Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.492
Filtrar
1.
Curr Microbiol ; 81(6): 166, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724665

RESUMEN

Many regulatory genes that affect cellular development in Streptomyces, such as the canonical bld genes, have already been identified. However, in this study, we identified sven_5003 in Streptomyces venezuelae as a major new developmental regulatory gene, the deletion of which leads to a bald phenotype, typical of bld mutants, under multiple growth conditions. Our data indicated that disruption of sven_5003 also has a differential impact on the production of the two antibiotics jadomycin and chloramphenicol. Enhanced production of jadomycin but reduced production of chloramphenicol were detected in our sven_5003 mutant strain (S. venezuelae D5003). RNA-Seq analysis indicated that SVEN_5003 impacts expression of hundreds of genes, including genes involved in development, primary and secondary metabolism, and genes of unknown function, a finding confirmed by real-time PCR analysis. Transcriptional analysis indicated that sven_5003 is an auto-regulatory gene, repressing its own expression. Despite the evidence indicating that SVEN_5003 is a regulatory factor, a putative DNA-binding domain was not predicted from its primary amino acid sequence, implying an unknown regulatory mechanism by SVEN_5003. Our findings revealed that SVEN_5003 is a pleiotropic regulator with a critical role in morphological development in S. venezuelae.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Streptomyces , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Cloranfenicol/farmacología , Isoquinolinas/metabolismo
2.
Se Pu ; 42(5): 474-480, 2024 Apr 08.
Artículo en Chino | MEDLINE | ID: mdl-38736391

RESUMEN

A method was established for the simultaneous detection of 12 prohibited veterinary drugs, including ß2-receptor agonists, nitrofuran metabolites, nitroimidazoles, chlorpromazine, and chloramphenicol, in pig urine. The sample was pretreated by enzymolysis, acid hydrolysis/derivatization, and liquid-liquid extraction combined with solid-phase extraction. Detection was performed using ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Ammonium acetate solution (0.2 mol/L, 4.5 mL) and ß-glucuronidase/aryl sulfatase (40 µL) were added to the sample, which was subsequently enzymolized at 37 ℃ for 2 h. Then, 1.5 mL of 1.0 mol/L hydrochloric acid solution and 100 µL of 0.1 mol/L o-nitrobenzaldehyde solution were added to the sample. The mixture was incubated at 37 ℃ for 16 h, and the analytes were extracted with 8 mL of ethyl acetate by liquid-liquid extraction. The lower aqueous phase obtained after extraction was extracted and purified using a mixed cation-exchange solid-phase extraction column. The extracts were combined, the extraction solution was blow-dried with nitrogen, and the residue was redissolved for determination. The samples were analyzed under multiple-reaction monitoring mode with both positive and negative electrospray ionization, and quantified using an isotope internal standard method. The correlation coefficients (r) of the 12 compounds were >0.99. The limits of detection (LODs) and quantification (LOQs) of chloramphenicol were 0.05 and 0.1 µg/L, respectively, and the LODs and LOQs of the other compounds were 0.25 and 0.5 µg/L, respectively. The mean recoveries and RSDs at 1, 2, and 10 times the LOQ were 83.6%-115.3% and 2.20%-12.34%, respectively. The proposed method has the advantages of high sensitivity, good stability, and accurate quantification; thus, it is suitable for the simultaneous determination of the 12 prohibited veterinary drug residues in pig urine.


Asunto(s)
Residuos de Medicamentos , Espectrometría de Masas en Tándem , Drogas Veterinarias , Animales , Espectrometría de Masas en Tándem/métodos , Porcinos , Cromatografía Líquida de Alta Presión/métodos , Drogas Veterinarias/orina , Drogas Veterinarias/análisis , Residuos de Medicamentos/análisis , Cloranfenicol/orina , Cloranfenicol/análisis
3.
J Pharm Biomed Anal ; 245: 116165, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38701534

RESUMEN

Due to antimicrobial resistance that occurs throughout the world, antibiotic-releasing hydrogel with at least two drugs that synergistically treat stubborn bacteria is preferable for infection prevention. Hydrogel can serve as a drug reservoir to gradually release drugs in a therapeutic window to effectively treat microorganisms with minimal side effects. The study and development of drug releasing hydrogels requires a reliable, straightforward, cost-effective, fast, and low labor-intensive drug detection technique. In this study, we validate the electrochemical technique and device setup for real-time determination of dual antibacterial drugs released from a hydrogel. Concentrations of two representative antibacterial drugs, tetracycline (TC) and chloramphenicol (CAP), were determined using square wave voltammetry (SWV) mode that yields the lower limit of detection at 2.5 µM for both drugs. Measurement accuracy and repeatability were verified by 36 known drug combination concentrations. Capability in long-term measurement was confirmed by the measurement stability which was found to last for at least 72 h. Stirring was revealed as one of the significant factors for accurate real-time detection. Real-time measurement was ultimately performed to demonstrate the determination of multiple drug releases from a drug releasing hydrogel and validated by high-performance liquid chromatography (HPLC). All the results support that the electrochemical technique with the proposed device design and setup can be used to accurately and simultaneously determine dual drugs that are released from a hydrogel in real-time.


Asunto(s)
Antibacterianos , Cloranfenicol , Liberación de Fármacos , Técnicas Electroquímicas , Hidrogeles , Tetraciclina , Antibacterianos/análisis , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Hidrogeles/química , Tetraciclina/análisis , Cloranfenicol/análisis , Límite de Detección , Cromatografía Líquida de Alta Presión/métodos , Reproducibilidad de los Resultados
4.
BMJ Case Rep ; 17(5)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38719269

RESUMEN

A middle-aged male patient presented with a central corneal perforation in a deep stromal infiltrate in his left eye. An emergency therapeutic penetrating keratoplasty was performed. Microbiological evaluation of the corneal scraping specimen revealed septate fungal filaments on stains. However, culture reports after 24 hours from the scraping sample and the excised half corneal button showed growth of gram-negative bacilli. This pathogen was identified as an aerobic, non-fermentative, gram-negative, bacillus by conventional microbiology and confirmed as Myroides species by the VITEK 2 Compact system (bioMérieux, Marcy l'Etoile, France). Susceptibility to chloramphenicol was noted based on which the patient was treated with topical chloramphenicol 0.5%. No recurrence of the infection was noted. This is the first reported case of corneal infection with the Myroides species of bacteria which, heretofore, have been known to cause endocarditis and urinary tract infections.


Asunto(s)
Infecciones Fúngicas del Ojo , Queratitis , Humanos , Masculino , Persona de Mediana Edad , Queratitis/microbiología , Queratitis/diagnóstico , Queratitis/tratamiento farmacológico , Infecciones Fúngicas del Ojo/microbiología , Infecciones Fúngicas del Ojo/diagnóstico , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Antibacterianos/uso terapéutico , Queratoplastia Penetrante , Cloranfenicol/uso terapéutico , Cloranfenicol/administración & dosificación , Infecciones Bacterianas del Ojo/microbiología , Infecciones Bacterianas del Ojo/diagnóstico , Infecciones Bacterianas del Ojo/tratamiento farmacológico , Perforación Corneal/microbiología , Perforación Corneal/diagnóstico
5.
Anal Chim Acta ; 1306: 342598, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692791

RESUMEN

BACKGROUND: Carbon-based nanozymes have recently received enormous concern, however, there is still a huge challenge for inexpensive and large-scale synthesis of magnetic carbon-based "Two-in-One" mimics with both peroxidase (POD)-like and laccase-like activities, especially their potential applications in multi-mode sensing of antibiotics and neurotransmitters in biofluids. Although some progresses have been made in this field, the feasibility of biomass-derived carbon materials with both POD-like and laccase-like activities by polyatomic doping strategy is still unclear. In addition, multi-mode sensing platform can provide a more reliable result because of the self-validation, self-correction and mutual agreement. Nevertheless, the use of magnetic carbon-based nanozyme sensors for the multi-mode detection of antibiotics and neurotransmitters have not been investigated. RESULTS: We herein report a shrimp shell-derived N, O-codoped porous carbon confined magnetic CuFe2O4 nanosphere with outstanding laccase-like and POD-like activities for triple-mode sensing of antibiotic d-penicillamine (D-PA) and chloramphenicol (CPL), as well as colorimetric detection of neurotransmitters in biofluids. The magnetic CuFe2O4/N, O-codoped porous carbon (MCNPC) armored mimetics was successfully fabricated using a combined in-situ coordination and high-temperature crystallization method. The synthesized MCNPC composite with superior POD-like activity can be used for colorimetric/temperature/smartphone-based triple-mode detection of D-PA and CPL in goat serum. Importantly, the MCNPC nanozyme can also be used for colorimetric analysis of dopamine and epinephrine in human urine. SIGNIFICANCE: This work not only offered a novel strategy to large-scale, cheap synthesize magnetic carbon-based "Two-in-One" armored mimetics, but also established the highly sensitive and selective platforms for triple-mode monitoring D-PA and CPL, as well as colorimetric analysis of neurotransmitters in biofluids without any tanglesome sample pretreatment.


Asunto(s)
Antibacterianos , Carbono , Cobre , Neurotransmisores , Carbono/química , Antibacterianos/análisis , Antibacterianos/orina , Antibacterianos/sangre , Neurotransmisores/orina , Neurotransmisores/análisis , Neurotransmisores/sangre , Porosidad , Cobre/química , Humanos , Nanosferas/química , Colorimetría/métodos , Compuestos Férricos/química , Materiales Biomiméticos/química , Animales , Técnicas Biosensibles/métodos , Cloranfenicol/análisis , Cloranfenicol/orina , Límite de Detección
6.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719408

RESUMEN

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Asunto(s)
Aptámeros de Nucleótidos , Oro , Aprendizaje Automático , Nanopartículas del Metal , Plata , Espectrometría Raman , Aptámeros de Nucleótidos/química , Plata/química , Oro/química , Nanopartículas del Metal/química , Cloranfenicol/análisis , Estradiol/análisis , Técnicas Biosensibles/métodos , Contaminación de Alimentos/análisis , Límite de Detección
7.
Front Cell Infect Microbiol ; 14: 1353433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558854

RESUMEN

Objective: To analyze the clinical epidemiological characteristics including clinical features, disease prognosis of pneumococcal meningitis (PM), and drug sensitivity of S. pneumoniae isolates in Chinese children. Methods: A retrospective analysis was performed on the clinical, laboratory microbiological data of 160 hospitalized children less than 15 years of age with PM from January 2019 to December 2020 in 33 tertiary hospitals in China. Results: A total of 160 PM patients were diagnosed, including 103 males and 57 females The onset age was 15 days to 15 years old, and the median age was 1 year and 3 months. There were 137 cases (85.6%) in the 3 months to <5 years age group, especially in the 3 months to <3 years age group (109 cases, 68.2%); S. pneumoniae was isolated from cerebrospinal fluid (CSF) culture in 95(35.6%), and 57(35.6%) in blood culture. The positive rates of S. pneumoniae detection by CSF metagenomic next-generation sequencing (mNGS)and antigen detection method were 40.2% (35/87) and 26.9% (21/78). Fifty-five cases (34.4%) had one or more predisposing factors of bacterial meningitis; and 113 cases (70.6%) had one or more extracranial infection diseases Fever (147, 91.9%) was the most common clinical symptom, followed by vomiting (61, 38.1%) and altered mental status (47,29.4%). Among 160 children with PM, the main intracranial imaging complications were subdural effusion and (or) empyema in 43 cases (26.9%), hydrocephalus in 24 cases (15.0%), cerebral abscess in 23 cases (14.4%), intracranial hemorrhage in 8 cases (5.0%), and other cerebrovascular diseases in 13 cases (8.1%) including encephalomalacia, cerebral infarction, and encephalatrophy. Subdural effusion and (or) empyema and hydrocephalus mainly occurred in children < 1 years old (90.7% (39/43) and 83.3% (20/24), respectively). 17 cases with PM (39.5%) had more than one intracranial imaging abnormality. S. pneumoniae isolates were completely sensitive to vancomycin (100.0%, 75/75), linezolid (100.0%,56/56), ertapenem (6/6); highly sensitive to levofloxacin (81.5%, 22/27), moxifloxacin (14/17), rifampicin (96.2%, 25/26), and chloramphenicol (91.3%, 21/23); moderately sensitive to cefotaxime (56.1%, 23/41), meropenem (51.1%, 23/45) and ceftriaxone (63.5, 33/52); less sensitive to penicillin (19.6%, 27/138) and clindamycin (1/19); completely resistant to erythromycin (100.0%, 31/31). The cure and improvement rate were 22.5% (36/160)and 66.3% (106/160), respectively. 18 cases (11.3%) had an adverse outcome, including 6 cases withdrawing treatment therapy, 5 cases unhealed, 5 cases died, and 2 recurrences. S. pneumoniae was completely susceptible to vancomycin (100.0%, 75/75), linezolid (100.0%, 56/56), and ertapenem (6/6); susceptible to cefotaxime, meropenem, and ceftriaxone in the order of 56.1% (23/41), 51.1% (23/45), and 63.5 (33/52); completely resistant to erythromycin (100.0%, 31/31). Conclusion: Pediatric PM is more common in children aged 3 months to < 3 years old. Intracranial complications mostly occur in children < 1 year of age with fever being the most common clinical manifestations and subdural effusion and (or) empyema and hydrocephalus being the most common complications, respectively. CSF non-culture methods can facilitate improving the detection rate of pathogenic bacteria. More than 10% of PM children had adverse outcomes. S. pneumoniae strains are susceptible to vancomycin, linezolid, ertapenem, levofloxacin, moxifloxacin, rifampicin, and chloramphenicol.


Asunto(s)
Empiema , Hidrocefalia , Meningitis Bacterianas , Meningitis Neumocócica , Efusión Subdural , Adolescente , Niño , Femenino , Humanos , Lactante , Masculino , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Cefotaxima , Ceftriaxona/uso terapéutico , Cloranfenicol , Empiema/tratamiento farmacológico , Ertapenem/uso terapéutico , Eritromicina/uso terapéutico , Hidrocefalia/tratamiento farmacológico , Levofloxacino , Linezolid/uso terapéutico , Meningitis Bacterianas/diagnóstico , Meningitis Neumocócica/diagnóstico , Meningitis Neumocócica/tratamiento farmacológico , Meningitis Neumocócica/epidemiología , Meropenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Moxifloxacino/uso terapéutico , Estudios Retrospectivos , Rifampin , Efusión Subdural/tratamiento farmacológico , Vancomicina , Recién Nacido , Preescolar
8.
Sci Rep ; 14(1): 8519, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609407

RESUMEN

The recent expansion of multidrug-resistant (MDR) pathogens poses significant challenges in treating healthcare-associated infections. Although antibacterial resistance occurs by numerous mechanisms, active efflux of the drugs is a critical concern. A single species of efflux pump can produce a simultaneous resistance to several drugs. One of the best-studied efflux pumps is the TtgABC: a tripartite resistance-nodulation-division (RND) efflux pump implicated in the intrinsic antibiotic resistance in Pseudomonas putida DOT-T1E. The expression of the TtgABC gene is down-regulated by the HTH-type transcriptional repressor TtgR. In this context, by employing quantum chemistry methods based on the Density Functional Theory (DFT) within the Molecular Fragmentation with Conjugate Caps (MFCC) approach, we investigate the coupling profiles of the transcriptional regulator TtgR in complex with quercetin (QUE), a natural polyphenolic flavonoid, tetracycline (TAC), and chloramphenicol (CLM), two broad-spectrum antimicrobial agents. Our quantum biochemical computational results show the: [i] convergence radius, [ii] total binding energy, [iii] relevance (energetically) of the ligands regions, and [iv] most relevant amino acids residues of the TtgR-QUE/TAC/CLM complexes, pointing out distinctions and similarities among them. These findings improve the understanding of the binding mechanism of effectors and facilitate the development of new chemicals targeting TtgR, helping in the battle against the rise of resistance to antimicrobial drugs. These advances are crucial in the ongoing fight against rising antimicrobial drug resistance, providing hope for a future where healthcare-associated infections can be more beneficially treated.


Asunto(s)
Antifibrinolíticos , Infección Hospitalaria , Humanos , Antibacterianos/farmacología , Cloranfenicol , Aminoácidos , Transporte Biológico
9.
Curr Microbiol ; 81(5): 136, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38598029

RESUMEN

Copper resistance in phytopathogens is a major challenge to crop production globally and is known to be driven by excessive use of copper-based pesticides. However, recent studies have shown co-selection of multiple heavy metal and antibiotic resistance genes in bacteria exposed to heavy metal and xenobiotics, which may impact the epidemiology of plant, animal, and human diseases. In this study, multi-resistance to heavy metals and antibiotics were evaluated in local Xanthomonas campestris pv. campestris (Xcc) and co-isolated Xanthomonas melonis (Xmel) strains from infected crucifer plants in Trinidad. Resistance to cobalt, cadmium, zinc, copper, and arsenic (V) was observed in both Xanthomonas species up to 25 mM. Heavy metal resistance (HMR) genes were found on a small plasmid-derived locus with ~ 90% similarity to a Stenotrophomonas spp. chromosomal locus and a X. perforans pLH3.1 plasmid. The co-occurrence of mobile elements in these regions implies their organization on a composite transposon-like structure. HMR genes in Xcc strains showed the lowest similarity to references, and the cus and ars operons appear to be unique among Xanthomonads. Overall, the similarity of HMR genes to Stenotrophomonas sp. chromosomal genomes suggest their origin in this genus or a related organism and subsequent spread through lateral gene transfer events. Further resistome characterization revealed the presence of small multidrug resistance (SMR), multidrug resistance (MDR) efflux pumps, and bla (Xcc) genes for broad biocide resistance in both species. Concurrently, resistance to antibiotics (streptomycin, kanamycin, tetracycline, chloramphenicol, and ampicillin) up to 1000 µg/mL was confirmed.


Asunto(s)
Antibacterianos , Metales Pesados , Animales , Humanos , Antibacterianos/farmacología , Cobre , Metales Pesados/toxicidad , Ampicilina , Cloranfenicol
10.
Chemosphere ; 357: 141981, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38626813

RESUMEN

Metal-Organic Frameworks (MOFs) are extensively used as electrode material in various sensing applications due to their efficacious porous nature and tunable properties. However, pristine MOFs lack conductive attributes that hinder their wide usage in electrochemical applications. Electropolymerization of several aromatic monomers has been a widely used strategy for preparing conducting electrode materials for various sensing applications in the past decades. Herein, we report a similar approach by employing the electropolymerization method to create a functional polymer layer to enhance the sensitivity of an Aluminium Organic Framework (DUT-4) for the selective detection of Chloramphenicol (CAP) antibiotic in aqueous environment. The combined strategy using the conducting polymer layer with the porous Al MOF provides surpassing electrochemical performance for sensing CAP with regard to the very low detection limit (LOD = 39 nM) and exceptionally high sensitivity (11943 µA mM-1 cm-2). In addition, the fabricated sensor exhibited good selectivity, reproducibility and stability. The developed method was successfully evaluated in various real samples including lake water and river water for CAP detection with good recovery percentages even at lower concentrations.


Asunto(s)
Aluminio , Cloranfenicol , Técnicas Electroquímicas , Límite de Detección , Estructuras Metalorgánicas , Polímeros , Contaminantes Químicos del Agua , Cloranfenicol/análisis , Estructuras Metalorgánicas/química , Contaminantes Químicos del Agua/análisis , Aluminio/análisis , Aluminio/química , Polímeros/química , Técnicas Electroquímicas/métodos , Reproducibilidad de los Resultados , Antibacterianos/análisis , Electrodos , Ríos/química , Lagos/química , Lagos/análisis
11.
Drug Dev Ind Pharm ; 50(5): 446-459, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622817

RESUMEN

OBJECTIVE: The aim of the present study was to develop and optimize a wound dressing film loaded with chloramphenicol (CAM) and ibuprofen (IBU) using a Quality by Design (QbD) approach. SIGNIFICANCE: The two drugs have been combined in the same dressing as they address two critical aspects of the wound healing process, namely prevention of bacterial infection and reduction of inflammation and pain related to injury. METHODS: Three critical formulation variables were identified, namely the ratios of Kollicoat SR 30D, polyethylene glycol 400 and polyvinyl alcohol. These variables were further considered as factors of an experimental design, and 17 formulations loaded with CAM and IBU were prepared via solvent casting. The films were characterized in terms of dimensions, mechanical properties and bioadhesion. Additionally, the optimal formulation was characterized regarding tensile properties, swelling behavior, water vapor transmission rate, surface morphology, thermal behavior, goniometry, in vitro drug release, cell viability, and antibacterial activity. RESULTS: The film was optimized by setting minimal values for the folding endurance, adhesive force and hardness. The optimally formulated film showed good fluid handling properties in terms of swelling behavior and water vapor transmission rate. IBU and CAM were released from the film up to 80.9% and 82.5% for 8 h. The film was nontoxic, and the antibacterial activity was prominent against Micrococcus spp. and Streptococcus pyogenes. CONCLUSIONS: The QbD approach was successfully implemented to develop and optimize a novel film dressing promising for the treatment of low-exuding acute wounds prone to infection and inflammation.


Asunto(s)
Antibacterianos , Vendajes , Cloranfenicol , Ibuprofeno , Cicatrización de Heridas , Ibuprofeno/administración & dosificación , Ibuprofeno/química , Ibuprofeno/farmacología , Cicatrización de Heridas/efectos de los fármacos , Cloranfenicol/administración & dosificación , Cloranfenicol/farmacología , Cloranfenicol/química , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Liberación de Fármacos , Humanos , Alcohol Polivinílico/química , Polietilenglicoles/química , Animales , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica/métodos
12.
Mikrochim Acta ; 191(4): 227, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38558113

RESUMEN

Chitosan, an abundant natural polysaccharide, was conjugated with carbon dots (CDs) and self-polymerized with chloramphenicol (CAP) templates to synthesize CD-incorporated and molecularly CAP-imprinted polychitosan (CD-MIC). The CD-MIC was used for fluorescent sensing, dispersive sorption, and dosage release of CAP at different pH levels. The sphere of action mechanism, approved by emission and excitation fluorescence, UV-Vis absorption, and fluorescence lifetime measurements, regulated the fluorescence static quenching. By the Perrin model, the quenching extent was linearly correlated to CAP within 0.17 - 33.2 µM (LOD = 37 nM) at pH 7.0. With an imprinting factor of 3.1, the CD-MIC was more selective for CAP than CD, although it was less sensitive to CAP. The recoveries of 5.0 µM CAP from milk matrix were 95% (RSD = 2.3%) for CD-MIC probes and 62% (RSD = 4.5%) for CD. The Langmuir and pseudo-second-order models preferably described the isothermal and kinetic sorptions of CAP into the imprinted cavities in CD-MICs, respectively. The Weber - Morris kinetic model showed three stages involved in intraparticle diffusion, which was pH-dependent and gradually arduous at the later stage, and showed external diffusion partly engaged in the diffusion mechanism. The 20 - 70% of CAP formulated in CAP-embedded CD-MICs were released in 8 - 48 h. The release percentage was lower at pH 7.0 than at pH 5.0 and 9.0, but the equilibrium time was shorter. At pH 7.0, the release percentage reached 45% at 10 min and slowly increased to 51% at 24 h.


Asunto(s)
Impresión Molecular , Puntos Cuánticos , Carbono , Cloranfenicol , Portadores de Fármacos , Colorantes
14.
Molecules ; 29(7)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38611887

RESUMEN

This study aimed to create new composite materials based on diatomite-a non-organic porous compound-through its surface modification with bioactive organic compounds, both synthetic and natural. Chloramphenicol, tetrahydroxymethylglycoluril and betulin were used as modifying substances. Composite materials were obtained by covering the diatomite surface with bioactive substance compounds as a solution and material dispersion in it. The materials were characterized by IR spectroscopy, SEM and X-ray photoelectron spectroscopy. For the biocomposites, the hemolytic effect, plasma proteins' adsorption on the surface and the antibacterial activity of the obtained materials were studied. Results show that the obtained materials are promising for medicine and agriculture.


Asunto(s)
Antibacterianos , Cloranfenicol , Antibacterianos/farmacología , Tierra de Diatomeas/farmacología , Adsorción , Materiales Biocompatibles/farmacología
15.
Prev Vet Med ; 226: 106170, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38493570

RESUMEN

Antimicrobial resistance within Staphylococcus pseudintermedius poses a significant risk for the treatment of canine pyoderma and as a reservoir for resistance and potential zoonoses, but few studies examine long-term temporal trends of resistance. This study assesses the antimicrobial resistance prevalence and minimum inhibitory concentration (MIC) trends in S. pseudintermedius (n=1804) isolated from canine skin samples at the Cornell University Animal Health Diagnostic Center (AHDC) between 2007 and 2020. Not susceptible (NS) prevalence, Cochran-Armitage tests, logrank tests, MIC50 and MIC90 quantiles, and survival analysis models were used to evaluate resistance prevalence and temporal trends to 23 antimicrobials. We use splines as predictors in accelerated failure time (AFT) models to model non-linear temporal trends in MICs. Multidrug resistance was common among isolates (47%), and isolates had moderate to high NS prevalence to the beta-lactams, chloramphenicol, the fluoroquinolones, gentamicin, the macrolides/lincosamides, the tetracyclines, and trimethoprim-sulfamethoxazole. However, low levels of NS to amikacin, rifampin, and vancomycin were observed. Around one third of isolates (38%) were found to be methicillin resistant S. pseudintermedius (MRSP), and these isolates had a higher prevalence of NS to all tested antimicrobials than methicillin susceptible isolates. Amongst the MRSP isolates, one phenotypically vancomycin resistant isolate (MIC >16 µg/mL) was identified, but genomic sequence data was unavailable. AFT models showed increasing MICs across time to the beta-lactams, chloramphenicol, the fluoroquinolones, gentamicin, and the macrolides/lincosamides, and decreasing temporal resistance (decreasing MICs) to doxycycline was observed amongst isolates. Notably, ATF modeling showed changes in MIC distributions that were not identified using Cochran-Armitage tests on prevalence, MIC quantiles, and logrank tests. Increasing resistance amongst these S. pseudintermedius isolates highlights the need for rational, empirical prescribing practices and increased antimicrobial resistance (AMR) surveillance to maintain the efficacy of current therapeutic agents. AFT models with non-linear predictors may be a useful, breakpoint-independent, surveillance tool alongside other modeling methods and antibiograms.


Asunto(s)
Antiinfecciosos , Enfermedades de los Perros , Infecciones Estafilocócicas , Staphylococcus , Humanos , Animales , Perros , Vancomicina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Cloranfenicol/uso terapéutico , Lincosamidas/uso terapéutico , Fluoroquinolonas , beta-Lactamas/uso terapéutico , Gentamicinas/uso terapéutico , Macrólidos/uso terapéutico , Pruebas de Sensibilidad Microbiana/veterinaria , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/tratamiento farmacológico , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/tratamiento farmacológico
16.
Chemosphere ; 355: 141599, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548079

RESUMEN

Several activities such as aquaculture, human and feedstock therapies can directly release antibiotics into water. Due to high stability, low hydrolysis and non-biodegradation, they can accumulate in the aqueous environment and transport to aquatic species. Here, we synthesized amine-functionalized porous carbons (ANC) by a direct-pyrolysis process of NH2-MIL-53(Al) as a sacrificial template at between 600 and 900 °C and utilized them to eliminate chloramphenicol antibiotic from water. The NH2-MIL-53(Al)-derived porous carbons obtained high surface areas (304.7-1600 m2 g-1) and chloramphenicol adsorption capacities (148.3-261.5 mg g-1). Several factors such as hydrogen bonding, Yoshida hydrogen bonding, and π-π interaction, hydrophobic interaction possibly controlled adsorption mechanisms. The ANC800 could be reused four cycles along with high stability in structure. As a result, NH2-MIL-53(Al)-derived porous carbons are recommended as recyclable and efficient adsorbents to the treatment of antibiotics in water.


Asunto(s)
Cloranfenicol , Pirólisis , Humanos , Temperatura , Adsorción , Porosidad , Antibacterianos/química , Carbono/química , Agua/química
17.
J Hazard Mater ; 470: 134150, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552394

RESUMEN

The misuse and overuse of chloramphenicol poses severe threats to food safety and human health. In this work, we developed a magnetic solid-phase extraction (MSPE) pretreatment material coated with a multilayered metal-organic framework (MOF), Fe3O4 @ (ZIF-8)3, for the separation and enrichment of chloramphenicol from fish. Furthermore, we designed an artificial-intelligence-enhanced single microsphere immunosensor. The inherent ultra-high porosity of the MOF and the multilayer assembly strategy allowed for efficient chloramphenicol enrichment (4.51 mg/g within 20 min). Notably, Fe3O4 @ (ZIF-8)3 exhibits a 39.20% increase in adsorption capacity compared to Fe3O4 @ZIF-8. Leveraging the remarkable decoding abilities of artificial intelligence, we achieved the highly sensitive detection of chloramphenicol using a straightforward procedure without the need for specialized equipment, obtaining a notably low detection limit of 46.42 pM. Furthermore, the assay was successfully employed to detect chloramphenicol in fish samples with high accuracy. The developed immunosensor offers a robust point-of-care testing tool for safeguarding food safety and public health.


Asunto(s)
Antibacterianos , Cloranfenicol , Peces , Contaminación de Alimentos , Cloranfenicol/análisis , Animales , Contaminación de Alimentos/análisis , Antibacterianos/análisis , Antibacterianos/química , Estructuras Metalorgánicas/química , Límite de Detección , Inmunoensayo/métodos , Adsorción , Extracción en Fase Sólida/métodos , Inteligencia Artificial , Técnicas Biosensibles/métodos , Óxido Ferrosoférrico/química
18.
Bioresour Technol ; 399: 130561, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460558

RESUMEN

During the wastewater treatment and resource recovery process by attached microalgae, the chemical oxygen demand (COD) can cause biotic contamination in algal culture systems, which can be mitigated by adding an appropriate dosage of antibiotics. The transport of COD and additive antibiotic (chloramphenicol, CAP) in algal biofilms and their influence on algal physiology were studied. The results showed that COD (60 mg/L) affected key metabolic pathways, such as photosystem II and oxidative phosphorylation, improved biofilm autotrophic and heterotrophic metabolic intensities, increased nutrient demand, and promoted biomass accumulation by 55.9 %, which was the most suitable COD concentration for attached microalgae. CAP (5-10 mg/L) effectively stimulated photosynthetic pigment accumulation and nutrient utilization in pelagic microalgal cells. In conclusion, controlling the COD concentration (approximately 60 mg/L) in the medium and adding the appropriate CAP concentration (5-10 mg/L) are conducive to improving attached microalgal biomass production and resource recovery potential from wastewater.


Asunto(s)
Microalgas , Microalgas/metabolismo , Cloranfenicol/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Aguas Residuales , Biopelículas , Biomasa , Nitrógeno/metabolismo
19.
J Hazard Mater ; 469: 134069, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518693

RESUMEN

Chloramphenicol (CAP) is an antibiotic that commonly pollutes the environment, and microorganisms primarily drive its degradation and transformation. Although several pathways for CAP degradation have been documented in different bacteria, multiple metabolic pathways in the same strain and their potential biological significance have not been revealed. In this study, Sphingobium WTD-1, which was isolated from activated sludge, can completely degrade 100 mg/L CAP within 60 h as the sole energy source. UPLC-HRMS and HPLC analyses showed that three different pathways, including acetylation, hydroxyl oxidation, and oxidation (C1-C2 bond cleavage), are responsible for the metabolism of CAP. Importantly, acetylation and C3 hydroxyl oxidation reduced the cytotoxicity of the substrate to strain WTD-1, and the C1-C2 bond fracture of CAP generated the metabolite p-nitrobenzoic acid (PNBA) to provide energy for its growth. This indicated that the synergistic action of three metabolic pathways caused WTD-1 to be adaptable and able to degrade high concentrations of CAP in the environment. This study deepens our understanding of the microbial degradation pathway of CAP and highlights the biological significance of the synergistic metabolism of antibiotic pollutants by multiple pathways in the same strain.


Asunto(s)
Cloranfenicol , Sphingomonadaceae , Cloranfenicol/metabolismo , Biodegradación Ambiental , Antibacterianos/metabolismo , Redes y Vías Metabólicas , Sphingomonadaceae/metabolismo
20.
Talanta ; 273: 125857, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38490024

RESUMEN

An electrochemical aptasensor was developed for the determination of chloramphenicol (CAP) in fresh foods and food products. The aptasensor was developed using Prussian blue (PB) and chitosan (CS) film. PB acts as a redox probe for detection and CS acts as a sorption material. The aptamer (Apt) was immobilized on a screen-printed carbon electrode (SPCE) modified with gold nanoparticles (AuNPs). Under optimum conditions, the linearity of the aptasensor was between 1.0 and 6.0 × 106 ng L-1 with a detection limit of 0.65 and a quantification limit of 2.15 ng L-1. The electrode could be regenerated up to 24 times without the use of chemicals. The aptasensor showed good repeatability (RSD <11.2%) and good reproducibility (RSD <7.7%). The proposed method successfully quantified CAP in milk, shrimp pond water and shrimp meat with good accuracy (recovery = 88.0 ± 0.6% to 100 ± 2%). The proposed aptasensor could be especially useful in agriculture to ensure the quality of food and the environment and could be used to determine other antibiotics.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Quitosano , Ferrocianuros , Nanopartículas del Metal , Carbono , Oro , Límite de Detección , Cloranfenicol/análisis , Reproducibilidad de los Resultados , Electrodos , Carne , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...