Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70.820
Filtrar
1.
Curr Protoc ; 4(5): e1042, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38767195

RESUMEN

Biochemical fractionation is a technique used to isolate and separate distinct cellular compartments, critical for dissecting cellular mechanisms and molecular pathways. Herein we outline a biochemical fraction methodology for isolation of ultra-pure nuclei and cytoplasm. This protocol utilizes hypotonic lysis buffer to suspend cells, coupled with a calibrated centrifugation strategy, for enhanced separation of cytoplasm from the nuclear fraction. Subsequent purification steps ensure the integrity of the isolated nuclear fraction. Overall, this method facilitates accurate protein localization, essential for functional studies, demonstrating its efficacy in separating cellular compartments. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Biochemical fractionation Support Protocol 1: Protein quantification using Bradford assay Support Protocol 2: SDS/PAGE and Western blotting.


Asunto(s)
Fraccionamiento Celular , Núcleo Celular , Citoplasma , Citoplasma/metabolismo , Citoplasma/química , Núcleo Celular/metabolismo , Núcleo Celular/química , Fraccionamiento Celular/métodos , Humanos , Electroforesis en Gel de Poliacrilamida , Western Blotting
2.
Nat Commun ; 15(1): 3901, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724505

RESUMEN

Activation of the NF-κB pathway is strictly regulated to prevent excessive inflammatory and immune responses. In a well-known negative feedback model, IκBα-dependent NF-κB termination is a delayed response pattern in the later stage of activation, and the mechanisms mediating the rapid termination of active NF-κB remain unclear. Here, we showed IκBα-independent rapid termination of nuclear NF-κB mediated by CLK2, which negatively regulated active NF-κB by phosphorylating the RelA/p65 subunit of NF-κB at Ser180 in the nucleus to limit its transcriptional activation through degradation and nuclear export. Depletion of CLK2 increased the production of inflammatory cytokines, reduced viral replication and increased the survival of the mice. Mechanistically, CLK2 phosphorylated RelA/p65 at Ser180 in the nucleus, leading to ubiquitin‒proteasome-mediated degradation and cytoplasmic redistribution. Importantly, a CLK2 inhibitor promoted cytokine production, reduced viral replication, and accelerated murine psoriasis. This study revealed an IκBα-independent mechanism of early-stage termination of NF-κB in which phosphorylated Ser180 RelA/p65 turned off posttranslational modifications associated with transcriptional activation, ultimately resulting in the degradation and nuclear export of RelA/p65 to inhibit excessive inflammatory activation. Our findings showed that the phosphorylation of RelA/p65 at Ser180 in the nucleus inhibits early-stage NF-κB activation, thereby mediating the negative regulation of NF-κB.


Asunto(s)
Citoplasma , Inhibidor NF-kappaB alfa , FN-kappa B , Proteínas Tirosina Quinasas , Factor de Transcripción ReIA , Animales , Fosforilación , Inhibidor NF-kappaB alfa/metabolismo , Inhibidor NF-kappaB alfa/genética , Ratones , Factor de Transcripción ReIA/metabolismo , Humanos , Proteínas Tirosina Quinasas/metabolismo , Proteínas Tirosina Quinasas/genética , FN-kappa B/metabolismo , Citoplasma/metabolismo , Proteolisis , Núcleo Celular/metabolismo , Replicación Viral , Células HEK293 , Transducción de Señal , Ratones Endogámicos C57BL , Citocinas/metabolismo , Transporte Activo de Núcleo Celular , Proteínas Serina-Treonina Quinasas
3.
Biochem Biophys Res Commun ; 718: 149981, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38735134

RESUMEN

In animal cells, vacuoles are absent, but can be induced by diseases and drugs. While phosphoinositides are critical for membrane trafficking, their role in the formation of these vacuoles remains unclear. The immunosuppressive KRP203/Mocravimod, which antagonizes sphingosine-1-phosphate receptors, has been identified as having novel multimodal activity against phosphoinositide kinases. However, the impact of this novel KRP203 activity is unknown. Here, we show that KRP203 disrupts the spatial organization of phosphoinositides and induces extensive vacuolization in tumor cells and immortalized fibroblasts. The KRP203-induced vacuoles are primarily from endosomes, and augmented by inhibition of PIKFYVE and VPS34. Conversely, overexpression of PTEN decreased KRP203-induced vacuole formation. Furthermore, V-ATPase inhibition completely blunted KRP203-induced vacuolization, pointing to a critical requirement of the endosomal maturation process. Importantly, nearly a half of KRP203-induced vacuoles are significantly decorated with PI4P, a phosphoinositide typically enriched at the plasma membrane and Golgi. These results suggest a model that noncanonical spatial reorganization of phosphoinositides by KRP203 alters the endosomal maturation process, leading to vacuolization. Taken together, this study reveals a previously unrecognized bioactivity of KRP203 as a vacuole-inducing agent and its unique mechanism of phosphoinositide modulation, providing a new insight of phosphoinositide regulation into vacuolization-associated diseases and their molecular pathologies.


Asunto(s)
Endosomas , Fosfohidrolasa PTEN , Fosfatidilinositoles , Vacuolas , Vacuolas/metabolismo , Vacuolas/efectos de los fármacos , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Humanos , Fosfatidilinositoles/metabolismo , Animales , Fosfohidrolasa PTEN/metabolismo , Fosfohidrolasa PTEN/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/metabolismo , Fosfatidilinositol 3-Quinasas Clase III/genética , Ratones , Morfolinas/farmacología , ATPasas de Translocación de Protón Vacuolares/metabolismo , ATPasas de Translocación de Protón Vacuolares/antagonistas & inhibidores , ATPasas de Translocación de Protón Vacuolares/genética , Citoplasma/metabolismo , Células HeLa , Aminopiridinas , Compuestos Heterocíclicos con 3 Anillos
4.
Reprod Biol Endocrinol ; 22(1): 55, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745305

RESUMEN

The role of cytoplasmic fragmentation in human embryo development and reproductive potential is widely recognized, albeit without standard definition nor agreed upon implication. While fragmentation is best understood to be a natural process across species, the origin of fragmentation remains incompletely understood and likely multifactorial. Several factors including embryo culture condition, gamete quality, aneuploidy, and abnormal cytokinesis seem to have important role in the etiology of cytoplasmic fragmentation. Fragmentation reduces the volume of cytoplasm and depletes embryo of essential organelles and regulatory proteins, compromising the developmental potential of the embryo. While it has been shown that degree of fragmentation and embryo implantation potential are inversely proportional, the degree, pattern, and distribution of fragmentation as it relates to pregnancy outcome is debated in the literature. This review highlights some of the challenges in analysis of fragmentation, while revealing trends in our evolving knowledge of how fragmentation may relate to functional development of the human embryos, implantation, and pregnancy outcome.


Asunto(s)
Citoplasma , Desarrollo Embrionario , Resultado del Embarazo , Humanos , Femenino , Embarazo , Desarrollo Embrionario/fisiología , Citoplasma/metabolismo , Citoplasma/fisiología , Implantación del Embrión/fisiología
5.
Arch Virol ; 169(5): 98, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38619650

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman disease. The tegument is a structure that is unique to herpesviruses that includes host and viral proteins, including the viral ORF42 and ORF55 proteins. Alphaherpesvirus tegument proteins have been well studied, but much is unknown regarding KSHV. Here, we report an interaction between the ORF42 and ORF55 proteins. ORF55 interacted with and recruited ORF42 from the nucleus to the cytoplasm. When ORF42 and ORF55 were expressed simultaneously in cultured cells, the expression level of these two viral proteins was higher than when either was expressed independently. ORF55, but not ORF42, was polyubiquitinated, suggesting that an unidentified regulatory mechanism may be present. A recombinant virus with an ectopic stop codon in ORF42 exhibited normal replication of genomic DNA, but fewer virus particles were released with the recombinant than with the wild-type virus. A unique R136Q mutation in ORF42, which is found in a KSHV strain that is prevalent on Miyako Island, Okinawa Prefecture, Japan, further increased the expression of ORF42 and ORF55 when these proteins were expressed simultaneously. However, the ORF42 R136Q mutation did not affect the localization pattern of ORF42 itself or of ORF55. In addition, experiments with a recombinant virus possessing the ORF42 R136Q mutation showed lower levels of production of the mutant virus than of the wild-type virus, despite similar levels of genome replication. We suggest that the R136Q mutation in ORF42 plays an important role in ORF55 protein expression and virus production.


Asunto(s)
Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/genética , Citoplasma , Japón , Proteínas Virales/genética
6.
Cells ; 13(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38607017

RESUMEN

Proteolysis-targeting chimeras (PROTACs) describe compounds that bind to and induce degradation of a target by simultaneously binding to a ubiquitin ligase. More generally referred to as bifunctional degraders, PROTACs have led the way in the field of targeted protein degradation (TPD), with several compounds currently undergoing clinical testing. Alongside bifunctional degraders, single-moiety compounds, or molecular glue degraders (MGDs), are increasingly being considered as a viable approach for development of therapeutics, driven by advances in rational discovery approaches. This review focuses on drug discovery with respect to bifunctional and molecular glue degraders within the ubiquitin proteasome system, including analysis of mechanistic concepts and discovery approaches, with an overview of current clinical and pre-clinical degrader status in oncology, neurodegenerative and inflammatory disease.


Asunto(s)
Descubrimiento de Drogas , Oncología Médica , Citoplasma , Complejo de la Endopetidasa Proteasomal , Proteolisis , Ubiquitina
7.
Sci Adv ; 10(15): eadg7894, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608012

RESUMEN

During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.


Asunto(s)
Drosophila , Lagartos , Animales , Citoplasma , Células Germinativas , ARN Mensajero/genética , Recuento de Células
8.
Int J Biol Sci ; 20(6): 1978-1991, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38617536

RESUMEN

Loss of PTEN tumor suppressor is an important event during colorectal cancer (CRC) development and is a target for therapeutic exploitation. This study reports that bromodomain and extra-terminal motif (BET) is a synthetic lethal partner of PTEN in CRC. BET inhibition (BETi) selectively induced G1 cell cycle arrest and apoptosis in PTEN-/- CRC. Further, BETi selectively and dose-dependently suppressed the growth of PTEN-/- CRC tumor xenografts in mice and patient-derived organoids. Mechanistically, PTEN-deficient CRC cells elevated the level of cytoplasmic p21CIP1/WAF1 that is hyper-phosphorylated at Thr145 by AKT. BETi suppressed AKT activation in PTEN-deficient CRC cells, followed by the reduction in p21 phosphorylation at Thr145, thereby promoting its nuclear translocation. In addition, BETi suppressed MYC level and this in turn increased the total p21 level in the nuclei. Over-expression of a phospho-mimetic p21 mutant (T145D) significantly rescued the BETi effect on PTEN-deficient CRC. These results suggest that BETi has a dual action on p21: elevating the level of p21 by inhibiting MYC and converting the oncogenic (cytoplasmic) p21 into the tumor-suppressive (nuclear) p21 by inhibiting AKT. Taken together, this study identified the synthetic lethal interaction between PTEN and BET, and provides a potential actionable target for CRC with PTEN loss.


Asunto(s)
Neoplasias Colorrectales , Mutaciones Letales Sintéticas , Humanos , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt , Fosforilación , Citoplasma , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Fosfohidrolasa PTEN/genética
9.
J Math Biol ; 88(6): 72, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678110

RESUMEN

In this work, we formulate a random Wolbachia invasion model incorporating the effects of imperfect maternal transmission and incomplete cytoplasmic incompatibility (CI). Under constant environments, we obtain the following results: Firstly, the complete invasion equilibrium of Wolbachia does not exist, and thus the population replacement is not achievable in the case of imperfect maternal transmission; Secondly, imperfect maternal transmission or incomplete CI may obliterate bistability and backward bifurcation, which leads to the failure of Wolbachia invasion, no matter how many infected mosquitoes would be released; Thirdly, the threshold number of the infected mosquitoes to be released would increase with the decrease of the maternal transmission rate or the intensity of CI effect. In random environments, we investigate in detail the Wolbachia invasion dynamics of the random mosquito population model and establish the initial release threshold of infected mosquitoes for successful invasion of Wolbachia into the wild mosquito population. In particular, the existence and stability of invariant probability measures for the establishment and extinction of Wolbachia are determined.


Asunto(s)
Conceptos Matemáticos , Modelos Biológicos , Mosquitos Vectores , Wolbachia , Wolbachia/fisiología , Wolbachia/patogenicidad , Animales , Femenino , Mosquitos Vectores/microbiología , Dinámica Poblacional/estadística & datos numéricos , Citoplasma/microbiología , Culicidae/microbiología , Masculino , Simulación por Computador , Herencia Materna
10.
Genes Dev ; 38(7-8): 294-307, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38688681

RESUMEN

Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5' region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.


Asunto(s)
Citoplasma , Neuronas , ARN Largo no Codificante , ARN Mensajero , Animales , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ratones , Neuronas/metabolismo , Citoplasma/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Células Cultivadas , Diferenciación Celular , Péptidos/metabolismo , Péptidos/genética
11.
Biochemistry (Mosc) ; 89(Suppl 1): S34-S56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621743

RESUMEN

Mutations that disrupt the function of the DNA/RNA-binding protein FUS could cause amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. One of the key features in ALS pathogenesis is the formation of insoluble protein aggregates containing aberrant isoforms of the FUS protein in the cytoplasm of upper and lower motor neurons. Reproduction of human pathology in animal models is the main tool for studying FUS-associated pathology and searching for potential therapeutic agents for ALS treatment. In this review, we provide a systematic analysis of the role of FUS protein in ALS pathogenesis and an overview of the results of modelling FUS-proteinopathy in animals.


Asunto(s)
Esclerosis Amiotrófica Lateral , Animales , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Citoplasma/metabolismo , Mutación , Modelos Animales de Enfermedad
12.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612889

RESUMEN

The ubiquitin-proteasome system (UPS) is a pivotal cellular mechanism responsible for the selective degradation of proteins, playing an essential role in proteostasis, protein quality control, and regulating various cellular processes, with ubiquitin marking proteins for degradation through a complex, multi-stage process. The shuttle proteins family is a very unique group of proteins that plays an important role in the ubiquitin-proteasome system. Ddi1, Dsk2, and Rad23 are shuttle factors that bind ubiquitinated substrates and deliver them to the 26S proteasome. Besides mediating the delivery of ubiquitinated proteins, they are also involved in many other biological processes. Ddi1, the least-studied shuttle protein, exhibits unique physicochemical properties that allow it to play non-canonical functions in the cells. It regulates cell cycle progression and response to proteasome inhibition and defines MAT type of yeast cells. The Ddi1 contains UBL and UBA domains, which are crucial for binding to proteasome receptors and ubiquitin respectively, but also an additional domain called RVP. Additionally, much evidence has been provided to question whether Ddi1 is a classical shuttle protein. For many years, the true nature of this protein remained unclear. Here, we highlight the recent discoveries, which shed new light on the structure and biological functions of the Ddi1 protein.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Ubiquitina , Citoplasma , Proteínas Ubiquitinadas , División Celular , Saccharomyces cerevisiae
13.
Int Immunopharmacol ; 133: 112065, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38608448

RESUMEN

Signal transducer and activator of transcription 3 (STAT3) functions to regulate inflammation and immune response, but its mechanism is not fully understood. We report here that STAT3 inhibitors Stattic and Niclosamide up-regulated IL-1ß-induced IL-8 production in C33A, CaSki, and Siha cervical cancer cells. As expected, IL-1ß-induced IL-8 production was also up-regulated through the molecular inhibition of STAT3 by use of CRISPR/Cas9 technology. Unexpectedly, IL-1ß induced IL-8 production via activating ERK and P38 signal pathways, but neither STAT3 inhibitors nor STAT3 knockout affected IL-1ß-induced signal transduction, suggesting that STAT3 decreases IL-8 production not via inhibition of signal transduction. To our surprise, STAT3 inhibition increased the stabilization, and decreased the degradation of IL-8 mRNA, suggesting a post-transcriptional regulation of IL-1ß-induced IL-8. Moreover, Dihydrotanshinone I, an inhibitor of RNA-binding protein HuR, down-regulated IL-1ß-induced IL-8 dose-dependently. HuR inhibition by CRISPR/Cas9 also decreased IL-8 production induced by IL-1ß. Mechanistically, co-immunoprecipitation results showed that STAT3 did not react with HuR directly, but STAT3 inhibition increased the protein levels of HuR in cytoplasm. And IL-6 activation of STAT3 induced HuR cytoplasmic-nuclear transport. Taken together, these results suggest that STAT3 contributes to HuR nuclear localization and inhibits Il-1ß-induced IL-8 production through this non-transcriptional mechanism.


Asunto(s)
Núcleo Celular , Citoplasma , Proteína 1 Similar a ELAV , Interleucina-1beta , Interleucina-8 , Factor de Transcripción STAT3 , Humanos , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Interleucina-8/genética , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Citoplasma/metabolismo , Núcleo Celular/metabolismo , Línea Celular Tumoral , Óxidos S-Cíclicos/farmacología , Transporte de Proteínas , Transducción de Señal , Transporte Activo de Núcleo Celular , Sistemas CRISPR-Cas
14.
World J Microbiol Biotechnol ; 40(5): 153, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564115

RESUMEN

Ralstonia solanacearum, the bacterium that causes bacterial wilt, is a destructive phytopathogen that can infect over 450 different plant species. Several agriculturally significant crop plants, including eggplant, tomato, pepper, potato, and ginger, are highly susceptible to this plant disease, which has a global impact on crop quality and yield. There is currently no known preventive method that works well for bacterial wilt. Bacteria use two-component systems (TCSs) to sense their environment constantly and react appropriately. This is achieved by an extracellular sensor kinase (SK) capable of sensing a suitable signal and a cytoplasmic response regulator (RR) which gives a downstream response. Moreover, our investigation revealed that R. solanacearum GMI1000 possesses a substantial count of TCSs, specifically comprising 36 RRs and 27 SKs. While TCSs are known targets for various human pathogenic bacteria, such as Salmonella, the role of TCSs in R. solanacearum remains largely unexplored in this context. Notably, numerous inhibitors targeting TCSs have been identified, including GHL (Gyrase, Hsp, and MutL) compounds, Walk inhibitors, and anti-TCS medications like Radicicol. Consequently, the investigation into the involvement of TCSs in virulence and pathogenesis has gained traction; however, further research is imperative to ascertain whether TCSs could potentially supplant conventional anti-wilt therapies. This review delves into the prospective utilization of TCSs as an alternative anti-wilt therapy, focusing on the lethal phytopathogen R. solanacearum.


Asunto(s)
Ralstonia solanacearum , Humanos , Estudios Prospectivos , Bacterias , Citoplasma , Citosol
15.
Biochemistry ; 63(8): 1000-1015, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38577872

RESUMEN

PI31 (Proteasome Inhibitor of 31,000 Da) is a 20S proteasome binding protein originally identified as an in vitro inhibitor of 20S proteasome proteolytic activity. Recently reported cryo-electron microscopy structures of 20S-PI31 complexes have revealed that the natively disordered proline-rich C-terminus of PI31 enters the central chamber in the interior of the 20S proteasome and interacts directly with the proteasome's multiple catalytic threonine residues in a manner predicted to inhibit their enzymatic function while evading its own proteolysis. Higher eukaryotes express an alternative form of the 20S proteasome (termed "immuno-proteasome") that features genetically and functionally distinct catalytic subunits. The effect of PI31 on immuno-proteasome function is unknown. We examine the relative inhibitory effects of PI31 on purified constitutive (20Sc) and immuno-(20Si) 20S proteasomes in vitro and show that PI31 inhibits 20Si hydrolytic activity to a significantly lesser degree than that of 20Sc. Unlike 20Sc, 20Si hydrolyzes the carboxyl-terminus of PI31 and this effect contributes to the reduced inhibitory activity of PI31 toward 20Si. Conversely, loss of 20Sc inhibition by PI31 point mutants leads to PI31 degradation by 20Sc. These results demonstrate unexpected differential interactions of PI31 with 20Sc and 20Si and document their functional consequences.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Inhibidores de Proteasoma , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Microscopía por Crioelectrón , Proteínas/química , Citoplasma/metabolismo , Antivirales
16.
Biochemistry (Mosc) ; 89(Suppl 1): S205-S223, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621751

RESUMEN

The term "biomolecular condensates" is used to describe membraneless compartments in eukaryotic cells, accumulating proteins and nucleic acids. Biomolecular condensates are formed as a result of liquid-liquid phase separation (LLPS). Often, they demonstrate properties of liquid-like droplets or gel-like aggregates; however, some of them may appear to have a more complex structure and high-order organization. Membraneless microcompartments are involved in diverse processes both in cytoplasm and in nucleus, among them ribosome biogenesis, regulation of gene expression, cell signaling, and stress response. Condensates properties and structure could be highly dynamic and are affected by various internal and external factors, e.g., concentration and interactions of components, solution temperature, pH, osmolarity, etc. In this review, we discuss variety of biomolecular condensates and their functions in live cells, describe their structure variants, highlight domain and primary sequence organization of the constituent proteins and nucleic acids. Finally, we describe current advances in methods that characterize structure, properties, morphology, and dynamics of biomolecular condensates in vitro and in vivo.


Asunto(s)
Fenómenos Bioquímicos , Ácidos Nucleicos , Condensados Biomoleculares , Proteínas , Citoplasma
17.
J Cell Biol ; 223(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38587486

RESUMEN

ß-Coronaviruses remodel host endomembranes to form double-membrane vesicles (DMVs) as replication organelles (ROs) that provide a shielded microenvironment for viral RNA synthesis in infected cells. DMVs are clustered, but the molecular underpinnings and pathophysiological functions remain unknown. Here, we reveal that host fragile X-related (FXR) family proteins (FXR1/FXR2/FMR1) are required for DMV clustering induced by expression of viral non-structural proteins (Nsps) Nsp3 and Nsp4. Depleting FXRs results in DMV dispersion in the cytoplasm. FXR1/2 and FMR1 are recruited to DMV sites via specific interaction with Nsp3. FXRs form condensates driven by liquid-liquid phase separation, which is required for DMV clustering. FXR1 liquid droplets concentrate Nsp3 and Nsp3-decorated liposomes in vitro. FXR droplets facilitate recruitment of translation machinery for efficient translation surrounding DMVs. In cells depleted of FXRs, SARS-CoV-2 replication is significantly attenuated. Thus, SARS-CoV-2 exploits host FXR proteins to cluster viral DMVs via phase separation for efficient viral replication.


Asunto(s)
COVID-19 , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Liposomas , Proteínas de Unión al ARN , SARS-CoV-2 , Humanos , Proliferación Celular , Análisis por Conglomerados , COVID-19/metabolismo , COVID-19/virología , Citoplasma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células HeLa , Liposomas/metabolismo , Orgánulos , Proteínas de Unión al ARN/metabolismo , Proteínas no Estructurales Virales/metabolismo
18.
In Vivo ; 38(3): 1316-1324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38688649

RESUMEN

BACKGROUND/AIM: Our objectives in this study were to (i) evaluate the clinical significance of X-box-binding protein 1 (XBP1) expression in cases of hepatocellular carcinoma (HCC) and (ii) assess the potential of XBP1 to be used as a prognostic biomarker. PATIENTS AND METHODS: The expression of XBP1 protein in 267 HCC tissue specimens was measured using immunohistochemistry in order to characterize the associations among XBP1 expression, clinicopathological factors and survival outcomes. Survival analysis using follow-up data was used to assess the prognostic value of XBP1 in cases of HCC. Immunohistochemistry revealed a significant decrease in cytoplasmic XBP1 protein expression in HCC tumor tissue. RESULTS: Immunoreactivity results showed that low cytoplasmic XBP1 expression was significantly associated with vascular invasion, as well as poor 5-year overall survival and long-term disease-specific (DSS) and disease-free (DFS) survival rates. Kaplan-Meier survival curves further confirmed a significant association between low cytoplasmic XBP1 protein expression and poor DSS and DFS. Univariate and multivariate analyses revealed that XBP1 expression, tumor differentiation, vascular invasion, tumor stage, and the rate of recurrence were linked to DSS, while low cytoplasmic XBP1 expression remained an independent predictor of poor DSS. Our analysis also revealed that XBP1 expression, tumor differentiation, vascular invasion, and T classification were linked to DFS, while low cytoplasmic XBP1 expression remained an independent predictor of poor DFS. CONCLUSION: Low cytoplasmic XBP1 protein expression may play an important role in the pathogenesis of HCC, which suggests that XBP1 could potentially be targeted to benefit therapeutic strategies for HCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Citoplasma , Neoplasias Hepáticas , Proteína 1 de Unión a la X-Box , Humanos , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/mortalidad , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidad , Neoplasias Hepáticas/genética , Proteína 1 de Unión a la X-Box/metabolismo , Proteína 1 de Unión a la X-Box/genética , Masculino , Femenino , Persona de Mediana Edad , Citoplasma/metabolismo , Pronóstico , Biomarcadores de Tumor/metabolismo , Anciano , Adulto , Inmunohistoquímica , Estimación de Kaplan-Meier , Estadificación de Neoplasias
19.
Commun Biol ; 7(1): 508, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678067

RESUMEN

Protein diffusion is a critical factor governing the functioning and organization of a cell's cytoplasm. In this study, we investigate the influence of (poly)ribosome distribution, cell aging, protein aggregation, and biomolecular condensate formation on protein mobility within the E. coli cytoplasm. We employ nanoscale single-molecule displacement mapping (SMdM) to determine the spatial distribution of the proteins and to meticulously track their diffusion. We show that the distribution of polysomes does not impact the lateral diffusion coefficients of proteins. However, the degradation of mRNA induced by rifampicin treatment leads to an increase in protein mobility within the cytoplasm. Additionally, we establish a significant correlation between cell aging, the asymmetric localization of protein aggregates and reduced diffusion coefficients at the cell poles. Notably, we observe variations in the hindrance of diffusion at the poles and the central nucleoid region for small and large proteins, and we reveal differences between the old and new pole of the cell. Collectively, our research highlights cellular processes and mechanisms responsible for spatially organizing the bacterial cytoplasm into domains with different structural features and apparent viscosity.


Asunto(s)
Citoplasma , Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Citoplasma/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Difusión
20.
Yeast ; 41(5): 349-363, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583078

RESUMEN

The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico , Optogenética , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Transducción de Señal , Schizosaccharomyces/genética , Schizosaccharomyces/enzimología , Schizosaccharomyces/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , AMP Cíclico/metabolismo , Técnicas Biosensibles , Imagen Óptica/métodos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Factores de Transcripción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...