Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 10153, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349508

RESUMEN

Clostridium species are re-emerging as biotechnological workhorses for industrial acetone-butanol-ethanol production. This re-emergence is largely due to advances in fermentation technologies but also due to advances in genome engineering and re-programming of the native metabolism. Several genome engineering techniques have been developed including the development of numerous CRISPR-Cas tools. Here, we expanded the CRISPR-Cas toolbox and developed a CRISPR-Cas12a genome engineering tool in Clostridium beijerinckii NCIMB 8052. By controlling the expression of FnCas12a with the xylose-inducible promoter, we achieved efficient (25-100%) single-gene knockout of five C. beijerinckii NCIMB 8052 genes (spo0A, upp, Cbei_1291, Cbei_3238, Cbei_3832). Moreover, we achieved multiplex genome engineering by simultaneously knocking out the spo0A and upp genes in a single step with an efficiency of 18%. Finally, we showed that the spacer sequence and position in the CRISPR array can affect the editing efficiency outcome.


Asunto(s)
Clostridium beijerinckii , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium/genética , Butanoles/metabolismo , 1-Butanol/metabolismo , Edición Génica/métodos
2.
Appl Microbiol Biotechnol ; 106(22): 7563-7575, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36287220

RESUMEN

Serine/threonine protein kinases (STKs) are important for signal transduction and involved in multiple physiological processes, including cell growth, central metabolism, and sporulation in bacteria. However, the role of STKs in solventogenic clostridia remains unclear. Here, we identified and comprehensively investigated six STK candidates in Clostridium beijerinckii. These STKs were classified into four groups with distinct characteristics via analysis of genetic organizations, prediction of protein domains, and multiple sequence alignment. Cbei0566 is a member of the PrkA family with 41% identity to PrkA from Bacillus subtilis, and both Cbei0666 and Cbei0813 are two-component-like STKs. Cbei1151 and Cbei1929 belong to the Hanks family STKs and consist of a cytoplasmic catalytic domain, a transmembrane region, and extracellular sensor domains. In-frame deletion mutants of cbei0566, cbei0666, cbei1929, and cbei2661 displayed similar cell growth with wild type. Both Δcbei0666 and Δcbei2661 improved acetone-butanol-ethanol (ABE) production by 14.3% (19.2 g/L vs. 16.8 g/L), and the sporulation frequencies of Δcbei0566, Δcbei1929, and Δcbei2661 significantly decreased to 35.5%, 55.1% and 44.8%, respectively. The restored phenotypes after genetic complementation demonstrated their direct link to STKs deletion. Remarkably, overexpressing cbei0566 contributed to 41.5% more spore formation and cbei1929 overexpression enhanced ABE production from 19.3 to 24.2 g/L, along with 25% less acids. These results revealed that Cbei0566 and Cbei1929 had prominent regulatory functions. This study expands the current knowledge of the existence and functions of STKs in prokaryotes and highlights the importance of STK-mediated signaling networks in developing superior strains. KEY POINTS: • First reported serine/threonine protein kinases in solventogenic clostridia • Six STKs with distinct properties possessed diverse functions in C. beijerinckii • Cbei1929 and Cbei0566 remarkably regulated solventogenesis and sporulation.


Asunto(s)
Clostridium beijerinckii , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Proteínas Serina-Treonina Quinasas , Fermentación , Etanol/metabolismo , Butanoles/metabolismo , 1-Butanol/metabolismo , Clostridium/metabolismo , Treonina/metabolismo , Serina/metabolismo
3.
Biotechnol Adv ; 58: 107889, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34929313

RESUMEN

Solventogenic clostridia are not a strictly defined group within the genus Clostridium but its representatives share some common features, i.e. they are anaerobic, non-pathogenic, non-toxinogenic and endospore forming bacteria. Their main metabolite is typically 1-butanol but depending on species and culture conditions, they can form other metabolites such as acetone, isopropanol, ethanol, butyric, lactic and acetic acids, and hydrogen. Although these organisms were previously used for the industrial production of solvents, they later fell into disuse, being replaced by more efficient chemical production. A return to a more biological production of solvents therefore requires a thorough understanding of clostridial metabolism. Transcriptome analysis, which reflects the involvement of individual genes in all cellular processes within a population, at any given (sampling) moment, is a valuable tool for gaining a deeper insight into clostridial life. In this review, we describe techniques to study transcription, summarize the evolution of these techniques and compare methods for data processing and visualization of solventogenic clostridia, particularly the species Clostridium acetobutylicum and Clostridium beijerinckii. Individual approaches for evaluating transcriptomic data are compared and their contributions to advancements in the field are assessed. Moreover, utilization of transcriptomic data for reconstruction of computational clostridial metabolic models is considered and particular models are described. Transcriptional changes in glucose transport, central carbon metabolism, the sporulation cycle, butanol and butyrate stress responses, the influence of lignocellulose-derived inhibitors on growth and solvent production, and other respective topics, are addressed and common trends are highlighted.


Asunto(s)
Clostridium acetobutylicum , Clostridium beijerinckii , Butanoles/metabolismo , Clostridium/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Fermentación , Solventes , Transcriptoma/genética
4.
J Biotechnol ; 329: 49-55, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33556425

RESUMEN

The acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia has a long history of industrial butanol production. The Clostridium beijerinckii mutant BA101 has been widely studied for ABE fermentation owing to its enhanced butanol production capacity. Here, we characterized the BA101 mutant under controlled environmental conditions in parallel with the parental strain C. beijerinckii NCIMB 8052. To investigate the correlation between phenotype and genotype, we carried out the genome sequencing of BA101. Through comparative genomic analysis, several mutations in the genes encoding transcriptional regulator, sensor kinase, and phosphatase were identified in the BA101 genome as well as other sibling mutants. Among them, the SNP in the Cbei_3078 gene encoding PAS/PAC sensor hybrid histidine kinase was unique to the BA101 strain. The identified mutations relevant to the observed physiological behaviors of BA101 could be potential genetic targets for rational engineering of solventogenic clostridia toward desired phenotypes.


Asunto(s)
Clostridium beijerinckii , Butanoles , Clostridium beijerinckii/genética , Fermentación , Genómica , Fenotipo , Solventes
5.
Microbiologyopen ; 10(1): e1146, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33319506

RESUMEN

The main bottleneck in the return of industrial butanol production from renewable feedstock through acetone-butanol-ethanol (ABE) fermentation by clostridia, such as Clostridium beijerinckii, is the low final butanol concentration. The problem is caused by the high toxicity of butanol to the production cells, and therefore, understanding the mechanisms by which clostridia react to butanol shock is of key importance. Detailed analyses of transcriptome data that were obtained after butanol shock and their comparison with data from standard ABE fermentation have resulted in new findings, while confirmed expected population responses. Although butanol shock resulted in upregulation of heat shock protein genes, their regulation is different than was assumed based on standard ABE fermentation transcriptome data. While glucose uptake, glycolysis, and acidogenesis genes were downregulated after butanol shock, solventogenesis genes were upregulated. Cyclopropanation of fatty acids and formation of plasmalogens seem to be significant processes involved in cell membrane stabilization in the presence of butanol. Surprisingly, one of the three identified Agr quorum-sensing system genes was upregulated. Upregulation of several putative butanol efflux pumps was described after butanol addition and a large putative polyketide gene cluster was found, the transcription of which seemed to depend on the concentration of butanol.


Asunto(s)
Transporte Biológico/genética , Butanoles/toxicidad , Membrana Celular/metabolismo , Clostridium beijerinckii/efectos de los fármacos , Clostridium beijerinckii/genética , Reactores Biológicos/microbiología , Clostridium beijerinckii/metabolismo , Ácidos Grasos/metabolismo , Perfilación de la Expresión Génica , Glucosa/metabolismo , Glucólisis/genética , Glucólisis/fisiología , Proteínas de Choque Térmico/metabolismo , Plasmalógenos/biosíntesis , Percepción de Quorum/genética , Estrés Fisiológico/genética
6.
J Agric Food Chem ; 68(35): 9475-9487, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32806108

RESUMEN

n-Butyl acetate is an important food additive commonly produced via concentrated sulfuric acid catalysis or immobilized lipase catalysis of butanol and acetic acid. Compared with chemical methods, an enzymatic approach is more environmentally friendly; however, it incurs a higher cost due to lipase production. In vivo biosynthesis via metabolic engineering offers an alternative to produce n-butyl acetate. This alternative combines substrate production (butanol and acetyl-coenzyme A (acetyl-CoA)), alcohol acyltransferase expression, and esterification reaction in one reactor. The alcohol acyltransferase gene ATF1 from Saccharomyces cerevisiae was introduced into Clostridium beijerinckii NCIMB 8052, enabling it to directly produce n-butyl acetate from glucose without lipase addition. Extractants were compared and adapted to realize glucose fermentation with in situ n-butyl acetate extraction. Finally, 5.57 g/L of butyl acetate was produced from 38.2 g/L of glucose within 48 h, which is 665-fold higher than that reported previously. This demonstrated the potential of such a metabolic approach to produce n-butyl acetate from biomass.


Asunto(s)
Acetatos/metabolismo , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Biomasa , Clostridium beijerinckii/crecimiento & desarrollo , Fermentación , Glucosa/metabolismo , Ingeniería Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
7.
J Ind Microbiol Biotechnol ; 47(8): 609-620, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32851482

RESUMEN

This study addressed the functionality of genetic circuits carrying natural regulatory elements of Clostridium acetobutylicum ATCC 824 in the presence of the respective inducer molecules. Specifically, promoters and their regulators involved in diverse carbon source utilization were characterized using mCherryOpt or beta-galactosidase as a reporter. Consequently, most of the genetic circuits tested in this study were functional in Clostridium acetobutylicum ATCC 824 in the presence of an inducer, leading to the expression of reporter proteins. These genetic sensor-regulators were found to be transferable to another Clostridium species, such as Clostridium beijerinckii NCIMB 8052. The gradual expression of reporter protein was observed as a function of the carbohydrates of interest. A xylose-inducible promoter allows a titratable and robust expression of a reporter protein with stringency and efficacy. This xylose-inducible circuit was seen to enable induction of the expression of reporter proteins in the presence of actual sugar mixtures incorporated in woody hydrolysate wherein glucose and xylose are present as predominant carbon sources.


Asunto(s)
Clostridium acetobutylicum/genética , Regiones Promotoras Genéticas , beta-Galactosidasa/genética , Clostridium acetobutylicum/enzimología , Clostridium acetobutylicum/metabolismo , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Fermentación , Genes Reguladores , Genes Reporteros , Glucosa/metabolismo , Plásmidos , Transformación Bacteriana , Xilosa/metabolismo , beta-Galactosidasa/metabolismo
8.
J Agric Food Chem ; 68(30): 7916-7925, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32614183

RESUMEN

The production of acetone-butanol-ethanol by solventogenic Clostridium using lignocellulosic biomass can be a potential alternative to petroleum-based butanol. However, previous studies on nondetoxified lignocellulose hydrolysate could not provide better results when compared to those in synthetic medium. In this study, we engineered the pentose pathway of Clostridium beijerinckii NCIMB 8052, which was then subjected to adaptive laboratory evolution in the gradient mixture of synthetic medium and pretreated corn stover enzymatic hydrolysate (CSH) prepared according to the National Renewable Energy Laboratory (NREL) standard. The final resultant strain CIBTS1274A produced 20.7 g/L of total solvents in NREL CSH diluted to 6% initial total sugars, supplemented with ammonium acetate. This performance was comparable with that of corn-based butanol. In addition, this strain was successfully used in the scale-up operation using nondetoxified corn stover and corncob hydrolysate at Lignicell Refining Biotechnologies Ltd., which once was the only commercial biobutanol industry in the world.


Asunto(s)
Acetona/metabolismo , Butanoles/metabolismo , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Etanol/metabolismo , Zea mays/microbiología , Fermentación , Lignina/química , Lignina/metabolismo , Ingeniería Metabólica , Tallos de la Planta/química , Tallos de la Planta/metabolismo , Tallos de la Planta/microbiología , Solventes/metabolismo , Zea mays/química , Zea mays/metabolismo
9.
J Biotechnol ; 323: 17-23, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32569792

RESUMEN

Palm oil mill effluent (POME) was tested as a substrate to produce hydrogen by dark fermentation. Two microbial consortia and a pure culture of Clostridium beijerinckii (ATCC 8260) were cultured anaerobically in raw, diluted and hydrolyzed POME to compare biohydrogen production yields in all three media. Experiments were done in 15 mL Hungate tubes containing 5 mL of medium and 1 mL of inoculum. When Clostridium beijerinckii was cultivated at 30 °C in the hydrolyzed POME (P003), containing 7.5 g/L of sucrose, during 8 days of fermentation and 20 % of the inoculum, the maximum biohydrogen production yield was 4.62 LH2/Lmed. Consortium C3 also showed the best production in hydrolyzed POME while consortium C6 achieved its maximum production in raw POME. This effluent is a potential substrate for biohydrogen production.


Asunto(s)
Clostridium beijerinckii/metabolismo , Fermentación , Hidrógeno/metabolismo , Aceite de Palma/metabolismo , Anaerobiosis , Fenómenos Químicos , Clostridium beijerinckii/genética , Biología Computacional , Ácidos Grasos Volátiles/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Residuos Industriales , Consorcios Microbianos
10.
Biotechnol Bioeng ; 117(7): 2008-2022, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32170874

RESUMEN

Synthetic microbial communities have become a focus of biotechnological research since they can overcome several of the limitations of single-specie cultures. A paradigmatic example is Clostridium cellulovorans DSM 743B, which can decompose lignocellulose but cannot produce butanol. Clostridium beijerinckii NCIMB 8052 however, is unable to use lignocellulose but can produce high amounts of butanol from simple sugars. In our previous studies, both organisms were cocultured to produce butanol by consolidated bioprocessing. However, such consolidated bioprocessing implementation strongly depends on pH regulation. Since low pH (pH 4.5-5.5) is required for butanol fermentation, C. cellulovorans cannot grow well and saccharify sufficient lignocellulose to feed both strains at a pH below 6.4. To overcome this bottleneck, this study engineered C. cellulovorans by adaptive laboratory evolution, inactivating cell wall lyases genes (Clocel_0798 and Clocel_2169), and overexpressing agmatine deiminase genes (augA, encoded by Cbei_1922) from C. beijerinckii NCIMB 8052. The generated strain WZQ36: 743B*6.0*3△lyt0798△lyt2169-(pXY1-Pthl -augA) can tolerate a pH of 5.5. Finally, the alcohol aldehyde dehydrogenase gene adhE1 from Clostridium acetobutylicum ATCC 824 was introduced into the strain to enable butanol production at low pH, in coordination with solvent fermentation of C. beijerinckii in consortium. The engineered consortium produced 3.94 g/L butanol without pH control within 83 hr, which is more than 5-fold of the level achieved by wild consortia under the same conditions. This exploration represents a proof of concept on how to combine metabolic and evolutionary engineering to coordinate coculture of a synthetic microbial community.


Asunto(s)
Butanoles/metabolismo , Clostridium/genética , Ingeniería Genética/métodos , Clostridium/metabolismo , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/metabolismo , Clostridium beijerinckii/genética , Clostridium beijerinckii/metabolismo , Concentración de Iones de Hidrógeno , Ingeniería Metabólica/métodos , Microbiota
11.
Appl Environ Microbiol ; 86(7)2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32005735

RESUMEN

The AdhR regulatory protein is an activator of σ54-dependent transcription of adhA1 and adhA2 genes, which are required for alcohol synthesis in Clostridium beijerinckii Here, we identified the signal perceived by AdhR and determined the regulatory mechanism of AdhR activity. By assaying the activity of AdhR in N-terminally truncated forms, a negative control mechanism of AdhR activity was identified in which the central AAA+ domain is subject to repression by the N-terminal GAF and PAS domains. Binding of Fe2+ to the GAF domain was found to relieve intramolecular repression and stimulate the ATPase activity of AdhR, allowing the AdhR to activate transcription. This control mechanism enables AdhR to regulate transcription of adhA1 and adhA2 in response to cellular redox status. The mutants deficient in AdhR or σ54 showed large shifts in intracellular redox state indicated by the NADH/NAD+ ratio under conditions of increased electron availability or oxidative stress. We demonstrated that the Fe2+-activated transcriptional regulator AdhR and σ54 control alcohol synthesis to maintain redox homeostasis in clostridial cells. Expression of N-terminally truncated forms of AdhR resulted in improved solvent production by C. beijerinckiiIMPORTANCE Solventogenic clostridia are anaerobic bacteria that can produce butanol, ethanol, and acetone, which can be used as biofuels or building block chemicals. Here, we show that AdhR, a σ54-dependent transcriptional activator, senses the intracellular redox status and controls alcohol synthesis in Clostridium beijerinckii AdhR provides a new example of a GAF domain coordinating a mononuclear non-heme iron to sense and transduce the redox signal. Our study reveals a previously unrecognized functional role of σ54 in control of cellular redox balance and provides new insights into redox signaling and regulation in clostridia. Our results reveal AdhR as a novel engineering target for improving solvent production by C. beijerinckii and other solventogenic clostridia.


Asunto(s)
Proteínas Bacterianas/genética , Clostridium beijerinckii/genética , Compuestos Ferrosos/metabolismo , Proteostasis , Factores de Transcripción/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clostridium beijerinckii/metabolismo , Oxidación-Reducción , Alineación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/metabolismo
12.
Methods ; 172: 51-60, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31362039

RESUMEN

Recent developments in CRISPR technologies have opened new possibilities for improving genome editing tools dedicated to the Clostridium genus. In this study we adapted a two-plasmid tool based on this technology to enable scarless modification of the genome of two reference strains of Clostridium beijerinckii producing an Acetone/Butanol/Ethanol (ABE) or an Isopropanol/Butanol/Ethanol (IBE) mix of solvents. In the NCIMB 8052 ABE-producing strain, inactivation of the SpoIIE sporulation factor encoding gene resulted in sporulation-deficient mutants, and this phenotype was reverted by complementing the mutant strain with a functional spoIIE gene. Furthermore, the fungal cellulase-encoding celA gene was inserted into the C. beijerinckii NCIMB 8052 chromosome, resulting in mutants with endoglucanase activity. A similar two-plasmid approach was next used to edit the genome of the natural IBE-producing strain C. beijerinckii DSM 6423, which has never been genetically engineered before. Firstly, the catB gene conferring thiamphenicol resistance was deleted to make this strain compatible with our dual-plasmid editing system. As a proof of concept, our dual-plasmid system was then used in C. beijerinckii DSM 6423 ΔcatB to remove the endogenous pNF2 plasmid, which led to a sharp increase of transformation efficiencies.


Asunto(s)
Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Ingeniería Metabólica/métodos , Plásmidos/genética , 2-Propanol/metabolismo , Butanoles/metabolismo , Celulasa/genética , Celulasa/metabolismo , Celulosa/metabolismo , Clostridium beijerinckii/metabolismo , Etanol/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Edición Génica/métodos , Genoma Bacteriano/genética , Microbiología Industrial/métodos , Mutación , Esporas Bacterianas/genética , Esporas Bacterianas/crecimiento & desarrollo , Transformación Bacteriana
13.
Microb Biotechnol ; 13(2): 328-338, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31691520

RESUMEN

Clostridia are obligate anaerobic bacteria that can produce solvents such as acetone, butanol and ethanol. Alcohol dehydrogenases (ADHs) play a key role in solvent production; however, their regulatory mechanisms remain largely unknown. In this study, we characterized the regulatory mechanisms of two ADH-encoding genes in C. beijerinckii. SigL (sigma factor σ54 ) was found to be required for transcription of adhA1 and adhA2 genes. Moreover, a novel transcriptional activator AdhR was identified, which binds to the σ54 promoter and activates σ54 -dependent transcription of adhA1 and adhA2. Clostridia beijerinckii mutants deficient in SigL or AdhR showed severely impaired butanol and ethanol production as well as altered acetone and butyrate synthesis. Overexpression of SigL resulted in significantly improved solvent production by C. beijerinckii when butyrate was added to cultures. Our results reveal SigL as a novel engineering target for improving solvent production by C. beijerinckii and other solvent-producing clostridia. Moreover, this study gains an insight into regulation of alcohol metabolism in diverse clostridia.


Asunto(s)
Clostridium beijerinckii , Deshidrogenasas-Reductasas de Cadena Corta/metabolismo , Factor sigma/metabolismo , Acetona , Butanoles , Clostridium beijerinckii/enzimología , Clostridium beijerinckii/genética , Fermentación , Solventes
14.
PLoS One ; 14(11): e0224560, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31697692

RESUMEN

In-depth knowledge of cell metabolism and nutrient uptake mechanisms can lead to the development of a tool for improving acetone-butanol-ethanol (ABE) fermentation performance and help to overcome bottlenecks in the process, such as the high cost of substrates and low production rates. Over 300 genes potentially encoding transport of amino acids, metal ions, vitamins and carbohydrates were identified in the genome of the butanol-producing strain Clostridium beijerinckii NRRL B-598, based on similarity searches in protein function databases. Transcriptomic data of the genes were obtained during ABE fermentation by RNA-Seq experiments and covered acidogenesis, solventogenesis and sporulation. The physiological roles of the selected 81 actively expressed transport genes were established on the basis of their expression profiles at particular stages of ABE fermentation. This article describes how genes encoding the uptake of glucose, iron, riboflavin, glutamine, methionine and other nutrients take part in growth, production and stress responses of C. beijerinckii NRRL B-598. These data increase our knowledge of transport mechanisms in solventogenic Clostridium and may be used in the selection of individual genes for further research.


Asunto(s)
Butanoles/metabolismo , Metabolismo de los Hidratos de Carbono/genética , Clostridium beijerinckii/genética , Transcripción Genética , Aminoácidos/genética , Aminoácidos/metabolismo , Carbohidratos/genética , Clostridium beijerinckii/metabolismo , Fermentación , Regulación Bacteriana de la Expresión Génica/genética , Metales/metabolismo , Vitaminas/genética , Vitaminas/metabolismo
16.
J Bacteriol ; 201(23)2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31527113

RESUMEN

The prokaryotic ßγ-crystallins are a large group of uncharacterized domains with Ca2+-binding motifs. We have observed that a vast number of these domains are found appended to other domains, in particular, the carbohydrate-active enzyme (CAZy) domains. To elucidate the functional significance of these prospective Ca2+ sensors in bacteria and this widespread domain association, we have studied one typical example from Clostridium beijerinckii, a bacterium known for its ability to produce acetone, butanol, and ethanol through fermentation of several carbohydrates. This novel glycoside hydrolase of family 64 (GH64), which we named glucanallin, is composed of a ßγ-crystallin domain, a GH64 domain, and a carbohydrate-binding module 56 (CBM56). The substrates of GH64, ß-1,3-glucans, are the targets for industrial biofuel production due to their plenitude. We have examined the Ca2+-binding properties of this protein, assayed its enzymatic activity, and analyzed the structural features of the ß-1,3-glucanase domain through its high-resolution crystal structure. The reaction products resulting from the enzyme reaction of glucanallin reinforce the mixed nature of GH64 enzymes, in contrast to the prevailing notion of them being an exotype. Upon disabling Ca2+ binding and comparing different domain combinations, we demonstrate that the ßγ-crystallin domain in glucanallin acts as a Ca2+ sensor and enhances the glycolytic activity of glucanallin through Ca2+ binding. We also compare the structural peculiarities of this new member of the GH64 family to two previously studied members.IMPORTANCE We have biochemically and structurally characterized a novel glucanase from the less studied GH64 family in a bacterium significant for fermentation of carbohydrates into biofuels. This enzyme displays a peculiar property of being distally modulated by Ca2+ via assistance from a neighboring ßγ-crystallin domain, likely through changes in the domain interface. In addition, this enzyme is found to be optimized for functioning in an acidic environment, which is in line with the possibility of its involvement in biofuel production. Multiple occurrences of a similar domain architecture suggest that such a "ßγ-crystallination"-mediated Ca2+ sensitivity may be widespread among bacterial proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas de Unión al Calcio/química , Calcio/química , Clostridium beijerinckii/enzimología , Glicósido Hidrolasas/química , beta-Cristalinas/química , gamma-Cristalinas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Calcio/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Clonación Molecular , Clostridium beijerinckii/química , Clostridium beijerinckii/genética , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Cinética , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , beta-Cristalinas/genética , beta-Cristalinas/metabolismo , beta-Glucanos/química , beta-Glucanos/metabolismo , gamma-Cristalinas/genética , gamma-Cristalinas/metabolismo
17.
Sci Rep ; 9(1): 7228, 2019 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-31076628

RESUMEN

The solventogenic C. beijerinckii DSM 6423, a microorganism that naturally produces isopropanol and butanol, was previously modified by random mutagenesis. In this work, one of the resulting mutants was characterized. This strain, selected with allyl alcohol and designated as the AA mutant, shows a dominant production of acids, a severely diminished butanol synthesis capacity, and produces acetone instead of isopropanol. Interestingly, this solvent-deficient strain was also found to have a limited consumption of two carbohydrates and to be still able to form spores, highlighting its particular phenotype. Sequencing of the AA mutant revealed point mutations in several genes including CIBE_0767 (sigL), which encodes the σ54 sigma factor. Complementation with wild-type sigL fully restored solvent production and sugar assimilation and RT-qPCR analyses revealed its transcriptional control of several genes related to solventogensis, demonstrating the central role of σ54 in C. beijerinckii DSM 6423. Comparative genomics analysis suggested that this function is conserved at the species level, and this hypothesis was further confirmed through the deletion of sigL in the model strain C. beijerinckii NCIMB 8052.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Clostridium beijerinckii/metabolismo , Factor sigma/metabolismo , 2-Propanol/metabolismo , Proteínas Bacterianas/genética , Butanoles/metabolismo , Sistemas CRISPR-Cas/genética , Clostridium beijerinckii/genética , Etanol/metabolismo , Edición Génica/métodos , Glucosa/metabolismo , Fenotipo , Mutación Puntual , Factor sigma/deficiencia , Factor sigma/genética , Solventes/metabolismo
18.
Sci Rep ; 9(1): 7634, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31114009

RESUMEN

In situ detoxification of lignocellulose-derived microbial inhibitory compounds is an economical strategy for the fermentation of lignocellulose-derived sugars to fuels and chemicals. In this study, we investigated homologous integration and constitutive expression of Cbei_3974 and Cbei_3904, which encode aldo-keto reductase and previously annotated short chain dehydrogenase/reductase, respectively, in Clostridium beijerinckii NCIMB 8052 (Cb), resulting in two strains: Cb_3974 and Cb_3904. Expression of Cbei_3974 led to 2-fold increase in furfural detoxification relative to Cb_3904 and Cb_wild type. Correspondingly, butanol production was up to 1.2-fold greater in furfural-challenged cultures of Cb_3974 relative to Cb_3904 and Cb_wild type. With 4-hydroxybezaldehyde and syringaldehyde supplementation, Cb_3974 showed up to 2.4-fold increase in butanol concentration when compared to Cb_3904 and Cb_wild type. Syringic and vanillic acids were considerably less deleterious to all three strains of Cb tested. Overall, Cb_3974 showed greater tolerance to furfural, 4-hydroxybezaldehyde, and syringaldehyde with improved capacity for butanol production. Hence, development of Cb_3974 represents a significant progress towards engineering solventogenic Clostridium species that are tolerant to lignocellulosic biomass hydrolysates as substrates for ABE fermentation.


Asunto(s)
Aldo-Ceto Reductasas/genética , Cromosomas Fúngicos/genética , Clostridium beijerinckii/metabolismo , Fermentación , Proteínas Fúngicas/genética , Microbiología Industrial/métodos , Lignina/metabolismo , Oxidorreductasas/genética , Acetona/metabolismo , Aldo-Ceto Reductasas/metabolismo , Benzaldehídos/farmacología , Butanoles/metabolismo , Clostridium beijerinckii/enzimología , Clostridium beijerinckii/genética , Etanol/metabolismo , Proteínas Fúngicas/metabolismo , Furaldehído/metabolismo , Ácido Gálico/análogos & derivados , Ácido Gálico/metabolismo , Oxidorreductasas/metabolismo , Ácido Vanílico/metabolismo
19.
Sci Rep ; 9(1): 1371, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718562

RESUMEN

Clostridium beijerinckii NRRL B-598 is a sporulating, butanol and hydrogen producing strain that utilizes carbohydrates by the acetone-butanol-ethanol (ABE) fermentative pathway. The pathway consists of two metabolic phases, acidogenesis and solventogenesis, from which the latter one can be coupled with sporulation. Thorough transcriptomic profiling during a complete life cycle and both metabolic phases completed with flow cytometry, microscopy and a metabolites analysis helped to find out key genes involved in particular cellular events. The description of genes/operons that are closely involved in metabolism or the cell cycle is a necessary condition for metabolic engineering of the strain and will be valuable for all C. beijerinckii strains and other Clostridial species. The study focused on glucose transport and catabolism, hydrogen formation, metabolic stress response, binary fission, motility/chemotaxis and sporulation, which resulted in the composition of the unique image reflecting clostridial population changes. Surprisingly, the main change in expression of individual genes was coupled with the sporulation start and not with the transition from acidogenic to solventogenic metabolism. As expected, solvents formation started at pH decrease and the accumulation of butyric and acetic acids in the cultivation medium.


Asunto(s)
Ácidos/metabolismo , Clostridium beijerinckii/genética , Regulación Bacteriana de la Expresión Génica , Solventes/metabolismo , Estrés Fisiológico , Transcriptoma/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clostridium beijerinckii/citología , Ácidos Grasos/metabolismo , Fermentación/genética , Glucosa/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Hidrógeno/metabolismo , Esporas Bacterianas/metabolismo , Estrés Fisiológico/genética
20.
Biotechnol Bioeng ; 116(6): 1475-1483, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30739328

RESUMEN

Clostridium beijerinckii is a potentially important industrial microorganism as it can synthesize valuable chemicals and fuels from various carbon sources. The establishment of convenient to use, effective gene tools with which the organism can be rapidly modified is essential if its full potential is to be realized. Here, we developed a genomic editing tool (pCBEclos) for use in C. beijerinckii based on the fusion of cytidine deaminase (Apobec1), Cas9 D10A nickase and uracil DNA glycosylase inhibitor (UGI). Apobec1 and UGI are guided to the target site where they introduce specific base-pair substitutions through the conversion of C·G to T·A. By appropriate choice of target sequence, these nucleotide changes are capable of creating missense mutation or null mutations in a gene. Through optimization of pCBEclos, the system derived, pCBEclos-opt, has been used to rapidly generate four different mutants in C. beijerinckii, in pyrE, xylR, spo0A, and araR. The efficiency of the system was such that they could sometimes be directly obtained following transformation, otherwise only requiring one single restreaking step. Whilst CRISPR-Cas9 nickase systems, such as pNICKclos2.0, have previously been reported in C. beijerinckii, pCBEclos-opt does not rely on homologous recombination, a process that is intrinsically inefficient in clostridia such as C. beijerinckii. As a consequence, bulky editing templates do not need to be included in the knockout plasmids. This both reduces plasmid size and makes their construction simpler, for example, whereas the assembly of pNICKclos2.0 requires six primers for the assembly of a typical knockout plasmid, pCBEclos-opt requires just two primers. The pCBEclos-opt plasmid established here represents a powerful new tool for genome editing in C. beijerinckii, which should be readily applicable to other clostridial species.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Clostridium beijerinckii/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Desoxirribonucleasa I/metabolismo , Edición Génica/métodos , Proteínas Recombinantes de Fusión/metabolismo , Desaminasas APOBEC-1/genética , Desaminasas APOBEC-1/metabolismo , Emparejamiento Base/genética , Proteína 9 Asociada a CRISPR/genética , ADN/genética , ADN/metabolismo , Desoxirribonucleasa I/genética , Vectores Genéticos , Plásmidos , Proteínas Recombinantes de Fusión/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...