Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25.222
Filtrar
1.
PLoS One ; 19(5): e0300577, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728344

RESUMEN

To quantitatively analyze the impact of climate variability and human activities on grassland productivity of China's Qilian Mountain National Park, this study used Carnegic-Ames-Stanford Approach model (CASA) and Integrated Vegetation model improved by the Comprehensive and Sequential Classification System (CSCS) to assess the trends of grassland NPP from 2000 to 2015, the residual trend analysis method was used to quantify the impact of human activities and climate change on the grassland based on the NPP changes. The actual grassland NPP accumulation mainly occurred in June, July and August (autumn); the actual NPP showed a fluctuating upward trend with an average increase of 2.2 g C·m-2 a-1, while the potential NPP increase of 1.6 g C·m-2 a-1 and human-induced NPP decreased of 0.5 g C·m-2 a-1. The annual temperature showed a fluctuating upward trend with an average increase of 0.1°C 10a-1, but annual precipitation showed a fluctuating upward trend with an average annual increase of 1.3 mm a-1 from 2000 to 2015. The area and NPP of grassland degradation caused by climate variability was significantly greater than that caused by human activities and mainly distributed in the northwest and central regions, but area and NPP of grassland restored caused by human activities was significantly greater than that caused by climate variability and mainly distributed in the southeast regions. In conclusion, grassland in Qilian Mountain National Park showed a trend of degradation based on distribution area, but showed a trend of restoration based on actual NPP. Climate variability was the main cause of grassland degradation in the northwestern region of study area, and restoration of grassland in the eastern region was the result of the combined effects of human activities and climate variability. Under global climate change, the establishment of Qilian Mountain National Park was of great significance to the grassland's protection and the grasslands ecological restoration that have been affected by humans.


Asunto(s)
Cambio Climático , Pradera , Actividades Humanas , Parques Recreativos , China , Humanos , Conservación de los Recursos Naturales , Clima , Ecosistema , Temperatura
2.
Global Health ; 20(1): 43, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745248

RESUMEN

The spread of infectious diseases was further promoted due to busy cities, increased travel, and climate change, which led to outbreaks, epidemics, and even pandemics. The world experienced the severity of the 125 nm virus called the coronavirus disease 2019 (COVID-19), a pandemic declared by the World Health Organization (WHO) in 2019. Many investigations revealed a strong correlation between humidity and temperature relative to the kinetics of the virus's spread into the hosts. This study aimed to solve the riddle of the correlation between environmental factors and COVID-19 by applying RepOrting standards for Systematic Evidence Syntheses (ROSES) with the designed research question. Five temperature and humidity-related themes were deduced via the review processes, namely 1) The link between solar activity and pandemic outbreaks, 2) Regional area, 3) Climate and weather, 4) Relationship between temperature and humidity, and 5) the Governmental disinfection actions and guidelines. A significant relationship between solar activities and pandemic outbreaks was reported throughout the review of past studies. The grand solar minima (1450-1830) and solar minima (1975-2020) coincided with the global pandemic. Meanwhile, the cooler, lower humidity, and low wind movement environment reported higher severity of cases. Moreover, COVID-19 confirmed cases and death cases were higher in countries located within the Northern Hemisphere. The Blackbox of COVID-19 was revealed through the work conducted in this paper that the virus thrives in cooler and low-humidity environments, with emphasis on potential treatments and government measures relative to temperature and humidity. HIGHLIGHTS: • The coronavirus disease 2019 (COIVD-19) is spreading faster in low temperatures and humid area. • Weather and climate serve as environmental drivers in propagating COVID-19. • Solar radiation influences the spreading of COVID-19. • The correlation between weather and population as the factor in spreading of COVID-19.


Asunto(s)
COVID-19 , Cambio Climático , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Humedad , Lluvia , Temperatura , Tiempo (Meteorología) , Pandemias , SARS-CoV-2 , Clima
3.
Glob Chang Biol ; 30(5): e17309, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38747209

RESUMEN

Global soil nitrogen (N) cycling remains poorly understood due to its complex driving mechanisms. Here, we present a comprehensive analysis of global soil δ15N, a stable isotopic signature indicative of the N input-output balance, using a machine-learning approach on 10,676 observations from 2670 sites. Our findings reveal prevalent joint effects of climatic conditions, plant N-use strategies, soil properties, and other natural and anthropogenic forcings on global soil δ15N. The joint effects of multiple drivers govern the latitudinal distribution of soil δ15N, with more rapid N cycling at lower latitudes than at higher latitudes. In contrast to previous climate-focused models, our data-driven model more accurately simulates spatial changes in global soil δ15N, highlighting the need to consider the joint effects of multiple drivers to estimate the Earth's N budget. These insights contribute to the reconciliation of discordances among empirical, theoretical, and modeling studies on soil N cycling, as well as sustainable N management.


Asunto(s)
Ciclo del Nitrógeno , Suelo , Suelo/química , Isótopos de Nitrógeno/análisis , Aprendizaje Automático , Nitrógeno/análisis , Nitrógeno/metabolismo , Clima , Modelos Teóricos
4.
Sci Rep ; 14(1): 10974, 2024 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744911

RESUMEN

This study aimed to explore seasonal variations in temporomandibular disorder (TMD) prevalence in South Korea, utilizing nationwide population-based big data. Data corresponding to the Korean Standard Classification of Diseases code of K07.6, which identifies TMD, were extracted from the Health Insurance Review and Assessment Service online platform for the period from 2010 to 2022. Additionally, we integrated these data with climate temperature records from the Korean Meteorological Administration. We subsequently conducted a statistical analysis of TMD patient data on a monthly and seasonal basis over the past 13 years to assess prevalence. Over the past 13 years, the number of TMD patients in Korea has steadily increased. The prevalence of TMD rose from 0.48% (224,708 out of a total population of 50,515,666) in 2010 to 0.94% (482,241 out of a total population of 51,439,038) in 2022, marking a 1.96-fold increase. Among children under 10 years of age, no significant differences were observed in TMD prevalence between boys and girls. However, a distinct female predominance emerged after the age of 10, with an average female-to-male ratio of 1.51:1. The peak prevalence of TMD occurred in individuals in their 20 s, followed by adolescents in their late 10 s. The majority of TMD patients were concentrated in Seoul and Gyeonggi province, with metropolitan areas accounting for 50% of the total patient count. Seasonally, TMD patient numbers showed no significant increase in winter compared with spring or summer. The temperature difference, defined as the absolute difference between the highest and lowest temperatures for each month, showed a positive correlation with TMD patient counts. A greater temperature difference was associated with higher patient counts. The strongest correlation between temperature differences and TMD patient numbers was observed in winter (r = 0.480, p < 0.01), followed by summer (r = 0.443, p < 0.01), and spring (r = 0.366, p < 0.05). Temperature differences demonstrated a significantly stronger correlation with the increase in the number of TMD patients than absolute climate temperatures. This aspect should be a key consideration when examining seasonal trends in TMD prevalence in South Korea.


Asunto(s)
Estaciones del Año , Temperatura , Trastornos de la Articulación Temporomandibular , Humanos , República de Corea/epidemiología , Masculino , Femenino , Niño , Prevalencia , Adolescente , Trastornos de la Articulación Temporomandibular/epidemiología , Adulto , Persona de Mediana Edad , Adulto Joven , Clima , Anciano , Preescolar
5.
PLoS One ; 19(5): e0300573, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739594

RESUMEN

The intercropping system is a promising approach to augmenting the soil nutrient status and promoting sustainable crop production. However, it is not known whether intercropping improves the soil phosphorus (P) status in alluvial soils with low P under subtropical climates. Over two growing seasons--2019-2020 and 2020-2021--two experimental fields were employed to explore the effect of durum wheat (Dw) and chickpea (Cp) cropping systems on the soil available P. A randomized complete block design was used in this experiment, with three blocks each divided into three plots. Each plot was used for one of the following three treatments with three replications: Dw monocrop (Dw-MC), Cp monocrop (Cp-MC), and Dw + Cp intercrop (CpDw-InC), with bulk soil (BS) used as a control. A reduction in the rhizosphere soil pH (-0.44 and -0.11 unit) was observed in the (Cp-MC) and (CpDw-InC) treatments over BS, occurring concomitantly with a significant increase in available P in the rhizosphere soil of around 28.45% for CpDw-InC and 24.9% for Cp-MC over BS. Conversely, the rhizosphere soil pH was significantly higher (+0.12 units) in the Dw-MC treatments. In addition, intercropping enhanced the soil microbial biomass P, with strong positive correlations observed between the biomass P and available P in the Cp-MC treatment, whereas this correlation was negative in the CpDw-InC and Dw-MC treatments. These findings suggested that Cp intercropped with Dw could be a viable approach in enhancing the available P through improved pH variation and biomass P when cultivated on alluvial soil under a subtropical climate.


Asunto(s)
Biomasa , Cicer , Fósforo , Suelo , Triticum , Fósforo/análisis , Fósforo/metabolismo , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Suelo/química , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Agricultura/métodos , Rizosfera , Clima Tropical , Productos Agrícolas/crecimiento & desarrollo , Producción de Cultivos/métodos , Concentración de Iones de Hidrógeno , Clima
6.
Sci Rep ; 14(1): 10085, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698166

RESUMEN

The North China Plain (NCP) is one of the three great plains in China and also serves as a vital region for grain, cotton, and oil production. Under the influence of regional hydrothermal changes, groundwater overexploitation, and seawater intrusion, the vegetation coverage is undergoing continuous alterations. However, a comprehensive assessment of impacts of precipitation, temperature, and groundwater on vegetation in marine sedimentary regions of the NCP is lacking. Heilonggang Basin (HB) is located in the low-lying plain area in the east of NCP, which is part of the NCP. In this study, the HB was chosen as a typical area of interest. We collected a series of data, including the Normalized Difference Vegetation Index (NDVI), precipitation, temperature, groundwater depth, and Total Dissolved Solids (TDS) from 2001 to 2020. Then the spatiotemporal variation in vegetation was analyzed, and the underlying driving mechanisms of vegetation variation were explored in this paper. The results show that NDVI experiences a rapid increase from 2001 to 2004, followed by stable fluctuations from 2004 to 2020. The vegetation in the HB has achieved an overall improvement in the past two decades, with 76% showing improvement, mainly in the central and eastern areas, and 24% exhibiting deterioration in other areas. From 2001 to 2020, NDVI correlates positively with precipitation, whereas its relationship with temperature fluctuates between positive and negative, and is not statistically significant. There is a threshold for the synergistic change of NDVI and groundwater depth. When the groundwater depth is lower than 3.8 m, NDVI increases sharply with groundwater depth. However, beyond this threshold, NDVI tends to stabilize and fluctuate. In the eastern coastal areas, NDVI exhibits a strong positive correlation with groundwater depth, influenced by the surface soil TDS controlled by groundwater depth. In the central regions, a strong negative correlation is observed, where NDVI is primarily impacted by soil moisture under the control of groundwater. In the west and south, a strong positive correlation exists, with NDVI primarily influenced by the intensity of groundwater exploitation. Thus, precipitation and groundwater are the primary driving forces behind the spatiotemporal variability of vegetation in the HB, while in contrast, the influence of temperature is uncertain. This study has elucidated the mechanism of vegetation response, providing a theoretical basis for mitigating adverse factors affecting vegetation growth and formulating rational water usage regulations in the NCP.


Asunto(s)
Agua Subterránea , China , Agua Subterránea/análisis , Sedimentos Geológicos/análisis , Temperatura , Análisis Espacio-Temporal , Monitoreo del Ambiente/métodos , Clima , Plantas , Ecosistema
7.
Sci Rep ; 14(1): 10027, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693177

RESUMEN

This study aimed to identify the status, determining factors, and challenges in adopting climate smart livestock production practices by farmers. Three-staged sampling techniques were used to select the research sites and 233 sample farmer household respondents. Data were collected mainly using a pre-tested structured questionnaire. Key informant interviews and focus group discussions were also conducted to complement the household survey data. Descriptive statistics and an ordered logistic regression model were applied to analyze the quantitative data. The result revealed that the most adopted practices were composting (85.41%) and manure management (70.39%) while the least adopted technologies were biogas generation (3.86%) and rotation grazing (22.32%). The adoption status of the sampled farmers was also categorized into low (19.74%), medium (67.81%), and high adopter (12.45%). The high cost of improved breed, use of manure for fuel, free grazing, lack of information and awareness were the major constraints to adopting the climate smart livestock production technologies. The result also revealed that education, grazing land, total livestock holding, and extension agent contact contributed significantly and positively to the adoption of smart livestock production technology, while the distance from the water source had an insignificant and negative effect on the adoption status of climate smart livestock production practices. The study suggests the relevance of the cooperation of stakeholders and strengthening extension services for the maximum benefits of climate smart livestock production.


Asunto(s)
Crianza de Animales Domésticos , Agricultores , Ganado , Etiopía , Animales , Crianza de Animales Domésticos/métodos , Humanos , Masculino , Femenino , Encuestas y Cuestionarios , Adulto , Estiércol , Clima , Persona de Mediana Edad
8.
Ecol Lett ; 27(5): e14427, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38698677

RESUMEN

Tree diversity can promote both predator abundance and diversity. However, whether this translates into increased predation and top-down control of herbivores across predator taxonomic groups and contrasting environmental conditions remains unresolved. We used a global network of tree diversity experiments (TreeDivNet) spread across three continents and three biomes to test the effects of tree species richness on predation across varying climatic conditions of temperature and precipitation. We recorded bird and arthropod predation attempts on plasticine caterpillars in monocultures and tree species mixtures. Both tree species richness and temperature increased predation by birds but not by arthropods. Furthermore, the effects of tree species richness on predation were consistent across the studied climatic gradient. Our findings provide evidence that tree diversity strengthens top-down control of insect herbivores by birds, underscoring the need to implement conservation strategies that safeguard tree diversity to sustain ecosystem services provided by natural enemies in forests.


Asunto(s)
Artrópodos , Biodiversidad , Aves , Clima , Conducta Predatoria , Árboles , Animales , Artrópodos/fisiología , Aves/fisiología , Cadena Alimentaria , Larva/fisiología
9.
Environ Sci Technol ; 58(19): 8464-8479, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701232

RESUMEN

Microplastics threaten soil ecosystems, strongly influencing carbon (C) and nitrogen (N) contents. Interactions between microplastic properties and climatic and edaphic factors are poorly understood. We conducted a meta-analysis to assess the interactive effects of microplastic properties (type, shape, size, and content), native soil properties (texture, pH, and dissolved organic carbon (DOC)) and climatic factors (precipitation and temperature) on C and N contents in soil. We found that low-density polyethylene reduced total nitrogen (TN) content, whereas biodegradable polylactic acid led to a decrease in soil organic carbon (SOC). Microplastic fragments especially depleted TN, reducing aggregate stability, increasing N-mineralization and leaching, and consequently increasing the soil C/N ratio. Microplastic size affected outcomes; those <200 µm reduced both TN and SOC contents. Mineralization-induced nutrient losses were greatest at microplastic contents between 1 and 2.5% of soil weight. Sandy soils suffered the highest microplastic contamination-induced nutrient depletion. Alkaline soils showed the greatest SOC depletion, suggesting high SOC degradability. In low-DOC soils, microplastic contamination caused 2-fold greater TN depletion than in soils with high DOC. Sites with high precipitation and temperature had greatest decrease in TN and SOC contents. In conclusion, there are complex interactions determining microplastic impacts on soil health. Microplastic contamination always risks soil C and N depletion, but the severity depends on microplastic characteristics, native soil properties, and climatic conditions, with potential exacerbation by greenhouse emission-induced climate change.


Asunto(s)
Carbono , Clima , Microplásticos , Nitrógeno , Suelo , Nitrógeno/análisis , Suelo/química , Carbono/análisis , Contaminantes del Suelo/análisis
10.
Sci Rep ; 14(1): 8963, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637564

RESUMEN

The health of honey bee queens is crucial for colony success, particularly during stressful periods like overwintering. To accompany a previous longitudinal study of colony and worker health, we explored niche-specific gut microbiota, host gene expression, and pathogen prevalence in honey bee queens overwintering in a warm southern climate. We found differential gene expression and bacterial abundance with respect to various pathogens throughout the season. Biologically older queens had larger microbiotas, particularly enriched in Bombella and Bifidobacterium. Both Deformed Wing Virus A and B subtypes were highest in the fat body tissue in January, correlating with colony Varroa levels, and Deformed Wing Virus titers in workers. High viral titers in queens were associated with decreased vitellogenin expression, suggesting a potential trade-off between immune function and reproductive capacity. Additionally, we found a complex and dynamic relationship between these viral loads and immune gene expression, indicating a possible breakdown in the coordinated immune response as the season progressed. Our study also revealed a potential link between Nosema and Melissococcus plutonius infections in queens, demonstrating that seasonal opportunism is not confined to just workers. Overall, our findings highlight the intricate interplay between pathogens, metabolic state, and immune response in honey bee queens. Combined with worker and colony-level metrics from the same colonies, our findings illustrate the social aspect of queen health and resilience over the winter dearth.


Asunto(s)
Clima , Virus ARN , Abejas , Animales , Estaciones del Año , Estudios Longitudinales
11.
FEMS Microbiol Ecol ; 100(5)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38587812

RESUMEN

Lentil is one of the most important legumes cultivated in various provinces of Iran. However, there is limited information about the symbiotic rhizobia of lentils in this country. In this study, molecular identification of lentil-nodulating rhizobia was performed based on 16S-23S rRNA intergenic spacer (IGS) and recA, atpD, glnII, and nodC gene sequencing. Using PCR-RFLP analysis of 16S-23S rRNA IGS, a total of 116 rhizobia isolates were classified into 20 groups, leaving seven strains unclustered. Phylogenetic analysis of representative isolates revealed that the rhizobia strains belonged to Rhizobium leguminosarum and Rhizobium laguerreae, and the distribution of the species is partially related to geographical location. Rhizobium leguminosarum was the dominant species in North Khorasan and Zanjan, while R. laguerreae prevailed in Ardabil and East Azerbaijan. The distribution of the species was also influenced by agroecological climates; R. leguminosarum thrived in cold semiarid climates, whereas R. laguerreae adapted to humid continental climates. Both species exhibited equal dominance in the Mediterranean climate, characterized by warm, dry summers and mild, wet winters, in Lorestan and Kohgiluyeh-Boyer Ahmad provinces.


Asunto(s)
ADN Bacteriano , Lens (Planta) , Filogenia , Rhizobium , Lens (Planta)/microbiología , Irán , Rhizobium/genética , Rhizobium/clasificación , Rhizobium/aislamiento & purificación , ADN Bacteriano/genética , ARN Ribosómico 16S/genética , Clima , ADN Espaciador Ribosómico/genética , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN , ARN Ribosómico 23S/genética , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/clasificación , Rhizobium leguminosarum/aislamiento & purificación , Simbiosis , Proteínas Bacterianas/genética , Reacción en Cadena de la Polimerasa
12.
Environ Int ; 186: 108587, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579450

RESUMEN

Air pollution is a key global environmental problem raising human health concern. It is essential to comprehensively assess the long-term characteristics of air pollution and the resultant health impacts. We first assessed the global trends of fine particulate matter (PM2.5) during 1980-2020 using a monthly global PM2.5 reanalysis dataset, and evaluated their association with three types of climate variability including El Niño-Southern Oscillation, Indian Ocean Dipole and North Atlantic Oscillation. We then estimated PM2.5-attributable premature deaths using integrated exposure-response functions. Results show a significant increasing trend of ambient PM2.5 during 1980-2020 due to increases in anthropogenic emissions. Ambient PM2.5 caused a total of âˆ¼ 135 million premature deaths globally during the four decades. Occurrence of air pollution episodes was strongly associated with climate variability, which were associated with up to 14 % increase in annual global PM2.5-attributable premature deaths.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Salud Global , Material Particulado , Material Particulado/análisis , Contaminación del Aire/estadística & datos numéricos , Humanos , Contaminantes Atmosféricos/análisis , Cambio Climático , Exposición a Riesgos Ambientales/estadística & datos numéricos , Clima , Mortalidad Prematura
13.
Physiol Plant ; 176(3): e14318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38686542

RESUMEN

The function of landscape plants on the ecosystem can alleviate environmental issues of urbanization and global change. Global changes due to elevated CO2 affect plant growth and survival, but there is a lack of quantitative methods to evaluate the adaptability of landscape plants to future climate conditions. Leaf traits characterized by leaf economic spectrum (LES) are the universal currency for predicting the impact on plant ecosystem functions. Elevated CO2 usually leads to photosynthetic acclimation (PC), characterised by decreased photosynthetic capacity. Here, we proposed a theoretical and practical framework for the use of LES and PC to project the potential performance of landscape plants under future climatic conditions through principal component analysis, structural equation modelling, photosynthetic restriction analysis and nitrogen allocation analysis. We used wintersweet (an important landscaping species) to test the feasibility of this framework under elevated CO2 and different nitrogen (N) supplies. We found that elevated CO2 decreased the specific leaf area but increased leaf N concentration. The results suggest wintersweet may be characterized by an LES with high leaf construction costs, low photosynthetic return, and robust stress resistance. Elevated CO2 reduced photosynthetic capacity and stomatal conductance but increased photosynthetic rate and leaf area. These positive physio-ecological traits, e.g., larger leaf area (canopy), higher water use efficiency and stress resistance, may lead to improved performance of wintersweet under the predicted future climatic conditions. The results suggest planting more wintersweet in urban landscaping may be an effective adaptive strategy to climate change.


Asunto(s)
Aclimatación , Dióxido de Carbono , Cambio Climático , Nitrógeno , Fotosíntesis , Hojas de la Planta , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Aclimatación/fisiología , Dióxido de Carbono/metabolismo , Nitrógeno/metabolismo , Ecosistema , Clima
14.
Sci Total Environ ; 929: 172659, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38657809

RESUMEN

Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.


Asunto(s)
Monitoreo del Ambiente , Invertebrados , Ríos , Animales , Alemania , Clima , Cambio Climático , Ecosistema , Movimientos del Agua
15.
Sci Total Environ ; 928: 172218, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38580109

RESUMEN

In natural habitats, especially in arid and semi-arid areas that are fragile ecosystems, vegetation degradation is one of the most important factors affecting the variability of soil health. Studying physicochemical and biological parameters that serve as indicators of soil health offers important information on the potential risk of land degradation and the progression of changes in soil performance and health during recovery periods. This study specifically examines the impact of vegetation degradation on soil health indicators and the duration needed to improve the physical, chemical, and biological parameters in a semi-arid mountainous area site types with the dominance of Quercus macranthera Fisch & C.A. Mey and Carpinus orientalis Miller in northern Iran. In different years (2003, 2013, and 2023), litter and soil samples (at depths of 0-10, 10-20, and 20-30 cm) were collected in different types of degraded sites. Additionally, in 2023, a non-degraded site was chosen as a control and similar samples were collected. A total of 48 litter (12 samples for each of the study site types) and 144 soil (4 study site types × 3 depths × 12 samples) samples were collected. In order to investigate the spatial changes of soil basal respiration (or CO2 emission), which is involved in global warming, from each site type, 50 soil samples were taken along two 250-meter transects. The findings showed that litter P and Mg contents in the non-degraded site were 1.6 times higher than in degraded site types (2003). Following vegetation degradation, soil fertility indicators decreased by 2-4 times. The biota population was lower by about 80 % under the degraded site types (2003) than in the non-degraded site, and the density of fungi and bacteria in the degraded site types was almost half that of the non-degraded site types. Geostatistics showed the high variance (linear model) of CO2 emissions in areas without degradation. In addition, vegetation degradation significantly reduced soil carbon and nitrogen mineralization. Although soil health indicators under the degraded vegetation have improved over time (30 years), results showed that even thirty years is not enough for the full recovery of a degraded ecosystem, and more time is needed for the degraded area to reach the same conditions as the non-degraded site. Considering the time required for natural restoration in degraded site types, it is necessary to prioritize the conservation of vegetation and improve the ecosystem restoration process with adequate interventions.


Asunto(s)
Restauración y Remediación Ambiental , Bosques , Suelo , Suelo/química , Clima , Ambiente , Irán , Quercus , Betulaceae , Tiempo , Biota , Conservación de los Recursos Naturales
16.
PLoS One ; 19(4): e0298515, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669238

RESUMEN

White-nose syndrome (WNS) is an infectious disease that disrupts hibernation in bats, leading to premature exhaustion of fat stores. Though we know WNS does impact reproduction in hibernating female bats, we are unsure how these impacts are exacerbated by local climate factors. We compiled data from four southeastern U.S. states and used generalized linear mixed effects models to compare effects of WNS, pre-hibernation climate variables, and winter duration on the number of reproductive females in species across the range of WNS susceptibility. We predicted we would see a decline in the number of reproductive females in WNS-susceptible species, with the effect exaggerated by longer winter durations and pre-hibernation climate variables that lead to reductions in foraging. We found that the number of reproductive females in WNS-susceptible species was positively correlated with pre-hibernation local climate conditions conducive to foraging; however, WNS-susceptible species experienced an overall decline with the presence of WNS and as winter duration increased. Our long-term dataset provides evidence that pre-hibernation climate, specifically favorable summer weather conditions for foraging, greatly influences the reproduction, regardless of WNS status.


Asunto(s)
Quirópteros , Clima , Hibernación , Reproducción , Estaciones del Año , Animales , Quirópteros/fisiología , Femenino , Hibernación/fisiología , Reproducción/fisiología , Micosis/veterinaria , Micosis/epidemiología , Blanco
17.
Nat Commun ; 15(1): 3596, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678037

RESUMEN

The long-term effects of the Central Atlantic Magmatic Province, a large igneous province connected to the end-Triassic mass-extinction (201.5 Ma), remain largely elusive. Here, we document the persistence of volcanic-induced mercury (Hg) pollution and its effects on the biosphere for ~1.3 million years after the extinction event. In sediments recovered in Germany (Schandelah-1 core), we record not only high abundances of malformed fern spores at the Triassic-Jurassic boundary, but also during the lower Jurassic Hettangian, indicating repeated vegetation disturbance and stress that was eccentricity-forced. Crucially, these abundances correspond to increases in sedimentary Hg-concentrations. Hg-isotope ratios (δ202Hg, Δ199Hg) suggest a volcanic source of Hg-enrichment at the Triassic-Jurassic boundary but a terrestrial source for the early Jurassic peaks. We conclude that volcanically injected Hg across the extinction was repeatedly remobilized from coastal wetlands and hinterland areas during eccentricity-forced phases of severe hydrological upheaval and erosion, focusing Hg-pollution in the Central European Basin.


Asunto(s)
Extinción Biológica , Helechos , Fósiles , Sedimentos Geológicos , Mercurio , Mercurio/análisis , Sedimentos Geológicos/química , Alemania , Erupciones Volcánicas , Mutagénesis , Clima , Esporas
18.
Methods Mol Biol ; 2798: 101-130, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587738

RESUMEN

Abiotic and biotic stress conditions lead to production of reactive carbonyl species (RCS) which are lipid peroxide derivatives and have detrimental effects on plant cells especially at high concentrations. There are several molecules that can be classified in RCS; among them, 4-hydroxy-(E)-2-nonenal (HNE) and acrolein are widely recognized and studied because of their toxicity. The toxicity mechanisms of RCS are well known in animals but their roles in plant systems especially signaling aspects in metabolism need to be addressed. This chapter focuses on the production mechanisms of RCS in plants as well as how plants scavenge and modify them to prevent irreversible damage in the cell. We aimed to get a comprehensive look at the literature to summarize the signaling roles of RCS in plant metabolism and their interaction with other signaling mechanisms such as highly recognized reactive oxygen species (ROS) signaling. Changing climate promotes more severe abiotic stress effects on plants which also decrease yield on the field. The effects of abiotic stress conditions on RCS metabolism are also gathered in this chapter including their signaling roles during abiotic stresses. Different methods of measuring RCS in plants are also presented in this chapter to draw more attention to the study of RCS metabolism in plants.


Asunto(s)
Acroleína , Clima , Animales , Peróxidos Lipídicos , Células Vegetales , Especies Reactivas de Oxígeno
19.
Nat Commun ; 15(1): 3236, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622174

RESUMEN

Insects sustain key ecosystem functions, but how their activity varies across the day-night cycle and the underlying drivers are poorly understood. Although entomologists generally expect that more insects are active at night, this notion has not been tested with empirical data at the global scale. Here, we assemble 331 quantitative comparisons of the abundances of insects between day and night periods from 78 studies worldwide and use multi-level meta-analytical models to show that insect activity is on average 31.4% (CI: -6.3%-84.3%) higher at night than in the day. We reveal diel preferences of major insect taxa, and observe higher nocturnal activity in aquatic taxa than in terrestrial ones, as well as in warmer environments. In a separate analysis of the small subset of studies quantifying diel patterns in taxonomic richness (31 comparisons from 13 studies), we detect preliminary evidence of higher nocturnal richness in tropical than temperate communities. The higher overall (but variable) nocturnal activity in insect communities underscores the need to address threats such as light pollution and climate warming that may disproportionately impact nocturnal insects.


Asunto(s)
Ecosistema , Insectos , Animales , Clima
20.
BMC Plant Biol ; 24(1): 282, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38622508

RESUMEN

BACKGROUND: In regional wheat trials, when short-stem wheat varieties and high-stem wheat varieties are planted adjacent to each other in small plots, changes in their marginal plot environment can lead to bias in yield evaluation. Currently, there is no relevant research revealing the degree of their mutual influence. RESULTS: In a regional wheat experiment, when high-stem wheat varieties and short-stem wheat varieties were planted adjacent to one another, there was no significant change in soil temperature or humidity in the high-stem wheat variety experimental plot from November to May compared to the control plot, while the soil humidity in the short-stem wheat variety experimental plot was greater than that in the control plot. In May, the soil temperature of the short-stem wheat varieties in the experimental plot was lower than that in the control plot. Illumination of the wheat canopy in the high-stem wheat variety experimental plot had a significant positive effect in April and May, while illumination of the wheat canopy in the short-stem wheat variety experimental plot had a negative effect. The chlorophyll fluorescence parameters of flag leaves in the high-stem wheat variety experimental plots showed an overall increasing trend, while the chlorophyll fluorescence parameters of flag leaves in the experimental plots of short-stem wheat varieties showed a decreasing trend. The analysis of the economic yield, biological yield, and yield factors in each experimental plot revealed that the marginal effects of the economic yield and 1000-grain weight were particularly significant and manifested as positive effects in the high-stem wheat variety experimental plot and as negative effects in the short-stem wheat variety experimental plot. The economic yield of the high-stem wheat variety experimental plot was significantly greater than that of the control plot, the economic yield of the short-stem wheat variety experimental plot was significantly lower than that of the control plot, and the economic yield of the high-stem experimental plot was significantly greater than that of the short-stem experimental plot. When the yield of the control plot of the high-stem wheat varieties was compared to that of the control plot of the short-stem wheat varieties, the yield of the control plot of the short-stem wheat varieties was significantly greater than that of the control plot of the high-stem wheat varieties. CONCLUSIONS: Based on these findings, it is concluded that plots with high-stem and short-stem wheat varieties are adjacent in regional wheat trials, the plots of high-stem wheat varieties are subject to marginal positive effects, resulting in a significant increase in economic yield; the plots of short-stem wheat varieties are subject to marginal negative effects, resulting in a decrease in economic yield. This study reveals the mutual influence mechanism of environment and yield with adjacent planting of high-stem and short-stem wheat varieties in regional wheat trials, providing a useful reference and guidance for optimizing the layout of regional wheat trials.


Asunto(s)
Clima , Triticum , Triticum/genética , Suelo , Grano Comestible , Clorofila
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...