Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.095
Filtrar
1.
Gut Microbes ; 16(1): 2347725, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722028

RESUMEN

The gut commensal bacteria Christensenellaceae species are negatively associated with many metabolic diseases, and have been seen as promising next-generation probiotics. However, the cultured Christensenellaceae strain resources were limited, and their beneficial mechanisms for improving metabolic diseases have yet to be explored. In this study, we developed a method that enabled the enrichment and cultivation of Christensenellaceae strains from fecal samples. Using this method, a collection of Christensenellaceae Gut Microbial Biobank (ChrisGMB) was established, composed of 87 strains and genomes that represent 14 species of 8 genera. Seven species were first described and the cultured Christensenellaceae resources have been significantly expanded at species and strain levels. Christensenella strains exerted different abilities in utilization of various complex polysaccharides and other carbon sources, exhibited host-adaptation capabilities such as acid tolerance and bile tolerance, produced a wide range of volatile probiotic metabolites and secondary bile acids. Cohort analyses demonstrated that Christensenellaceae and Christensenella were prevalent in various cohorts and the abundances were significantly reduced in T2D and OB cohorts. At species level, Christensenellaceae showed different changes among healthy and disease cohorts. C. faecalis, F. tenuis, L. tenuis, and Guo. tenuis significantly reduced in all the metabolic disease cohorts. The relative abundances of C. minuta, C. hongkongensis and C. massiliensis showed no significant change in NAFLD and ACVD. and C. tenuis and C. acetigenes showed no significant change in ACVD, and Q. tenuis and Geh. tenuis showed no significant change in NAFLD, when compared with the HC cohort. So far as we know, this is the largest collection of cultured resource and first exploration of Christensenellaceae prevalences and abundances at species level.


Asunto(s)
Heces , Microbioma Gastrointestinal , Humanos , Heces/microbiología , Clostridiales/genética , Clostridiales/metabolismo , Clostridiales/aislamiento & purificación , Clostridiales/clasificación , Probióticos/metabolismo , Metabolómica , Genómica , Masculino , Filogenia , Femenino , Genoma Bacteriano
2.
Microbiome ; 12(1): 86, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730492

RESUMEN

BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria. RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching. CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.


Asunto(s)
Diferenciación Celular , Clostridiales , Microbioma Gastrointestinal , Linfocitos T Reguladores , Trichuris , Animales , Linfocitos T Reguladores/inmunología , Ratones , Malasia , Clostridiales/aislamiento & purificación , Humanos , Ácidos Grasos Volátiles/metabolismo , Femenino , Tricuriasis/parasitología , Tricuriasis/inmunología , Tricuriasis/microbiología
3.
Gut Microbes ; 16(1): 2342497, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38635321

RESUMEN

Despite the potential protective role of the gut microbiome against COVID-19, specific microbes conferring resistance to COVID-19 have not yet been identified. In this work, we aimed to identify and validate gut microbes at the species level that provide protection against SARS-CoV-2 infection. To identify gut microbes conferring protection against COVID-19, we conducted a fecal microbiota transplantation (FMT) from an individual with no history of COVID-19 infection or immunization into a lethal COVID-19 hamster model. FMT from this COVID-19-resistant donor resulted in significant phenotypic changes related to COVID-19 sensitivity in the hamsters. Metagenomic analysis revealed distinct differences in the gut microbiome composition among the hamster groups, leading to the identification of two previously unknown bacterial species: Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, both associated with COVID-19 resistance. Subsequently, we conducted a proof-of-concept confirmation animal experiment adhering to Koch's postulates. Oral administration of this gut microbe pair, Oribacterium sp. GMB0313 and Ruminococcus sp. GMB0270, to the hamsters provided complete protection against SARS-CoV-2 infection through the activation of CD8+ T cell mediated immunity. The prophylactic efficacy of the gut microbe pair against SARS-CoV-2 infection was comparable to, or even superior to, current mRNA vaccines. This strong prophylactic efficacy suggests that the gut microbe pair could be developed as a host-directed universal vaccine for all betacoronaviruses, including potential future emerging viruses.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Animales , Cricetinae , Ruminococcus , SARS-CoV-2 , Clostridiales , Linfocitos T CD8-positivos , Inmunidad Celular
4.
BMC Microbiol ; 24(1): 119, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580930

RESUMEN

Obesity is a metabolic disorder closely associated with profound alterations in gut microbial composition. However, the dynamics of species composition and functional changes in the gut microbiome in obesity remain to be comprehensively investigated. In this study, we conducted a meta-analysis of metagenomic sequencing data from both obese and non-obese individuals across multiple cohorts, totaling 1351 fecal metagenomes. Our results demonstrate a significant decrease in both the richness and diversity of the gut bacteriome and virome in obese patients. We identified 38 bacterial species including Eubacterium sp. CAG:274, Ruminococcus gnavus, Eubacterium eligens and Akkermansia muciniphila, and 1 archaeal species, Methanobrevibacter smithii, that were significantly altered in obesity. Additionally, we observed altered abundance of five viral families: Mesyanzhinovviridae, Chaseviridae, Salasmaviridae, Drexlerviridae, and Casjensviridae. Functional analysis of the gut microbiome indicated distinct signatures associated to obesity and identified Ruminococcus gnavus as the primary driver for function enrichment in obesity, and Methanobrevibacter smithii, Akkermansia muciniphila, Ruminococcus bicirculans, and Eubacterium siraeum as functional drivers in the healthy control group. Additionally, our results suggest that antibiotic resistance genes and bacterial virulence factors may influence the development of obesity. Finally, we demonstrated that gut vOTUs achieved a diagnostic accuracy with an optimal area under the curve of 0.766 for distinguishing obesity from healthy controls. Our findings offer comprehensive and generalizable insights into the gut bacteriome and virome features associated with obesity, with the potential to guide the development of microbiome-based diagnostics.


Asunto(s)
Clostridiales , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Metagenoma , Obesidad/microbiología , Bacterias/genética , Heces/microbiología , Akkermansia
5.
Artículo en Inglés | MEDLINE | ID: mdl-38573081

RESUMEN

The prokaryotic generic name Shuttleworthia Downes et al. 2002 is illegitimate because it is a later homonym of the plant genus Shuttleworthia Meisner 1840 and the mollusk genus Shuttleworthia Baker 1941 (Principle 2 and Rule 51b(5) of the International Code of Nomenclature of Prokaryotes). We therefore propose the replacement generic name Shuttleworthella, with type species Shuttleworthella satelles comb. nov. The prokaryotic generic name Tetrasphaera Maszenan et al. 2000 is illegitimate because it is a later homonym of Tetrasphaera Popofsky 1913 (Protozoa, Radiolaria) and of Tetrasphaera Górka 1965 (a fossil dinoflagellate) (Rule 51b(4) of the International Code of Nomenclature of Prokaryotes). We therefore propose the replacement generic name Nostocoides, with type species Nostocoides japonicum comb. nov.


Asunto(s)
Actinomycetales , Ácidos Grasos , Filogenia , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Ácidos Grasos/química , Clostridiales
6.
Curr Microbiol ; 81(6): 159, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689166

RESUMEN

The genus Aestuariicella has been recently reclassified as a member of the family Cellvibrionaceae. However, the taxonomic position of the genus as a distinct member of the family has not been clarified. In the present study, we performed multilayered analyses anchored on genome sequences to clarify the relationship between the genera Aestuariicella and Pseudomaricurvus within the family Cellvibrionaceae. Phylogenetic analyses based on 16S rRNA gene, RNA polymerase beta subunit (RpoB) protein, and core gene sequences showed a well-supported tight cluster formed by the members of the two genera. Moreover, the analysis of the average amino acid identity (AAI) revealed that the members of the two genera shared 68.16-79.48% AAI, values which were within the range of observed AAI (≥ 67.23%) among the members of the same genus within the family Cellvibrionaceae. Members of the two genera also shared several common characteristics. Furthermore, molecular synapomorphies in a form of conserved signature indels were identified in six protein sequences that were exclusively shared by the members of the two genera. Based on the phylogenetic and molecular evidence presented here, we propose the reclassification of the species Aestuariicella albida and Aestuariicella hydrocarbonica as Pseudomaricurvus albidus comb. nov. and Pseudomaricurvus hydrocarbonicus comb. nov., respectively.


Asunto(s)
Genómica , Filogenia , ARN Ribosómico 16S , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , ARN Polimerasas Dirigidas por ADN/genética , Análisis de Secuencia de ADN , Proteínas Bacterianas/genética , Genoma Bacteriano , Clostridiales/genética , Clostridiales/clasificación
7.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612453

RESUMEN

The objective of this study was to investigate gut dysbiosis and its metabolic and inflammatory implications in pediatric metabolic dysfunction-associated fatty liver disease (MAFLD). This study included 105 children and utilized anthropometric measurements, blood tests, the Ultrasound Fatty Liver Index, and fecal DNA sequencing to assess the relationship between gut microbiota and pediatric MAFLD. Notable decreases in Lachnospira spp., Faecalibacterium spp., Oscillospira spp., and Akkermansia spp. were found in the MAFLD group. Lachnospira spp. was particularly reduced in children with MAFLD and hepatitis compared to controls. Both MAFLD groups showed a reduction in flavone and flavonol biosynthesis sequences. Lachnospira spp. correlated positively with flavone and flavonol biosynthesis and negatively with insulin levels and insulin resistance. Body weight, body mass index (BMI), and total cholesterol levels were inversely correlated with flavone and flavonol biosynthesis. Reduced Lachnospira spp. in children with MAFLD may exacerbate insulin resistance and inflammation through reduced flavone and flavonol biosynthesis, offering potential therapeutic targets.


Asunto(s)
Flavonas , Hepatitis A , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Niño , Clostridiales , Flavonoles
8.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612577

RESUMEN

The gut microbiota plays a significant role in tumor pathogenesis by regulating the host metabolism and immune response, and there are few studies focused on tracking changes in the gut microbiota from the onset of lung cancer. Therefore, the aim of our study is combining preclinical and clinical research to thoroughly analyze the signatures of fecal microbiota in lung cancer, which will be useful for early diagnosis and predicting the therapeutic efficacy of lung cancer. The first part of this study analyzed the fecal metagenomic differences between patients with non-small cell lung cancer and healthy subjects, and the second part of this work constructed a murine lung cancer model to monitor changes in mouse fecal metagenomics and T cell immunology during lung cancer progression. We found that the fecal microbiota was altered in both humans and mice with lung cancer, characterized by a significantly reduced microbial diversity and number of beneficial microbes, with increases in potential pathogens. The fecal level of Akkermansia muciniphila and the gut metabolic module of the secondary bile acid metabolism were diminished in both humans and mice with lung cancer compared with healthy subjects. Splenomegaly was observed in the lung cancer mice. Flow cytometer analysis of the splenocytes revealed substantial alterations in the proportions of T cell subsets in the lung cancer mice, characterized by significant increases in CD4+Foxp3+CD25+ T regulatory cells (p < 0.05) while significant decreases in CD3+ T cells (p < 0.001), CD4+ T cells (p < 0.001), and the CD4+/CD8+ ratio (p < 0.01). Vertical and longitudinal analyses of the fecal microbiota of the two mouse groups identified some lung cancer biomarkers (including Acutalibacter timonensis, Lachnospiraceae bacterium NSJ-38 sp014337195, etc.). The fecal microbiota of the lung cancer mice had a reduced metagenomic potential for neurotransmitters (melatonin, γ-aminobutyric acid, and histamine) compared with healthy mice. In summary, this study found that the diversity, structure, and composition of gut microbiota vary between cancer and healthy conditions, ultimately leading to changes in the potential for functional metagenomics.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Microbioma Gastrointestinal , Neoplasias Pulmonares , Humanos , Animales , Ratones , Biomarcadores de Tumor , Clostridiales
9.
Int J Mol Sci ; 25(7)2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38612823

RESUMEN

Western diets are rich in gluten-containing products, which are frequently poorly digested. The human large intestine harbors microorganisms able to metabolize undigested gluten fragments that have escaped digestion by human enzymatic activities. The aim of this work was obtaining and culturing complex human gut microbial communities derived from gluten metabolism to model the dynamics of healthy human large intestine microbiota associated with different gluten forms. For this purpose, stool samples from six healthy volunteers were inoculated in media containing predigested gluten or predigested gluten plus non-digested gluten. Passages were carried out every 24 h for 15 days in the same medium and community composition along time was studied via V3-V4 16S rDNA sequencing. Diverse microbial communities were successfully obtained. Moreover, communities were shown to be maintained in culture with stable composition for 14 days. Under non-digested gluten presence, communities were enriched in members of Bacillota, such as Lachnospiraceae, Clostridiaceae, Streptococcaceae, Peptoniphilaceae, Selenomonadaceae or Erysipelotrichaceae, and members of Actinomycetota, such as Bifidobacteriaceae and Eggerthellaceae. Contrarily, communities exposed to digested gluten were enriched in Pseudomonadota. Hence, this study shows a method for culture and stable maintenance of gut communities derived from gluten metabolism. This method enables the analysis of microbial metabolism of gluten in the gut from a community perspective.


Asunto(s)
Actinobacteria , Microbioma Gastrointestinal , Microbiota , Humanos , Firmicutes , Clostridiales , Glútenes
10.
Sci Rep ; 14(1): 8831, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632320

RESUMEN

Mounting data hints that the gut microbiota's role may be pivotal in understanding the emergence of psoriasis. However, discerning a direct causal link is yet elusive. In this exploration, we adopted a Mendelian randomization (MR) strategy to probe the prospective causal interplay between the gut's microbial landscape and the predisposition to psoriasis. Genetic markers acting as instrumental variables for gut microbiota were extrapolated from a genome-wide association study (GWAS) encompassing 18,340 individuals. A separate GWAS yielded summary data for psoriasis, which covered 337,159 patients and 433,201 control subjects. The primary analysis hinged on inverse variance weighting (IVW). Additional methods like the weighted median approach and MR-Egger regression were employed to validate the integrity of our findings. Intriguing correlations emerged between psoriasis risk and eight specific bacterial traits. To illustrate: Mollicutes presented an odds ratio (OR) of 1.003 with a 95% confidence interval (CI) spanning 1.001-1.005 (p = 0.016), while the family. Victivallaceae revealed an OR of 0.998 with CI values between 0.997 and 0.999 (p = 0.023). Eubacterium (coprostanoligenes group) revealed an OR of 0.997 with CI values between 0.994 and 0.999 (p = 0.027). Eubacterium (fissicatena group) revealed an OR of 0.997 with CI values between 0.996 and 0.999 (p = 0.005). Holdemania revealed an OR of 1.001 with CI values 1-1.003 (p = 0.034). Lachnospiraceae (NK4A136 group) revealed an OR of 0.997 with CI values between 0.995 and 0.999 (p = 0.046). Lactococcus revealed an OR of 0.998 with CI values between 0.996 and 0.999 (p = 0.008). Tenericutes revealed an OR of 1.003 with CI values between 1.001 and 1.006 (p = 0.016). Sensitivity analysis for these bacterial features yielded congruent outcomes, reinforcing statistically significant ties between the eight bacterial entities and psoriasis. This comprehensive probe underscores emerging evidence pointing towards a plausible causal nexus between diverse gut microbiota and the onset of psoriasis. It beckons further research to unravel the intricacies of how the gut's microbial constituents might sway psoriasis's pathogenesis.


Asunto(s)
Clostridiales , Eubacterium , Microbioma Gastrointestinal , Tenericutes , Humanos , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Estudios Prospectivos
11.
Front Cell Infect Microbiol ; 14: 1371591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638831

RESUMEN

Background: Previous studies have suggested a link between gut microbiota and skin diseases, including erysipelas, an inflammatory skin condition. Despite this, the precise nature of the relationship between erysipelas and gut microbiota remains unclear and subject to debate. Methods: We conducted a Mendelian Randomization (MR) analysis using publicly available summary data from genome-wide association studies (GWAS) to explore the potential causal relationship between gut microbiota and erysipelas. Instrumental variables (IVs) were identified using a comprehensive set of screening methods. We then performed MR analyses primarily using the Inverse Variance Weighted (IVW) method, complemented by alternative approaches such as MR Egger, weighted median, simple mode, and weighted mode. A series of sensitivity analyses, including Cochran's Q test, MR-Egger intercept test, Mendelian Randomization Pleiotropy RESidual Sum and Outlier (MR-PRESSO) test, and a leave-one-out test, were executed to ensure the robustness and validity of our findings. Results: We identified potential associations between erysipelas and various gut microbiota, including Alcaligenaceae (OR 1.23; 95% CI 1.06-1.43; p=0.006), Rikenellaceae (OR 0.77; 95% CI 0.67-0.90; p=0.001), and others. Notably, associations with Actinomyces, Lachnospiraceae NC2004 group, Ruminiclostridium 9, Ruminococcaceae UCG014, Odoribacter, and Actinobacteria were also observed. Sensitivity analyses confirmed the robustness of these associations. Conclusion: Our MR analysis suggests both potentially beneficial and harmful causal relationships between various gut microbiota and the incidence of erysipelas. This study provides new theoretical and empirical insights into the pathogenesis of erysipelas and underscores the potential for innovative preventive and therapeutic approaches.


Asunto(s)
Erisipela , Microbioma Gastrointestinal , Humanos , Erisipela/genética , Análisis de la Aleatorización Mendeliana , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Piel , Bacteroidetes , Clostridiales
12.
Nat Commun ; 15(1): 3478, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658578

RESUMEN

The expansion of the CRISPR-Cas toolbox is highly needed to accelerate the development of therapies for genetic diseases. Here, through the interrogation of a massively expanded repository of metagenome-assembled genomes, mostly from human microbiomes, we uncover a large variety (n = 17,173) of type II CRISPR-Cas loci. Among these we identify CoCas9, a strongly active and high-fidelity nuclease with reduced molecular size (1004 amino acids) isolated from an uncultivated Collinsella species. CoCas9 is efficiently co-delivered with its sgRNA through adeno associated viral (AAV) vectors, obtaining efficient in vivo editing in the mouse retina. With this study we uncover a collection of previously uncharacterized Cas9 nucleases, including CoCas9, which enriches the genome editing toolbox.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Microbiota , Edición Génica/métodos , Humanos , Animales , Ratones , Microbiota/genética , Dependovirus/genética , Proteína 9 Asociada a CRISPR/metabolismo , Proteína 9 Asociada a CRISPR/genética , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Retina/metabolismo , Clostridiales/genética , Clostridiales/enzimología , Células HEK293 , Vectores Genéticos/metabolismo , Vectores Genéticos/genética
13.
Nat Commun ; 15(1): 3502, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664378

RESUMEN

Beneficial gut bacteria are indispensable for developing colonic mucus and fully establishing its protective function against intestinal microorganisms. Low-fiber diet consumption alters the gut bacterial configuration and disturbs this microbe-mucus interaction, but the specific bacteria and microbial metabolites responsible for maintaining mucus function remain poorly understood. By using human-to-mouse microbiota transplantation and ex vivo analysis of colonic mucus function, we here show as a proof-of-concept that individuals who increase their daily dietary fiber intake can improve the capacity of their gut microbiota to prevent diet-mediated mucus defects. Mucus growth, a critical feature of intact colonic mucus, correlated with the abundance of the gut commensal Blautia, and supplementation of Blautia coccoides to mice confirmed its mucus-stimulating capacity. Mechanistically, B. coccoides stimulated mucus growth through the production of the short-chain fatty acids propionate and acetate via activation of the short-chain fatty acid receptor Ffar2, which could serve as a new target to restore mucus growth during mucus-associated lifestyle diseases.


Asunto(s)
Colon , Fibras de la Dieta , Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Mucosa Intestinal , Receptores de Superficie Celular , Animales , Fibras de la Dieta/metabolismo , Ácidos Grasos Volátiles/metabolismo , Ratones , Colon/metabolismo , Colon/microbiología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Femenino , Ratones Endogámicos C57BL , Moco/metabolismo , Trasplante de Microbiota Fecal , Simbiosis , Propionatos/metabolismo , Clostridiales/metabolismo , Acetatos/metabolismo , Adulto
14.
Front Cell Infect Microbiol ; 14: 1376358, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596650

RESUMEN

The Gram-positive bacterium, Filifactor alocis is an oral pathogen, and approximately 50% of known strains encode a recently identified repeat-in-toxin (RTX) protein, FtxA. By assessing a longitudinal Ghanaian study population of adolescents (10-19 years of age; mean age 13.2 years), we recently discovered a possible correlation between deep periodontal pockets measured at the two-year follow-up, presence of the ftxA gene, and a high quantity of F. alocis. To further understand the contribution of F. alocis and FtxA in periodontal disease, we used qPCR in the present study to assess the carriage loads of F. alocis and the prevalence of its ftxA gene in subgingival plaque specimens, sampled at baseline from the Ghanaian cohort (n=500). Comparing these results with the recorded clinical attachment loss (CAL) longitudinal progression data from the two-year follow up, we concluded that carriers of ftxA-positive F. alocis typically exhibited higher loads of the bacterium. Moreover, high carriage loads of F. alocis and concomitant presence of the ftxA gene were two factors that were both associated with an enhanced prevalence of CAL progression. Interestingly, CAL progression appeared to be further promoted upon the simultaneous presence of F. alocis and the non-JP2 genotype of Aggregatibacter actinomycetemcomitans. Taken together, our present findings are consistent with the notion that F. alocis and its ftxA gene promotes CAL during periodontal disease.


Asunto(s)
Clostridiales , Enfermedades Periodontales , Toxinas Biológicas , Adolescente , Humanos , Aggregatibacter actinomycetemcomitans/genética , Pérdida de la Inserción Periodontal/microbiología , Ghana
15.
Appl Microbiol Biotechnol ; 108(1): 312, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683242

RESUMEN

The xylanolytic enzymes Clocl_1795 and Clocl_2746 from glycoside hydrolase (GH) family 30 are highly abundant in the hemicellulolytic system of Acetivibrio clariflavus (Hungateiclostridium, Clostridium clariflavum). Clocl_1795 has been shown to be a xylobiohydrolase AcXbh30A releasing xylobiose from the non-reducing end of xylan and xylooligosaccharides. In this work, biochemical characterization of Clocl_2746 is presented. The protein, designated AcXyn30B, shows low sequence similarity to other GH30 members and phylogenetic analysis revealed that AcXyn30B and related proteins form a separate clade that is proposed to be a new subfamily GH30_12. AcXyn30B exhibits similar specific activity on glucuronoxylan, arabinoxylan, and aryl glycosides of linear xylooligosaccharides suggesting that it is a non-specific xylanase. From polymeric substrates, it releases the fragments of degrees of polymerization (DP) 2-6. Hydrolysis of different xylooligosaccharides indicates that AcXyn30B requires at least four occupied catalytic subsites for effective cleavage. The ability of the enzyme to hydrolyze a wide range of substrates is interesting for biotechnological applications. In addition to subfamilies GH30_7, GH30_8, and GH30_10, the newly proposed subfamily GH30_12 further widens the spectrum of GH30 subfamilies containing xylanolytic enzymes. KEY POINTS: Bacterial GH30 endoxylanase from A. clariflavus (AcXyn30B) has been characterized AcXyn30B is non-specific xylanase hydrolyzing various xylans and xylooligosaccharides Phylogenetic analysis placed AcXyn30B in a new GH30_12 subfamily.


Asunto(s)
Clostridiales , Endo-1,4-beta Xilanasas , Xilanos , Disacáridos/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/química , Glucuronatos/metabolismo , Hidrólisis , Oligosacáridos/metabolismo , Filogenia , Especificidad por Sustrato , Xilanos/metabolismo , Clostridiales/enzimología , Clostridiales/genética
16.
J Agric Food Chem ; 72(18): 10497-10505, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659290

RESUMEN

Despite their broad application potential, the widespread use of ß-1,3-glucans has been hampered by the high cost and heterogeneity associated with current production methods. To address this challenge, scalable and economically viable processes are needed for the production of ß-1,3-glucans with tailorable molecular mass distributions. Glycoside phosphorylases have shown to be promising catalysts for the bottom-up synthesis of ß-1,3-(oligo)glucans since they combine strict regioselectivity with a cheap donor substrate (i.e., α-glucose 1-phosphate). However, the need for an expensive priming substrate (e.g., laminaribiose) and the tendency to produce shorter oligosaccharides still form major bottlenecks. Here, we report the discovery and application of a thermostable ß-1,3-oligoglucan phosphorylase originating from Anaerolinea thermophila (AtßOGP). This enzyme combines a superior catalytic efficiency toward glucose as a priming substrate, high thermostability, and the ability to synthesize high molecular mass ß-1,3-glucans up to DP 75. Coupling of AtßOGP with a thermostable variant of Bifidobacterium adolescentis sucrose phosphorylase enabled the efficient production of tailorable ß-1,3-(oligo)glucans from sucrose, with a near-complete conversion of >99 mol %. This cost-efficient process for the conversion of renewable bulk sugar into ß-1,3-(oligo)glucans should facilitate the widespread application of these versatile functional fibers across various industries.


Asunto(s)
Proteínas Bacterianas , Estabilidad de Enzimas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , beta-Glucanos/química , beta-Glucanos/metabolismo , Bifidobacterium adolescentis/enzimología , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/química , Bifidobacterium adolescentis/metabolismo , Glucosiltransferasas/química , Glucosiltransferasas/metabolismo , Glucosiltransferasas/genética , Especificidad por Sustrato , Fosforilasas/metabolismo , Fosforilasas/química , Fosforilasas/genética , Clostridiales/enzimología , Clostridiales/genética , Clostridiales/química , Biocatálisis , Calor
17.
Nat Commun ; 15(1): 3612, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684664

RESUMEN

The etiopathogenesis of diverticulitis, among the most common gastrointestinal diagnoses, remains largely unknown. By leveraging stool collected within a large prospective cohort, we performed shotgun metagenomic sequencing and untargeted metabolomics profiling among 121 women diagnosed with diverticulitis requiring antibiotics or hospitalizations (cases), matched to 121 women without diverticulitis (controls) according to age and race. Overall microbial community structure and metabolomic profiles differed in diverticulitis cases compared to controls, including enrichment of pro-inflammatory Ruminococcus gnavus, 1,7-dimethyluric acid, and histidine-related metabolites, and depletion of butyrate-producing bacteria and anti-inflammatory ceramides. Through integrated multi-omic analysis, we detected covarying microbial and metabolic features, such as Bilophila wadsworthia and bile acids, specific to diverticulitis. Additionally, we observed that microbial composition modulated the protective association between a prudent fiber-rich diet and diverticulitis. Our findings offer insights into the perturbations in inflammation-related microbial and metabolic signatures associated with diverticulitis, supporting the potential of microbial-based diagnostics and therapeutic targets.


Asunto(s)
Diverticulitis , Heces , Microbioma Gastrointestinal , Humanos , Femenino , Persona de Mediana Edad , Diverticulitis/metabolismo , Diverticulitis/microbiología , Heces/microbiología , Anciano , Estudios Prospectivos , Bilophila/metabolismo , Metabolómica , Estudios de Casos y Controles , Clostridiales/metabolismo , Clostridiales/aislamiento & purificación , Ácidos y Sales Biliares/metabolismo , Adulto , Fibras de la Dieta/metabolismo , Metaboloma , Metagenómica/métodos
18.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542455

RESUMEN

Metabolic-dysfunction-associated steatotic liver disease (MASLD) is a growing health problem for which no therapy exists to date. The modulation of the gut microbiome may have treatment potential for MASLD. Here, we investigated Anaerobutyricum soehngenii, a butyrate-producing anaerobic bacterium with beneficial effects in metabolic syndrome, in a diet-induced MASLD mouse model. Male C57BL/6J mice received a Western-type high-fat diet and water with 15% fructose (WDF) to induce MASLD and were gavaged with A. soehngenii (108 or 109 colony-forming units (CFU) 3 times per week) or a placebo for 6 weeks. The A. soehngenii gavage increased the cecal butyrate concentrations. Although there was no effect on histological MASLD scores, A. soehngenii improved the glycemic response to insulin. In the liver, the WDF-associated altered expression of three genes relevant to the MASLD pathophysiology was reversed upon treatment with A. soehngenii: Lipin-1 (Lpin1), insulin-like growth factor binding protein 1 (Igfbp1) and Interleukin 1 Receptor Type 1 (Il1r1). A. soehngenii administration also increased the intestinal expression of gluconeogenesis and fructolysis genes. Although these effects did not translate into significant histological improvements in MASLD, these results provide a basis for combined gut microbial approaches to induce histological improvements in MASLD.


Asunto(s)
Clostridiales , Hígado Graso , Enfermedades Metabólicas , Masculino , Animales , Ratones , Ratones Endogámicos C57BL , Composición de Base , Gluconeogénesis , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Hígado Graso/etiología , Hígado Graso/genética , Butiratos , Expresión Génica , Fosfatidato Fosfatasa
19.
Anaerobe ; 86: 102838, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38521228

RESUMEN

Hungatella species, including Hungatella hathewayi and Hungatella effluvii, previously identified as part of the Clostridium genus, are anaerobic bacteria primarily residing in the gut microbiome, with infrequent implications in human infections. This article presents the case of an 87-year-old Asian male admitted for a hyperosmolar hyperglycemic state with septic shock secondary to Hungatella hathewayi bacteremia originating from acute appendicitis. Remarkably, the bacterium was detected in the blood 48 hours before the emergence of clinical and radiographic evidence of acute appendicitis. Additionally, we conducted a literature review to identify all documented human infections caused by Hungatella species. Timely microbial identification in such cases is essential for implementing targeted antibiotic therapy and optimizing clinical outcomes.


Asunto(s)
Antibacterianos , Apendicitis , Bacteriemia , Humanos , Apendicitis/microbiología , Apendicitis/complicaciones , Apendicitis/diagnóstico , Masculino , Bacteriemia/microbiología , Bacteriemia/diagnóstico , Bacteriemia/tratamiento farmacológico , Bacteriemia/complicaciones , Anciano de 80 o más Años , Antibacterianos/uso terapéutico , Clostridiales/aislamiento & purificación , Clostridiales/clasificación , Clostridiales/genética
20.
Medicine (Baltimore) ; 103(9): e37284, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38428908

RESUMEN

There is increasing evidence that alterations in gut microbiota (GM) composition are associated with autism spectrum disorder (ASD), but no reliable causal relationship has been established. Therefore, a 2-sample Mendelian randomization (MR) study was conducted to reveal a potential causal relationship between GM and ASD. Instrumental variables for 211 GM taxa were obtained from genome-wide association studies (GWAS) and Mendelian randomization studies to estimate their impact on ASD risk in the iPSYCH-PGC GWAS dataset (18,382 ASD cases and 27,969 controls). Inverse variance weighted (IVW) is the primary method for causality analysis, and several sensitivity analyses validate MR results. Among 211 GM taxa, IVW results confirmed that Tenericutes (P value = .0369), Mollicutes (P value = .0369), Negativicutes (P value = .0374), Bifidobacteriales (P value = .0389), Selenomonadales (P value = .0374), Bifidobacteriaceae (P value = .0389), Family XIII (P value = .0149), Prevotella7 (P value = .0215), Ruminococcaceae NK4A214 group (P value = .0205) were potential protective factors for ASD. Eisenbergiella (P value = .0159) was a possible risk factor for ASD. No evidence of heterogeneous, pleiotropic, or outlier single-nucleotide polymorphism was detected. Additionally, further sensitivity analysis verified the robustness of the above results. We confirm a potential causal relationship between certain gut microbes and ASD, providing new insights into how gut microbes mediate ASD. The association between them needs to be further explored and will provide new ideas for the prevention and treatment of ASD.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Trastorno del Espectro Autista/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Causalidad , Clostridiales , Firmicutes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...