cohorts of ischemic stroke patients in a multicentre retrospective observational study. Effective reperfusion, defined as a reduction of ≥8 points in the National Institutes of Health Stroke Scale (NIHSS) within the first 24 h, was used as a clinical marker of effective reperfusion. RESULTS: In the first cohort study, female sex, age, and high NIHSS at admission (44.7% vs. 81.1%, 71.3 ± 13.7 vs. 81.1 ± 6.7; 16 [13, 21] vs. 23 [17, 28] respectively; p < .0001) were confirmed as predictors of futile recanalization. ROC curve analysis showed that leukocyte levels (sensitivity of 99%, specificity of 55%) and sTWEAK level (sensitivity of 92%, specificity of 88%) can discriminate between poor and good outcomes. Both biomarkers simultaneously are higher associated with outcome after effective reperfusion (OR: 2.17; CI 95% 1.63-4.19; p < .0001) than individually (leukocytes OR: 1.38; CI 95% 1.00-1.64, p = .042; sTWEAK OR: 1.00; C I95% 1.00-1.01, p = .019). These results were validated using a second cohort, where leukocytes and sTWEAK showed a sensitivity of 100% and specificity of 66.7% and 75% respectively. CONCLUSIONS: Leukocyte and sTWEAK could be biomarkers of reperfusion failure and subsequent poor outcomes. Further studies will be necessary to explore its role in reperfusion processes.


Asunto(s)
Biomarcadores , Citocina TWEAK , Inutilidad Médica , Reperfusión , Humanos , Femenino , Masculino , Biomarcadores/sangre , Biomarcadores/metabolismo , Anciano , Estudios Retrospectivos , Persona de Mediana Edad , Citocina TWEAK/metabolismo , Anciano de 80 o más Años , Accidente Cerebrovascular Isquémico , Leucoaraiosis , Recuento de Leucocitos , Curva ROC , Estudios de Cohortes
4.
Biomed Pharmacother ; 169: 115925, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38007933

RESUMEN

BACKGROUND: Rhabdomyolysis is a severe clinical syndrome associated to acute kidney injury (AKI) and chronic kidney disease (CKD). TWEAK/Fn14 signaling axis regulates renal inflammation and tubular cell death. However, the functional role of TWEAK/Fn14 in rhabdomyolysis remains unknown. METHODS: Rhabdomyolysis was induced in wild-type, TWEAK- and Fn14-deficient mice or mice treated with TWEAK blocking antibody. Renal injury, inflammation, fibrosis and cell death were assessed. Additionally, we performed in vivo and in vitro studies to explore the possible signalling pathways involved in Fn14 regulation. FINDINGS: Fn14 renal expression was increased in mice with rhabdomyolysis, correlating with decline of renal function. Mechanistically, myoglobin (Mb) induced Fn14 expression via ERK and p38 pathway, whereas Nrf2 activation diminished Mb-mediated Fn14 upregulation in cultured renal cells. TWEAK or Fn14 genetic depletion ameliorated rhabdomyolysis-associated loss of renal function, histological damage, tubular cell death, inflammation, and expression of both tubular and endothelial injury markers. Deficiency of TWEAK or Fn14 also decreased long-term renal inflammation and fibrosis in mice with rhabdomyolysis. Finally, pharmacological treatment with a blocking TWEAK antibody diminished the expression of acute renal injury markers and cell death and lessened residual kidney fibrosis and chronic inflammation in rhabdomyolysis. INTERPRETATION: TWEAK/Fn14 axis participates in the pathogenesis of rhabdomyolysis-AKI and subsequent AKI-CKD transition. Blockade of this signaling pathway may represent a promising therapeutic strategy for reducing rhabdomyolysis-mediated renal injury. FUNDING: Spanish Ministry of Science and Innovation, ISCIII and Junta de Andalucía.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Rabdomiólisis , Animales , Ratones , Lesión Renal Aguda/metabolismo , Citocina TWEAK/metabolismo , Fibrosis , Inflamación , Rabdomiólisis/complicaciones , Factores de Necrosis Tumoral/metabolismo , Receptor de TWEAK/metabolismo
5.
J Pathol ; 261(4): 427-441, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776271

RESUMEN

Heart and kidney have a closely interrelated pathophysiology. Acute kidney injury (AKI) is associated with significantly increased rates of cardiovascular events, a relationship defined as cardiorenal syndrome type 3 (CRS3). The underlying mechanisms that trigger heart disease remain, however, unknown, particularly concerning the clinical impact of AKI on cardiac outcomes and overall mortality. Tumour necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor fibroblast growth factor-inducible 14 (Fn14) are independently involved in the pathogenesis of both heart and kidney failure, and recent studies have proposed TWEAK as a possible therapeutic target; however, its specific role in cardiac damage associated with CRS3 remains to be clarified. Firstly, we demonstrated in a retrospective longitudinal clinical study that soluble TWEAK plasma levels were a predictive biomarker of mortality in patients with AKI. Furthermore, the exogenous application of TWEAK to native ventricular cardiomyocytes induced relevant calcium (Ca2+ ) handling alterations. Next, we investigated the role of the TWEAK-Fn14 axis in cardiomyocyte function following renal ischaemia-reperfusion (I/R) injury in mice. We observed that TWEAK-Fn14 signalling was activated in the hearts of AKI mice. Mice also showed significantly altered intra-cardiomyocyte Ca2+ handling and arrhythmogenic Ca2+ events through an impairment in sarcoplasmic reticulum Ca2+ -adenosine triphosphatase 2a pump (SERCA2a ) and ryanodine receptor (RyR2 ) function. Administration of anti-TWEAK antibody after reperfusion significantly improved alterations in Ca2+ cycling and arrhythmogenic events and prevented SERCA2a and RyR2 modifications. In conclusion, this study establishes the relevance of the TWEAK-Fn14 pathway in cardiac dysfunction linked to CRS3, both as a predictor of mortality in patients with AKI and as a Ca2+ mishandling inducer in cardiomyocytes, and highlights the cardioprotective benefits of TWEAK targeting in CRS3. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Lesión Renal Aguda , Calcio , Humanos , Ratones , Animales , Calcio/metabolismo , Receptor de TWEAK/metabolismo , Estudios Retrospectivos , Citocina TWEAK/metabolismo , Factores de Necrosis Tumoral/metabolismo , Miocitos Cardíacos/metabolismo , Lesión Renal Aguda/metabolismo
6.
Microbiol Spectr ; 10(6): e0317222, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36321903

RESUMEN

Autophagy is a natural defense mechanism that protects the host against pathogens. We previously demonstrated that mycobacterial infection upregulated tumor necrosis factor-like weak inducer of apoptosis (TWEAK) to promote autophagy and mycobacterial autophagosome maturation through activation of AMP-activated protein kinase (AMPK). Fibroblast growth factor-inducible 14 (Fn14) is the receptor of TWEAK. But the role of Fn14 in mycobacterial infection remains elusive. Herein, we observed increased expression of Fn14 in peripheral blood mononuclear cells of active tuberculosis (TB) patients. Downregulation of cellular Fn14 enhanced mycobacterial survival in macrophages. Conversely, Fn14 overexpression inhibited mycobacterial growth, suggesting that Fn14 can inhibit mycobacterial infection. The in vitro results revealed that TWEAK-promoted mycobacterial phagosome maturation is Fn14-dependent. We demonstrated that TWEAK-Fn14 signaling promotes oxidative stress to enhance the expression of stromal interaction molecule 1 (STIM1) and its activation of the Ca2+ channel ORAI1. Elevated calcium influx stimulated the activation of CaMCCK2 (calcium/calmodulin-dependent protein kinase kinase 2) and its downstream effector AMPK, thus inducing autophagy in early infection. Persistently TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. Genetic Fn14 deficiency or TWEAK blockers decreased oxidative stress-induced calcium influx, thus suppressing autophagy and cell death in mycobacteria-infected macrophages, and resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. Our results offer a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection. IMPORTANCE Tuberculosis remains a major cause of morbidity and mortality worldwide. We previously demonstrated a relationship between TWEAK and activation of the autophagic machinery, which promotes anti-mycobacterial immunity. The TWEAK-Fn14 axis is multi-functional and involved in the pathogenesis of many diseases, thus blockade of TWEAK-Fn14 axis has been considered as a potential therapeutic target. Here, we demonstrated that the TWEAK-Fn14 axis plays a novel role in anti-mycobacterial infection by regulating calcium-associated autophagy. Persistently, TWEAK-Fn14 signaling caused cell death in late infection by reducing mitochondrial membrane potential, leading to mitochondrial ROS accumulation, and activating cell death-associated proteins. TWEAK blocker or Fn14 deficiency could suppress oxidative stress and calcium-associated autophagy, resulting in elevated mycobacterial survival. We propose that the TWEAK-Fn14 axis and calcium influx could be manipulated for anti-TB therapeutic purposes. This study offers a new molecular machinery to understand the association between the TWEAK-Fn14 axis, calcium influx, and mycobacterial infection.


Asunto(s)
Calcio , Citocina TWEAK , Mycobacterium , Receptor de TWEAK , Humanos , Proteínas Quinasas Activadas por AMP , Autofagia , Muerte Celular , Leucocitos Mononucleares , Macrófagos/metabolismo , Mycobacterium/metabolismo , Especies Reactivas de Oxígeno , Factor de Necrosis Tumoral alfa , Receptor de TWEAK/metabolismo , Citocina TWEAK/metabolismo
7.
Front Endocrinol (Lausanne) ; 13: 909201, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35898446

RESUMEN

Objective: Obesity is characterized by a low-grade inflammatory state in adipose tissue. Tumor Necrosis Factor Weak Inducer of Apoptosis (TWEAK) and Cluster of Differentiation 163 (CD163) are cytokines potentially involved in the pathogenesis of obesity. Little is known about them in children. The aim of this study was to observe serum levels of TWEAK and CD163 in prepubertal children with obesity compared to lean, and to evaluate its changes after a 2-year intervention program in children with obesity. Methods: Case-control study with a prospective follow-up of cases for 2 years in a referral pediatric endocrine outpatient centre. Seventy-three prepubertal children with obesity, and forty-seven age- and gender-matched lean controls were studied. Sixty-two cases finished the program. Anthropometric parameters, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), lipid profile, and concentrations of TWEAK and CD163 were determined. Children with obesity were re-evaluated after a 2-year intervention program consisting of diet and exercise. Weight loss was considered if z-score Body Mass Index (BMI) decreased at least 0.5 Standard Deviations (SD). Results: We observed higher CD163 levels in children with obesity compared to controls. No significant differences were observed in TWEAK and CD163/TWEAK ratio at baseline. After the 2-year intervention program, TWEAK levels were higher and CD163/TWEAK ratio was lower in children with weight loss than those without weight loss. CD163 decreased in both groups. Conclusion: TWEAK and CD163 seem to have a role in the pathogenesis of obesity in prepubertal children.


Asunto(s)
Citocina TWEAK/metabolismo , Citocinas , Obesidad Infantil , Antígenos CD , Antígenos de Diferenciación Mielomonocítica , Estudios de Casos y Controles , Niño , Humanos , Obesidad Infantil/terapia , Estudios Prospectivos , Receptores de Superficie Celular , Pérdida de Peso
8.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35169075

RESUMEN

Thin endometrium has been widely recognized as a critical cause of infertility, recurrent pregnancy loss, and placental abnormalities; however, access to effective treatment is a formidable challenge due to the rudimentary understanding of the pathogenesis of thin endometrium. Here, we profiled the transcriptomes of human endometrial cells at single-cell resolution to characterize cell types, their communications, and the underlying mechanism of endometrial growth in normal and thin endometrium during the proliferative phase. Stromal cells were the most abundant cell type in the endometrium, with a subpopulation of proliferating stromal cells whose cell cycle signaling pathways were compromised in thin endometrium. Both single-cell RNA sequencing and experimental verification revealed cellular senescence in the stroma and epithelium accompanied by collagen overdeposition around blood vessels. Moreover, decreased numbers of macrophages and natural killer cells further exacerbated endometrial thinness. In addition, our results uncovered aberrant SEMA3, EGF, PTN, and TWEAK signaling pathways as causes for the insufficient proliferation of the endometrium. Together, these data provide insight into therapeutic strategies for endometrial regeneration and growth to treat thin endometrium.


Asunto(s)
Endometrio/metabolismo , Endometrio/patología , Endometrio/fisiología , Proteínas Portadoras/metabolismo , Citocina TWEAK/metabolismo , Citocinas/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Células Epiteliales/metabolismo , Epitelio , Femenino , Expresión Génica/genética , Humanos , Infertilidad Femenina/etiología , Infertilidad Femenina/fisiopatología , Semaforina-3A/genética , Semaforina-3A/metabolismo , Transducción de Señal/genética , Análisis de la Célula Individual , Células del Estroma/metabolismo , Transcriptoma/genética
9.
Sci Rep ; 11(1): 22058, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764367

RESUMEN

Hypoxia is linked to an inflammatory imbalance in obstructive sleep apnea syndrome (OSAS). Circulating soluble tumor necrosis factor (TNF)-like weak inducer of apoptosis (sTWEAK) is a cytokine that regulates inflammation and insulin resistance in adipose tissue. This study first investigated sTWEAK concentrations in patients OSAS and evaluated associations between sTWEAK concentrations and visceral adiposity, metabolic dysfunction, and hypoxia observed in OSAS. Forty age, sex, and body mass index-matched patients with simple habitual snoring (HSS) and 70 patients with OSAS were included. Patients were divided according to OSAS severity: mild-moderate (apnea-hypopnea index, AHI 5-30 events/h) and severe (AHI ≥ 30 events/h). Anthropometric data, glucose metabolism, visceral fat (VF) ratio, and sTWEAK levels were compared. sTWEAK levels were higher in the OSAS group than in the HSS group (931.23 ± 136.48 vs. 735.22 ± 102.84 ng/L, p = 0.001). sTWEAK levels were higher in severe OSAS than in mild-moderate OSAS (1031.83 ± 146.69 vs. 891.01 ± 110.01 ng/L, p = 0.002. When we evaluated the sTWEAK value and AHI, VF ratio, total cholesterol, blood pressure, homeostasis model of assessment-insulin resistance, and high-sensitivity C-reactive protein using multiple regression analysis, a significant correlation was found between sTWEAK levels and AHI (p < 0.001). It was found that sTWEAK levels were not correlated with glucose metabolism and VF ratio. Increased circulating sTWEAK levels were associated with the severity of OSAS. High sTWEAK levels were correlated with increased AHI. sTWEAK concentrations are linked to severe OSAS.


Asunto(s)
Adiposidad , Citocina TWEAK/sangre , Grasa Intraabdominal/fisiopatología , Apnea Obstructiva del Sueño/sangre , Adulto , Índice de Masa Corporal , Citocina TWEAK/metabolismo , Femenino , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Grasa Intraabdominal/metabolismo , Masculino , Persona de Mediana Edad , Apnea Obstructiva del Sueño/metabolismo , Apnea Obstructiva del Sueño/fisiopatología
10.
Theranostics ; 11(19): 9431-9451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646379

RESUMEN

The immunosuppressive, inflammatory microenvironment orchestrated by neutrophil extracellular traps (NETs) plays a principal role in pathogenesis of sepsis. Fibroblast growth factor-inducible molecule 14 (Fn14) has been established as a potential target for septic acute kidney injury (AKI), making further therapeutic benefits from combined NETs and Fn14 blockade possible. Methods: The concurrence of NETs and Fn14 in mice and patients with septic AKI were assessed by immunofluorescence, immunohistochemistry, enzyme-linked immunosorbent assay (ELISA) and in silico studies. Survival, histopathological and biochemical analyses of wild-type and PAD4-deficient CMV-Cre; PAD4 fl/fl mice with septic AKI were applied to evaluate the efficacy of either pharmacological or genetic NETs interruption in combination with Fn14 blockade. Molecular mechanisms underlying such effects were determined by CRISPR technology, fluorescence-activated cell sorter analysis (FACS), cycloheximide (CHX) pulse-chase, luciferase reporter and chromatin immunoprecipitation (ChIP) assay. Results: NETs formation is concurred with Fn14 upregulation in murine AKI models of abdominal, endotoxemic, multidrug-resistant sepsis as well as in serum samples of patients with septic AKI. Pharmacological or genetic interruption of NETs formation synergizes with ITEM-2, a monoclonal antibody (mAb) of Fn14, to prolong mice survival and provide renal protection against abdominal sepsis, the effects that could be abrogated by elimination of macrophages. Interrupting NETs formation predominantly perpetuates infiltration and survival of efferocytic growth arrest-specific protein 6+ (GAS6+) macrophages in combination with ITEM-2 therapy and enhances transcription of tubular cell-intrinsic Fn14 in a DNA methyltransferase 3a (DNMT3a)-independent manner through dismantling the proteasomes-mediated turnover of homeobox protein Hox-A5 (HOXA5) upon abdominal sepsis challenge or LPS stimuli. Pharmacological NETs interruption potentiates the anti-septic AKI efficacy of ITEM-2 in murine models of endotoxemic and multidrug-resistant sepsis. Conclusion: Our preclinical data propose that interrupting NETs formation in combination with Fn14 mAb might be a feasible therapeutic strategy for septic AKI.


Asunto(s)
Lesión Renal Aguda/metabolismo , Trampas Extracelulares/fisiología , Proteínas de Homeodominio/metabolismo , Receptor de TWEAK/metabolismo , Lesión Renal Aguda/fisiopatología , Animales , Apoptosis , Citocina TWEAK/metabolismo , Citocina TWEAK/fisiología , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Femenino , Humanos , Riñón/patología , Túbulos Renales/patología , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neutrófilos/metabolismo , Sepsis/fisiopatología , Receptor de TWEAK/fisiología
11.
Int J Mol Sci ; 22(18)2021 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-34575874

RESUMEN

Intestinal injury caused by ionizing radiation (IR) is a main clinical issue for patients with cancer receiving abdominal or pelvic radiotherapy. Melatonin (N-acetyl-5-methoxytryptamine) is a neurohormone that the pineal gland in the brain normally secretes. The study aimed to disclose the potential function of melatonin in intestinal injury induced by IR and its mechanism. Pretreatment with melatonin enhanced the 30-day survival rate of the irradiated mice and promoted the recovery of the intestinal epithelium and hematopoietic function following abdominal irradiation (ABI). Melatonin altered the gene profile of the small intestines from mice following ABI. The enriched biological process terms for melatonin treatment prior to radiation were mainly involved in the immune process. LPS/IL-1-mediated inhibition of RXR Function, TWEAK signaling, and Toll-like receptor signaling were the most activated canonical pathways targeted by melatonin. An upstream analysis network showed that Tripartite motif-containing 24 (TRIM24) was the most significantly inhibited and S100 calcium binding protein A9 (S100A9) activated. TRIM24 activated atherogenesis and cell viability in breast cancer cell lines and S100A9 inhibited the metabolism of amino acids. Melatonin has radioprotective effects on ABI-caused intestinal injury. The mechanisms behind the beneficial effects of melatonin were involved in activation of the immunity. It is necessary to conduct further experiments to explore the underlying mechanisms.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteínas Portadoras/genética , Intestinos/lesiones , Melatonina/farmacología , Proteínas Nucleares/genética , Factores de Transcripción/genética , Abdomen/efectos de la radiación , Animales , Calgranulina B/metabolismo , Proteínas Portadoras/metabolismo , Supervivencia Celular , Citocina TWEAK/metabolismo , Daño del ADN/efectos de la radiación , Femenino , Rayos gamma/efectos adversos , Hematopoyesis/efectos de la radiación , Humanos , Linfocitos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Fenotipo , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Radiación Ionizante , Receptores X Retinoide/metabolismo , Factores de Transcripción/metabolismo , Irradiación Corporal Total
12.
J Am Soc Nephrol ; 32(8): 1913-1932, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34155062

RESUMEN

BACKGROUND: In autosomal dominant polycystic kidney disease (ADPKD), cyst development and enlargement lead to ESKD. Macrophage recruitment and interstitial inflammation promote cyst growth. TWEAK is a TNF superfamily (TNFSF) cytokine that regulates inflammatory responses, cell proliferation, and cell death, and its receptor Fn14 (TNFRSF12a) is expressed in macrophage and nephron epithelia. METHODS: To evaluate the role of the TWEAK signaling pathway in cystic disease, we evaluated Fn14 expression in human and in an orthologous murine model of ADPKD. We also explored the cystic response to TWEAK signaling pathway activation and inhibition by peritoneal injection. RESULTS: Meta-analysis of published animal-model data of cystic disease reveals mRNA upregulation of several components of the TWEAK signaling pathway. We also observed that TWEAK and Fn14 were overexpressed in mouse ADPKD kidney cysts, and TWEAK was significantly high in urine and cystic fluid from patients with ADPKD. TWEAK administration induced cystogenesis and increased cystic growth, worsening the phenotype in a murine ADPKD model. Anti-TWEAK antibodies significantly slowed the progression of ADPKD, preserved renal function, and improved survival. Furthermore, the anti-TWEAK cystogenesis reduction is related to decreased cell proliferation-related MAPK signaling, decreased NF-κB pathway activation, a slight reduction of fibrosis and apoptosis, and an indirect decrease in macrophage recruitment. CONCLUSIONS: This study identifies the TWEAK signaling pathway as a new disease mechanism involved in cystogenesis and cystic growth and may lead to a new therapeutic approach in ADPKD.


Asunto(s)
Citocina TWEAK/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Receptor de TWEAK/metabolismo , Adulto , Animales , Anticuerpos Neutralizantes/farmacología , Apoptosis , Proliferación Celular/efectos de los fármacos , Quistes/metabolismo , Quistes/patología , Citocina TWEAK/antagonistas & inhibidores , Citocina TWEAK/genética , Citocina TWEAK/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Fibrosis , Expresión Génica , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos , Masculino , Ratones , Persona de Mediana Edad , FN-kappa B/metabolismo , Riñón Poliquístico Autosómico Dominante/fisiopatología , Transducción de Señal , Receptor de TWEAK/genética
13.
Cell Death Dis ; 12(7): 649, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34172716

RESUMEN

Endothelial-mesenchymal transition (EndMT) is an important source of cancer-associated fibroblasts (CAFs), which facilitates tumour progression. PDAC is characterised by abundant CAFs and tumour necrosis factor-α (TNF-α). Here, we show that TNF-α strongly induces human endothelial cells to undergo EndMT. Interestingly, TNF-α strongly downregulates the expression of the endothelial receptor TIE1, and reciprocally TIE1 overexpression partially prevents TNF-α-induced EndMT, suggesting that TNF-α acts, at least partially, through TIE1 regulation in this process. We also show that TNF-α-induced EndMT is reversible. Furthermore, TNF-α treatment of orthotopic mice resulted in an important increase in the stroma, including CAFs. Finally, secretome analysis identified TNFSF12, as a regulator that is also present in PDAC patients. With the aim of restoring normal angiogenesis and better access to drugs, our results support the development of therapies targeting CAFs or inducing the EndMT reversion process in PDAC.


Asunto(s)
Fibroblastos Asociados al Cáncer/efectos de los fármacos , Carcinoma Ductal Pancreático/patología , Células Endoteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias Pancreáticas/patología , Factor de Necrosis Tumoral alfa/farmacología , Animales , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Células Cultivadas , Citocina TWEAK/genética , Citocina TWEAK/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Masculino , Ratones Transgénicos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor TIE-1/genética , Receptor TIE-1/metabolismo , Factores de Transcripción de la Familia Snail/genética , Factores de Transcripción de la Familia Snail/metabolismo , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/metabolismo
14.
J Biochem Mol Toxicol ; 35(8): e22829, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34047412

RESUMEN

Doxorubicin (DOX) is an important chemotherapeutic drug. Cardiotoxicity diminishes its clinical efficacy. We aimed to focus on the mechanism of DOX-induced cardiotoxicity, in addition, to evaluate curcumin's protective effect against it. Twenty-eight rats were divided into the normal control group I, curcumin-treated (200 mg/kg body weight [b.w.]) group II, DOX-treated (4 mg/kg b.w.) group III, and DOX + curcumin group IV. Cardiac injury markers, heart tissue oxidative stress indices, interferon-gamma (INF-γ), tumor necrosis factor-like weak inducer of apoptosis (TWEAK), upregulated modulator of apoptosis (PUMA), p53 and nuclear factor kappa-B p65 (NF-κB p65) levels as well as messenger RNA gene expression of Rac1 and fibroblast growth factor-inducible protein 14 (Fn14) were assayed, besides the assay of DNA damage, histopathological changes, survivin immunohistochemistry and electron microscopic examination. Curcumin significantly downregulated Rac1 and Fn14 gene expression and significantly decreased p53, NF-κB p65, INF-γ, and PUMA levels in the cardiac tissue. In addition, curcumin improved oxidative stress indices, DNA damage, and cardiac toxicity markers in the form of lactate dehydrogenase (LD), creatine kinase isoenzyme-MB (CK-MB), and cardiac troponin-I (cTn-I). Meanwhile, upregulated antiapoptotic marker survivin was observed. Light and electron microscopic findings confirmed our biochemical and molecular outcomes. The current study established the antioxidant, anti-inflammatory, and antiapoptotic roles of curcumin against DOX cardiotoxicity.


Asunto(s)
Cardiotoxicidad , Curcumina/farmacología , Citocina TWEAK/metabolismo , Doxorrubicina/efectos adversos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor de TWEAK/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Animales , Cardiotoxicidad/metabolismo , Cardiotoxicidad/prevención & control , Doxorrubicina/farmacología , Masculino , Ratas
15.
J Allergy Clin Immunol ; 147(6): 2225-2235, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33705829

RESUMEN

BACKGROUND: Psoriasis is a chronic inflammatory skin disease with disturbed interplay between immune cells and keratinocytes. A strong IFN-γ signature is characteristic for psoriasis skin, but the role of IFN-γ has been elusive. MicroRNAs are short RNAs regulating gene expression. OBJECTIVE: Our aim was to investigate the role of miR-149 in psoriasis and in the inflammatory responses of keratinocytes. METHODS: miR-149 expression was measured by quantitative RT-PCR in keratinocytes isolated from healthy skin and lesional and nonlesional psoriasis skin. Synthetic miR-149 was injected intradermally into the back skin of mice, and imiquimod was applied to induce psoriasis-like skin inflammation, which was then evaluated at the morphologic, histologic, and molecular levels. miR-149 was transiently overexpressed or inhibited in keratinocytes in combination with IFN-γ- and/or TNF-related weak inducer of apoptosis (TWEAK)-treatment. RESULTS: Here we report a microRNA-mediated mechanism by which IFN-γ primes keratinocytes to inflammatory stimuli. Treatment with IFN-γ results in a rapid and long-lasting suppression of miR-149 in keratinocytes. Depletion of miR-149 in keratinocytes leads to widespread transcriptomic changes and induction of inflammatory mediators with enrichment of the TWEAK pathway. We show that IFN-γ-mediated suppression of miR-149 leads to amplified inflammatory responses to TWEAK. TWEAK receptor (TWEAKR/Fn14) is identified as a novel direct target of miR-149. The in vivo relevance of this pathway is supported by decreased miR-149 expression in psoriasis keratinocytes, as well as by the protective effect of synthetic miR-149 in the imiquimod-induced mouse model of psoriasis. CONCLUSION: Our data define a new mechanism, in which IFN-γ primes keratinocytes for TWEAK-induced inflammatory responses through suppression of miR-149, promoting skin inflammation.


Asunto(s)
Citocina TWEAK/metabolismo , Regulación de la Expresión Génica , Interferón gamma/metabolismo , MicroARNs/genética , Psoriasis/etiología , Psoriasis/metabolismo , Transducción de Señal , Animales , Apoptosis/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Queratinocitos/metabolismo , Ratones , Psoriasis/patología
16.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33526652

RESUMEN

Identifying molecular mediators of neural circuit development and/or function that contribute to circuit dysfunction when aberrantly reengaged in neurological disorders is of high importance. The role of the TWEAK/Fn14 pathway, which was recently reported to be a microglial/neuronal axis mediating synaptic refinement in experience-dependent visual development, has not been explored in synaptic function within the mature central nervous system. By combining electrophysiological and phosphoproteomic approaches, we show that TWEAK acutely dampens basal synaptic transmission and plasticity through neuronal Fn14 and impacts the phosphorylation state of pre- and postsynaptic proteins in adult mouse hippocampal slices. Importantly, this is relevant in two models featuring synaptic deficits. Blocking TWEAK/Fn14 signaling augments synaptic function in hippocampal slices from amyloid-beta-overexpressing mice. After stroke, genetic or pharmacological inhibition of TWEAK/Fn14 signaling augments basal synaptic transmission and normalizes plasticity. Our data support a glial/neuronal axis that critically modifies synaptic physiology and pathophysiology in different contexts in the mature brain and may be a therapeutic target for improving neurophysiological outcomes.


Asunto(s)
Degeneración Nerviosa/metabolismo , Transducción de Señal , Accidente Cerebrovascular/metabolismo , Sinapsis/metabolismo , Receptor de TWEAK/metabolismo , Animales , Citocina TWEAK/metabolismo , Modelos Animales de Enfermedad , Femenino , Hipocampo/fisiopatología , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Degeneración Nerviosa/fisiopatología , Plasticidad Neuronal/fisiología , Terminales Presinápticos/metabolismo , Accidente Cerebrovascular/fisiopatología , Transmisión Sináptica/fisiología
17.
Genes (Basel) ; 12(2)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578738

RESUMEN

Cognitive dysfunction and mood changes are prevalent and especially taxing issues for patients with systemic lupus erythematosus (SLE). Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and its cognate receptor Fn14 have been shown to play an important role in neurocognitive dysfunction in murine lupus. We profiled and compared gene expression in the cortices of MRL/+, MRL/lpr (that manifest lupus-like phenotype) and MRL/lpr-Fn14 knockout (Fn14ko) adult female mice to determine the transcriptomic impact of TWEAK/Fn14 on cortical gene expression in lupus. We found that the TWEAK/Fn14 pathway strongly affects the expression level, variability and coordination of the genomic fabrics responsible for neurotransmission and chemokine signaling. Dysregulation of the Phosphoinositide 3-kinase (PI3K)-AKT pathway in the MRL/lpr lupus strain compared with the MRL/+ control and Fn14ko mice was particularly prominent and, therefore, promising as a potential therapeutic target, although the complexity of the transcriptomic fabric highlights important considerations in in vivo experimental models.


Asunto(s)
Citocina TWEAK/genética , Vasculitis por Lupus del Sistema Nervioso Central/genética , Fosfatidilinositol 3-Quinasas/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transmisión Sináptica/genética , Receptor de TWEAK/genética , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Animales , Quimiocinas/genética , Quimiocinas/metabolismo , Citocina TWEAK/metabolismo , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Vasculitis por Lupus del Sistema Nervioso Central/metabolismo , Vasculitis por Lupus del Sistema Nervioso Central/fisiopatología , Ratones , Ratones Endogámicos MRL lpr , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Receptor de TWEAK/metabolismo , Transcriptoma
18.
Phytother Res ; 35(6): 3205-3213, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33580595

RESUMEN

The present study sought to evaluate the effect of resveratrol supplementation on mRNA expression levels of peroxisome proliferator-activated receptor alpha (PPARα), p53, p21, p16, and serum levels of cluster of differentiation 163 (CD163) to TNF-like weak inducer of apoptosis (TWEAK) ratio in patients with type 2 diabetes. In this double-blind randomized controlled trial, 71 patients were randomly assigned to receive either 1,000 mg of trans-resveratrol or placebo (methyl cellulose) for 8 weeks. Expression levels of genes of interest, and serum levels of sCD163 and sTWEAK were assessed at baseline and at the end of the study. Resveratrol supplementation significantly increased mRNA expression levels of p53 and p21 genes, compared with the placebo group (fold change of p53 = 1.29, p = .04; fold change of p21 = 1.46, p = .006). However, no significant effect on expression levels of PPARα and p16 genes was observed after supplementation. In addition, resveratrol significantly reduced serum levels of sCD163/sTWEAK ratio compared with the placebo group (p = .003). Resveratrol supplementation resulted in significant changes in p53 and p21 genes expression, while serum levels of sCD163/sTWEAK ratio also improved in the resveratrol group, without any significant change in adjusted sCD163 levels. More research is needed to confirm the beneficial effects of resveratrol for patients with diabetes.


Asunto(s)
Citocina TWEAK/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Suplementos Dietéticos , Resveratrol/farmacología , Adulto , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Diabetes Mellitus Tipo 2/sangre , Método Doble Ciego , Femenino , Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , PPAR alfa/metabolismo , Receptores de Superficie Celular/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
19.
J Pathol ; 254(1): 5-19, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33512736

RESUMEN

There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Síndrome Cardiorrenal/metabolismo , Citocina TWEAK/metabolismo , Receptor de TWEAK/metabolismo , Animales , Síndrome Cardiorrenal/patología , Corazón , Humanos , Riñón/metabolismo , Riñón/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...