Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Front Endocrinol (Lausanne) ; 14: 1235614, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38107517

RESUMEN

Introduction: Pluripotent stem cells can be generated from somatic cells by the Yamanaka factors Oct4, Sox2, Klf4 and c-Myc. Methods: Mouse embryonic fibroblasts (MEFs) were transduced with the Yamanaka factors and generation of induced pluripotent stem cells (iPSCs) was assessed by formation of alkaline phosphatase positive colonies, pluripotency gene expression and embryod bodies formation. Results: The thyroid hormone triiodothyronine (T3) enhances MEFs reprogramming. T3-induced iPSCs resemble embryonic stem cells in terms of the expression profile and DNA methylation pattern of pluripotency genes, and of their potential for embryod body formation and differentiation into the three major germ layers. T3 induces reprogramming even though it increases expression of the cyclin kinase inhibitors p21 and p27, which are known to oppose acquisition of pluripotency. The actions of T3 on reprogramming are mainly mediated by the thyroid hormone receptor beta and T3 can enhance iPSC generation in the absence of c-Myc. The hormone cannot replace Oct4 on reprogramming, but in the presence of T3 is possible to obtain iPSCs, although with low efficiency, without exogenous Klf4. Furthermore, depletion of the corepressor NCoR (or Nuclear Receptor Corepressor 1) reduces MEFs reprogramming in the absence of the hormone and strongly decreases iPSC generation by T3 and also by 9cis-retinoic acid, a well-known inducer of reprogramming. NCoR depletion also markedly antagonizes induction of pluripotency gene expression by both ligands. Conclusions: Inclusion of T3 on reprogramming strategies has a potential use in enhancing the generation of functional iPSCs for studies of cell plasticity, disease and regenerative medicine.


Asunto(s)
Reprogramación Celular , Co-Represor 1 de Receptor Nuclear , Células Madre Pluripotentes , Animales , Ratones , Proteínas Co-Represoras/genética , Fibroblastos/metabolismo , Hormonas/metabolismo , Células Madre Pluripotentes/metabolismo , Hormonas Tiroideas/metabolismo , Co-Represor 1 de Receptor Nuclear/genética
2.
Anticancer Res ; 43(11): 4801-4807, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37909960

RESUMEN

BACKGROUND/AIM: B-cell lymphomas are characterized by diverse genetic anomalies affecting B-cell differentiation. To expand targeted therapies, an in-depth grasp of the molecular dynamics in the germinal center (GC) is vital. Transducin ß-like 1 X-linked receptor 1 (TBL1XR1) and nuclear receptor corepressor 1 (NCOR1) are instrumental within the GC, modulating myriad oncogenic pathways. Their prognostic roles in various cancers are established, yet their precise impact on B-cell lymphoma is elusive. MATERIALS AND METHODS: Digital RNA quantification (Nanostring) of previously curated 188 B-cell lymphoma specimens across four subtypes, follicular lymphoma (FL), diffuse large B-cell lymphoma, not otherwise specified (DLBCL-NOS), primary testicular lymphoma (PTL), and plasmablastic lymphoma (PBL), was reanalyzed with focus on TBL1XR1 and NCOR1 expression, juxtaposing them with 730 ontogenically linked genes. RESULTS: Notably, TBL1XR1 expression was significantly elevated in the PTL- ABC-subtype versus DLBCL-NOS- ABC-subtype (p<0.001), with no marked disparity in GCB-subtypes between them. The median TBL1XR1 expression was remarkably diminished in FL, yet, intriguingly, GCB-subtypes of DLBCL-NOS exhibited significantly enhanced expression compared to FL (p=0.001). In contrast, NCOR1's expression trajectory was consistent across DLBCL-NOS, PTL, and PBL. A strong inverse correlation between TBL1XR1 and NCOR1 was observed in PBL (p=0.001). Importantly, TBL1XR1's pronounced association with several DNA Damage repair (DDR) genes was noted suggesting influence on DNA repair. TBL1XR1-DDR gene signature was further validated employing a public data set of DLBCL-NOS. CONCLUSION: Our exploratory findings unravel the expression patterns of TBL1XR1/NCOR1 in B-cell lymphoma variants. The TBL1XR1-DDR genes connection offers insights into potential DNA repair roles, paving avenues for innovative therapies in B-cell lymphomas.


Asunto(s)
Linfoma Folicular , Linfoma de Células B Grandes Difuso , Linfoma Plasmablástico , Humanos , Linfoma de Células B Grandes Difuso/genética , Reparación del ADN , Daño del ADN , Proteínas Represoras/genética , Receptores Citoplasmáticos y Nucleares/genética , Co-Represor 1 de Receptor Nuclear/genética
3.
Mol Cell ; 83(19): 3421-3437.e11, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751740

RESUMEN

The nuclear receptor co-repressor (NCoR) complex mediates transcriptional repression dependent on histone deacetylation by histone deacetylase 3 (HDAC3) as a component of the complex. Unexpectedly, we found that signaling by the receptor activator of nuclear factor κB (RANK) converts the NCoR/HDAC3 co-repressor complex to a co-activator of AP-1 and NF-κB target genes that are required for mouse osteoclast differentiation. Accordingly, the dominant function of NCoR/HDAC3 complexes in response to RANK signaling is to activate, rather than repress, gene expression. Mechanistically, RANK signaling promotes RNA-dependent interaction of the transcriptional co-activator PGC1ß with the NCoR/HDAC3 complex, resulting in the activation of PGC1ß and inhibition of HDAC3 activity for acetylated histone H3. Non-coding RNAs Dancr and Rnu12, which are associated with altered human bone homeostasis, promote NCoR/HDAC3 complex assembly and are necessary for RANKL-induced osteoclast differentiation in vitro. These findings may be prototypic for signal-dependent functions of NCoR in other biological contexts.


Asunto(s)
Osteoclastos , ARN , Humanos , Ratones , Animales , Proteínas Co-Represoras/genética , Osteoclastos/metabolismo , Ligando RANK/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Expresión Génica
4.
Nat Commun ; 14(1): 4987, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591884

RESUMEN

PPARα corepressor NCoR1 is a key regulator of fatty acid ß-oxidation and ketogenesis. However, its regulatory mechanism is largely unknown. Here, we report that oncoprotein p21-activated kinase 4 (PAK4) is an NCoR1 kinase. Specifically, PAK4 phosphorylates NCoR1 at T1619/T2124, resulting in an increase in its nuclear localization and interaction with PPARα, thereby repressing the transcriptional activity of PPARα. We observe impaired ketogenesis and increases in PAK4 protein and NCoR1 phosphorylation levels in liver tissues of high fat diet-fed mice, NAFLD patients, and hepatocellular carcinoma patients. Forced overexpression of PAK4 in mice represses ketogenesis and thereby increases hepatic fat accumulation, whereas genetic ablation or pharmacological inhibition of PAK4 exhibites an opposite phenotype. Interestingly, PAK4 protein levels are significantly suppressed by fasting, largely through either cAMP/PKA- or Sirt1-mediated ubiquitination and proteasome degradation. In this way, our findings provide evidence for a PAK4-NCoR1/PPARα signaling pathway that regulates fatty acid ß-oxidation and ketogenesis.


Asunto(s)
Ácidos Grasos , PPAR alfa , Quinasas p21 Activadas , Animales , Ratones , Proteínas Co-Represoras , Ácidos Grasos/metabolismo , Quinasas p21 Activadas/genética , PPAR alfa/genética , Co-Represor 1 de Receptor Nuclear/genética , Humanos , Fosforilación , Transducción de Señal
5.
Cardiovasc Diabetol ; 22(1): 144, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37349757

RESUMEN

BACKGROUND: The nuclear receptor corepressor 1 (NCOR1) plays an important role in the regulation of gene expression in immunometabolic conditions by connecting chromatin-modifying enzymes, coregulators and transcription factors. NCOR1 has been shown to be involved in cardiometabolic diseases. Recently, we demonstrated that the deletion of macrophage NCOR1 aggravates atherosclerosis by promoting CD36-triggered foam cell formation via PPARG derepression. PURPOSE: Since NCOR1 modulates the function of several key regulators involved in hepatic lipid and bile acid metabolism, we hypothesized that its deletion in hepatocytes alters lipid metabolism and atherogenesis. METHODS: To test this hypothesis, we generated hepatocyte-specific Ncor1 knockout mice on a Ldlr-/- background. Besides assessing the progression of the disease in thoracoabdominal aortae en face, we analyzed hepatic cholesterol and bile acid metabolism at expression and functional levels. RESULTS: Our data demonstrate that liver-specific Ncor1 knockout mice on an atherosclerosis-prone background develop less atherosclerotic lesions than controls. Interestingly, under chow diet, plasma cholesterol levels of liver-specific Ncor1 knockout mice were slightly higher compared to control, but strongly reduced compared to control mice after feeding them an atherogenic diet for 12 weeks. Moreover, the hepatic cholesterol content was decreased in liver-specific Ncor1 knockout compared to control mice. Our mechanistic data revealed that NCOR1 reprograms the synthesis of bile acids towards the alternative pathway, which in turn reduce bile hydrophobicity and enhances fecal cholesterol excretion. CONCLUSIONS: Our data suggest that hepatic Ncor1 deletion in mice decreases atherosclerosis development by reprograming bile acid metabolism and enhancing fecal cholesterol excretion.


Asunto(s)
Aterosclerosis , Esteroles , Ratones , Animales , Esteroles/metabolismo , Hígado/metabolismo , Colesterol , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Ratones Noqueados , Ácidos y Sales Biliares/metabolismo , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo
6.
J Biol Chem ; 299(6): 104702, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37059182

RESUMEN

Mitochondria are organelles known primarily for generating ATP via the oxidative phosphorylation process. Environmental signals are sensed by whole organisms or cells and markedly affect this process, leading to alterations in gene transcription and, consequently, changes in mitochondrial function and biogenesis. The expression of mitochondrial genes is finely regulated by nuclear transcription factors, including nuclear receptors and their coregulators. Among the best-known coregulators is the nuclear receptor corepressor 1 (NCoR1). Muscle-specific knockout of NCoR1 in mice induces an oxidative phenotype, improving glucose and fatty acid metabolism. However, the mechanism by which NCoR1 is regulated remains elusive. In this work, we identified the poly(A)-binding protein 4 (PABPC4) as a new NCoR1 interactor. Unexpectedly, we found that silencing of PABPC4 induced an oxidative phenotype in both C2C12 and MEF cells, as indicated by increased oxygen consumption, mitochondria content, and reduced lactate production. Mechanistically, we demonstrated that PABPC4 silencing increased the ubiquitination and consequent degradation of NCoR1, leading to the derepression of PPAR-regulated genes. As a consequence, cells with PABPC4 silencing had a greater capacity to metabolize lipids, reduced intracellular lipid droplets, and reduced cell death. Interestingly, in conditions known to induce mitochondrial function and biogenesis, both mRNA expression and PABPC4 protein content were markedly reduced. Our study, therefore, suggests that the lowering of PABPC4 expression may represent an adaptive event required to induce mitochondrial activity in response to metabolic stress in skeletal muscle cells. As such, the NCoR1-PABPC4 interface might be a new road to the treatment of metabolic diseases.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Factores de Transcripción , Animales , Ratones , Proteínas Co-Represoras/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Fosforilación Oxidativa , Receptores Citoplasmáticos y Nucleares/metabolismo , Estrés Fisiológico , Factores de Transcripción/metabolismo
7.
J Dent Res ; 102(1): 72-81, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35983582

RESUMEN

Nuclear receptor corepressor 1 (Ncor1) has been reported to regulate different transcription factors in different biological processes, including metabolism, inflammation, and circadian rhythms. However, the role of Ncor1 in periodontitis has not been elucidated. The aims of the present study were to investigate the role of Ncor1 in experimental periodontitis and to explore the underlying mechanisms through an experimental periodontitis model in myeloid cell-specific Ncor1-deficient mice. Myeloid cell-specific Ncor1 knockout (MNKO) mice were generated, and experimental periodontitis induced by ligation using 5-0 silk sutures was established. Ncor1 flox/flox mice were used as littermate controls (LC). Histological staining and micro-computed tomography scanning were used to evaluate osteoclastogenesis and alveolar bone resorption. Flow cytometry was conducted to observe the effect of Ncor1 on myeloid cells. RNA sequencing was used to explore the differentially targeted genes in osteoclastogenesis in the absence of Ncor1. Coimmunoprecipitation (Co-IP), chromatin immunoprecipitation (ChIP) experiments, and dual luciferase assays were performed to explore the relationship between NCoR1 and the targeted gene. Alveolar bone resorption in the MNKO mice was significantly greater than that in the LC mice after periodontitis induction and osteoclastogenesis in vitro. The percentage of CD11b+ cells, particularly CD11b+ Ly6G+ neutrophils, was substantially higher in gingival tissues in the MNKO mice than in the LC mice. Results of RNA sequencing demonstrated that CCAAT enhancer binding protein α (Cebpα) was one of the most differentially expressed genes between the MNKO and LC groups. Mechanistically, Co-IP assays, ChIP experiments, and dual luciferase assays revealed that NCOR1 interacted with peroxisome proliferator-activated receptor gamma (PPARγ) and cooperated with HDAC3 to control the transcription of Cebpα. In conclusion, Ncor1 deficiency promoted osteoclast and neutrophil formation in mice with experimental periodontitis. It regulated the transcription of Cebpα via PPARγ to promote osteoclast differentiation.


Asunto(s)
Pérdida de Hueso Alveolar , Periodontitis , Ratones , Animales , Osteogénesis , PPAR gamma/metabolismo , Microtomografía por Rayos X , Periodontitis/metabolismo , Osteoclastos/metabolismo , Pérdida de Hueso Alveolar/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo
8.
Nat Commun ; 13(1): 7199, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443319

RESUMEN

Breast cancer, the most frequent cancer in women, is generally classified into several distinct histological and molecular subtypes. However, single-cell technologies have revealed remarkable cellular and functional heterogeneity across subtypes and even within individual breast tumors. Much of this heterogeneity is attributable to dynamic alterations in the epigenetic landscape of the cancer cells, which promote phenotypic plasticity. Such plasticity, including transition from luminal to basal-like cell identity, can promote disease aggressiveness. We now report that the tumor suppressor LATS1, whose expression is often downregulated in human breast cancer, helps maintain luminal breast cancer cell identity by reducing the chromatin accessibility of genes that are characteristic of a "basal-like" state, preventing their spurious activation. This is achieved via interaction of LATS1 with the NCOR1 nuclear corepressor and recruitment of HDAC1, driving histone H3K27 deacetylation near NCOR1-repressed "basal-like" genes. Consequently, decreased expression of LATS1 elevates the expression of such genes and facilitates slippage towards a more basal-like phenotypic identity. We propose that by enforcing rigorous silencing of repressed genes, the LATS1-NCOR1 axis maintains luminal cell identity and restricts breast cancer progression.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Genes Reguladores , Proteínas Serina-Treonina Quinasas/genética , Mama , Represión Psicológica , Co-Represor 1 de Receptor Nuclear/genética
9.
Nat Immunol ; 23(12): 1763-1776, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316474

RESUMEN

The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway. These alterations resulted in aberrant Rag1 and Rag2 expression and accessibility. Whole-genome sequencing of Ncor1/2 DKO B cells identified increased number of structural variants with cryptic recombination signal sequences. Finally, deletion of Ncor1 alleles in mice facilitated leukemic transformation, whereas human leukemias with less NCOR1 correlated with worse survival. NCOR1/2 mutations in human leukemia correlated with increased RAG expression and number of structural variants. These studies illuminate how the corepressors NCOR1/2 regulate B cell differentiation and provide insights into how NCOR1/2 mutations may promote B cell transformation.


Asunto(s)
Hematopoyesis , Transducción de Señal , Ratones , Humanos , Animales , Proteínas Co-Represoras , Núcleo Celular , Genómica , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/genética
10.
Front Immunol ; 13: 910705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238311

RESUMEN

Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.


Asunto(s)
Interleucina-10 , Interleucina-6 , Animales , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Ratones , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear , Factor de Transcripción STAT3 , Serina-Treonina Quinasas TOR/metabolismo
11.
Proc Natl Acad Sci U S A ; 119(33): e2205276119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939699

RESUMEN

Brown adipose tissue (BAT) is a key thermogenic organ whose expression of uncoupling protein 1 (UCP1) and ability to maintain body temperature in response to acute cold exposure require histone deacetylase 3 (HDAC3). HDAC3 exists in tight association with nuclear receptor corepressors (NCoRs) NCoR1 and NCoR2 (also known as silencing mediator of retinoid and thyroid receptors [SMRT]), but the functions of NCoR1/2 in BAT have not been established. Here we report that as expected, genetic loss of NCoR1/2 in BAT (NCoR1/2 BAT-dKO) leads to loss of HDAC3 activity. In addition, HDAC3 is no longer bound at its physiological genomic sites in the absence of NCoR1/2, leading to a shared deregulation of BAT lipid metabolism between NCoR1/2 BAT-dKO and HDAC3 BAT-KO mice. Despite these commonalities, loss of NCoR1/2 in BAT does not phenocopy the cold sensitivity observed in HDAC3 BAT-KO, nor does loss of either corepressor alone. Instead, BAT lacking NCoR1/2 is inflamed, particularly with respect to the interleukin-17 axis that increases thermogenic capacity by enhancing innervation. Integration of BAT RNA sequencing and chromatin immunoprecipitation sequencing data revealed that NCoR1/2 directly regulate Mmp9, which integrates extracellular matrix remodeling and inflammation. These findings reveal pleiotropic functions of the NCoR/HDAC3 corepressor complex in BAT, such that HDAC3-independent suppression of BAT inflammation counterbalances stimulation of HDAC3 activity in the control of thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Histona Desacetilasas/metabolismo , Inflamación/metabolismo , Ratones , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Receptores de Ácido Retinoico/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
12.
Cell Mol Life Sci ; 79(8): 429, 2022 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-35849243

RESUMEN

Tight control of gene regulation in dendritic cells (DCs) is important to mount pathogen specific immune responses. Apart from transcription factor binding, dynamic regulation of enhancer activity through global transcriptional repressors like Nuclear Receptor Co-repressor 1 (NCoR1) plays a major role in fine-tuning of DC responses. However, how NCoR1 regulates enhancer activity and gene expression in individual or multiple Toll-like receptor (TLR) activation in DCs is largely unknown. In this study, we did a comprehensive epigenomic analysis of murine conventional type-I DCs (cDC1) across different TLR ligation conditions. We profiled gene expression changes along with H3K27ac active enhancers and NCoR1 binding in the TLR9, TLR3 and combined TLR9 + TLR3 activated cDC1. We observed spatio-temporal activity of TLR9 and TLR3 specific enhancers regulating signal specific target genes. Interestingly, we found that NCoR1 differentially controls the TLR9 and TLR3-specific responses. NCoR1 depletion specifically enhanced TLR9 responses as evident from increased enhancer activity as well as TLR9-specific gene expression, whereas TLR3-mediated antiviral response genes were negatively regulated. We validated that NCoR1 KD cDC1 showed significantly decreased TLR3 specific antiviral responses through decreased IRF3 activation. In addition, decreased IRF3 binding was observed at selected ISGs leading to their decreased expression upon NCoR1 depletion. Consequently, the NCoR1 depleted cDC1 showed reduced Sendai Virus (SeV) clearance and cytotoxic potential of CD8+ T cells upon TLR3 activation. NCoR1 directly controls the majority of these TLR specific enhancer activity and the gene expression. Overall, for the first time, we revealed NCoR1 mediates transcriptional control towards TLR9 as compared to TLR3 in cDC1.


Asunto(s)
Receptor Toll-Like 3 , Receptor Toll-Like 9 , Animales , Antivirales , Linfocitos T CD8-positivos , Células Dendríticas/metabolismo , Epigenómica , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Ratones , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Transducción de Señal , Receptor Toll-Like 3/genética , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like
13.
Cancer Res ; 82(12): 2239-2253, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35395674

RESUMEN

Circular RNAs (circRNA) containing retained introns are normally sequestered in the nucleus. Dysregulation of cellular homeostasis can drive their nuclear export, which may be involved in cancer metastasis. However, the mechanism underlying circRNA nuclear export and its role in lymph node (LN) metastasis of bladder cancer remain unclear. Here, we identify an intron-retained circRNA, circNCOR1, that is significantly downregulated in LN metastatic bladder cancer and is negatively associated with poor prognosis of patients. Overexpression of circNCOR1 inhibited lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Nuclear circNCOR1 epigenetically promoted SMAD7 transcription by increasing heterogeneous nuclear ribonucleoprotein L (hnRNPL)-induced H3K9 acetylation in the SMAD7 promoter, leading to inhibition of the TGFß-SMAD signaling pathway. Nuclear retention of circNCOR1 was regulated by small ubiquitin-like modifier (SUMO)ylation of DDX39B, an essential regulatory factor responsible for circRNA nuclear-cytoplasmic transport. Reduced SUMO2 binding to DDX39B markedly increased circNCOR1 retention in the nucleus to suppress bladder cancer LN metastasis. By contrast, SUMOylated DDX39B activated nuclear export of circNCOR1, impairing the suppressive role of circNCOR1 on TGFß-SMAD cascade activation and bladder cancer LN metastasis. In patient-derived xenograft (PDX) models, overexpression of circNCOR1 and inhibition of TGFß signaling significantly repressed tumor growth and LN metastasis. This study highlights SUMOylation-induced nuclear export of circNCOR1 as a key event regulating TGFß-SMAD signaling and bladder cancer lymphangiogenesis, thus supporting circNCOR1 as a novel therapeutic agent for patients with LN metastatic bladder cancer. SIGNIFICANCE: This study identifies the novel intron-retained circNCOR1 and elucidates a SUMOylation-mediated DDX39B-circNCOR1-SMAD7 axis that regulates lymph node metastasis of bladder cancer.


Asunto(s)
Co-Represor 1 de Receptor Nuclear/genética , ARN Circular , Neoplasias de la Vejiga Urinaria , Transporte Activo de Núcleo Celular/genética , Humanos , Metástasis Linfática , ARN Circular/genética , Proteína smad7/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Neoplasias de la Vejiga Urinaria/patología
14.
Gerontology ; 68(11): 1291-1310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35439761

RESUMEN

OBJECTIVES: Atherosclerosis (AS) remains a major contributor to death worldwide. This study sought to explore the role of Krüppel-like factor 7 (KLF7) in AS lesions via regulating glucose metabolic reprogramming (GMR) in macrophages. METHODS: AS mouse and cell models were established via high-fat-diet feeding and oxidized low-density lipoprotein (ox-LDL) induction. KLF7, histone deacetylase 4 (HDAC4), miR-148b-3p, and nuclear receptor corepressor 1 (NCOR1) expressions in aortic tissue and cells were detected via reverse transcription quantitative polymerase chain reaction or Western blotting. Parameters of AS lesions and mouse metabolism were detected via hematoxylin-eosin, oil red O, and Masson staining, assay kits, glucose tolerance test, and enzymatic analysis. Peritoneal macrophages of mice were isolated and cellular metabolism was detected via Seahorse metabolic flux analysis, assay kits, ELISA, and Western blotting. Bindings among KLF7, HDAC4, microRNA (miR)-148b-3p, and NCOR1 were testified via the dual-luciferase assay and chromatin immunoprecipitation assay. RESULTS: KLF7 was poorly expressed in AS mice and ox-LDL-induced RAW264.7 cells. KLF7 overexpression attenuated AS lesions and rescued metabolic abnormities in AS mice, and reduced glucose intake and GMR in ox-LDL-induced RAW264.7 cells. Mechanically, KLF7 bound to the HDAC4 promoter to activate HDAC4. HDAC4 reduced H3 and H4 acetylation levels in the miR-148b promoter to inhibit miR-148b-3p and promote NCOR1 transcription. HDAC4 downregulation abolished the protective role of KLF7 overexpression in AS mice and ox-LDL-induced RAW264.7 cells via the miR-148b-3p/NCOR1 axis. CONCLUSION: KLF7 bound to the HDAC4 promoter to activate HDAC4, inhibit miR-148b-3p via reducing acetylation level, and promote NCOR1 transcription, thereby limiting GMR in macrophages and alleviating AS lesions.


Asunto(s)
Aterosclerosis , MicroARNs , ARN Largo no Codificante , Animales , Ratones , Apoptosis , Aterosclerosis/metabolismo , Proliferación Celular , Glucosa/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Macrófagos/metabolismo , Macrófagos/patología , MicroARNs/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
15.
Acta Pharmacol Sin ; 43(9): 2351-2361, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35149852

RESUMEN

Nuclear receptor corepressor 1 (NCoR1) is a corepressor of the epigenetic regulation of gene transcription that has important functions in metabolism and inflammation, but little is known about its role in alcohol-associated liver disease (ALD). In this study, we developed mice with hepatocyte-specific NCoR1 knockout (NCoR1Hep-/-) using the albumin-Cre/LoxP system and investigated the role of NCoR1 in the pathogenesis of ALD and the underlying mechanisms. The traditional alcohol feeding model and NIAAA model of ALD were both established in wild-type and NCoR1Hep-/- mice. We showed that after ALD was established, NCoR1Hep-/- mice had worse liver injury but less steatosis than wild-type mice. We demonstrated that hepatocyte-specific loss of NCoR1 attenuated liver steatosis by promoting fatty acid oxidation by upregulating BMAL1 (a circadian clock component that has been reported to promote peroxisome proliferator activated receptor alpha (PPARα)-mediated fatty ß-oxidation by upregulating de novo lipid synthesis). On the other hand, hepatocyte-specific loss of NCoR1 exacerbated alcohol-induced liver inflammation and oxidative stress by recruiting monocyte-derived macrophages via C-C motif chemokine ligand 2 (CCL2). In the mouse hepatocyte line AML12, NCoR1 knockdown significantly increased ethanol-induced CCL2 release. These results suggest that hepatocyte NCoR1 plays distinct roles in controlling liver inflammation and steatosis, which provides new insights into the development of treatments for steatohepatitis induced by chronic alcohol consumption.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Hígado Graso , Hepatopatías Alcohólicas , Animales , Quimiocinas/metabolismo , Modelos Animales de Enfermedad , Epigénesis Genética , Etanol/toxicidad , Hepatocitos/metabolismo , Inflamación/metabolismo , Ligandos , Hígado/metabolismo , Hepatopatías Alcohólicas/patología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo
16.
J Cardiovasc Transl Res ; 15(4): 816-827, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35040081

RESUMEN

Microglia/macrophage activation plays an essential role in Ischemic stroke (IS). Nuclear receptor corepressor 1 (NCoR1) has been identified as a vital regulator in macrophages. The present study aims to explore the functions of macrophage NCoR1 in IS. Macrophage NCoR1 knockout (MNKO) mice and littermate control mice were subjected to middle cerebral artery occlusion (MCAO). Our data showed that macrophage NCoR1 deficiency significantly reduced the infarct size and infarct volume as well as brain edema after MCAO. Additionally, MNKO induced less microglia/macrophage infiltration and activation, neuroinflammation, apoptosis of neuronal cells, and BBB disruption in brains after IS. Mechanistic studies revealed that NCoR1 interacted with LXRß in microglia and MNKO impaired the activation of the Nuclear factor-κB signaling pathway in brains after IS. Our data demonstrated that macrophage NCoR1 deficiency inhibited microglia/macrophage activation and protected against IS. Targeting NCoR1 in microglia/macrophage may be a potential approach for IS treatment.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Ratones , Animales , Ratones Endogámicos C57BL , Macrófagos/metabolismo , Infarto de la Arteria Cerebral Media/genética , Ratones Noqueados , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/prevención & control , Co-Represor 1 de Receptor Nuclear/genética
17.
J Mol Cell Cardiol ; 166: 50-62, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35081368

RESUMEN

Acute myocardial ischemia/reperfusion (MI/R) is a major determinant of prognosis in myocardial infarction patients, while effective therapies are currently lacking. Nuclear receptor co-repressor 1 (NCoR1) is emerging as a critical regulator of cell survival and death signaling in mammals. However, the role of NCoR1 in the pathogenesis of acute MI/R injury remains unknown. Here, we observed that NCoR1 was highly expressed in the mouse heart and significantly downregulated after acute MI/R injury. Cardiomyocyte-specific NCoR1 deletion led to significantly increased infarct size and exacerbated cardiac dysfunction compared to wild-type littermates. Moreover, cardiomyocyte-specific NCoR1 deficiency exacerbated MI/R-induced mitochondrial dysfunction and apoptotic pathway activation. Transcriptomic profiling results indicated that cardiomyocyte-specific NCoR1 deficiency pivotally promoted activation of inflammatory pathways. Through integrated omics analysis, signal transducer and activator of transcription 1 (STAT1) was identified as a downstream target trans-repressed by NCoR1. STAT1 activation played a key mediating role in the detrimental effects of NCoR1 deficiency in MI/R injury. Collectively, our findings provided the first evidence that cardiomyocyte-expressed NCoR1 functioned as a crucial cardioprotective factor against acute MI/R injury by targeting the STAT1 pathway in heart.


Asunto(s)
Infarto del Miocardio , Daño por Reperfusión Miocárdica , Animales , Apoptosis , Humanos , Mamíferos , Ratones , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Co-Represor 1 de Receptor Nuclear/genética
18.
Neuromolecular Med ; 24(2): 113-124, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34075570

RESUMEN

Glioblastoma (GBM), a grade IV glioma, is responsible for the highest years of potential life lost among cancers. The poor prognosis is attributable to its high recurrence rate, caused in part by the development of resistance to chemotherapy. Receptor-interacting protein 140 (RIP140) is a very versatile coregulator of nuclear receptors and transcription factors. Although many of the pathways regulated by RIP140 contribute significantly to cancer progression, the function of RIP140 in GBM remains to be determined. In this study, we found that higher RIP140 expression was associated with prolonged survival in patients with newly diagnosed GBM. Intracellular RIP140 levels were increased after E2F1 activation following temozolomide (TMZ) treatment, which in turn modulated the expression of E2F1-targeted apoptosis-related genes. Overexpression of RIP140 reduced glioma cell proliferation and migration, induced cellular apoptosis, and sensitized GBM cells to TMZ. Conversely, knockdown of RIP140 increased TMZ resistance. Taken together, our results suggest that RIP140 prolongs the survival of patients with GBM both by inhibiting tumor cell proliferation and migration and by increasing cellular sensitivity to chemotherapy. This study helps improve our understanding of glioma recurrence and may facilitate the development of more effective treatments.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Co-Represor 1 de Receptor Nuclear , Temozolomida , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Factor de Transcripción E2F1/genética , Factor de Transcripción E2F1/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioma/tratamiento farmacológico , Glioma/genética , Humanos , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Proteína de Interacción con Receptores Nucleares 1 , Temozolomida/farmacología
19.
Nat Commun ; 12(1): 7045, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857762

RESUMEN

Enhancer activation is essential for cell-type specific gene expression during cellular differentiation, however, how enhancers transition from a hypoacetylated "primed" state to a hyperacetylated-active state is incompletely understood. Here, we show SET domain-containing 5 (SETD5) forms a complex with NCoR-HDAC3 co-repressor that prevents histone acetylation of enhancers for two master adipogenic regulatory genes Cebpa and Pparg early during adipogenesis. The loss of SETD5 from the complex is followed by enhancer hyperacetylation. SETD5 protein levels were transiently increased and rapidly degraded prior to enhancer activation providing a mechanism for the loss of SETD5 during the transition. We show that induction of the CDC20 co-activator of the ubiquitin ligase leads to APC/C mediated degradation of SETD5 during the transition and this operates as a molecular switch that facilitates adipogenesis.


Asunto(s)
Adipogénesis/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Histona Desacetilasas/genética , Metiltransferasas/genética , Co-Represor 1 de Receptor Nuclear/genética , PPAR gamma/genética , Células 3T3-L1 , Acetilación , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Elementos de Facilitación Genéticos , Regulación de la Expresión Génica , Células HEK293 , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metiltransferasas/metabolismo , Ratones , Ratones Desnudos , Co-Represor 1 de Receptor Nuclear/metabolismo , PPAR gamma/metabolismo , Unión Proteica , Proteolisis , Células Sf9 , Transducción de Señal
20.
J Biol Chem ; 297(6): 101400, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34774795

RESUMEN

ATP-binding cassette, subfamily B member 11 (ABCB11) is an efflux transporter for bile acids on the liver canalicular membrane. The expression of this transporter is reduced in cholestasis; however, the mechanisms contributing to this reduction are unclear. In this study, we sought to determine whether miR-199a-5p contributes to the depletion of ABCB11/Abcb11 in cholestasis in mice. In a microRNA (miRNA) screen of mouse liver after common bile duct ligation (CBDL), we found that miR-199a-5p was significantly upregulated by approximately fourfold. In silico analysis predicted that miR-199a-5p would target the 3'-untranslated region (3'-UTR) of ABCB11/Abcb11 mRNA. The expression of ABCB11-3'-UTR luciferase construct in Huh-7 cells was markedly inhibited by cotransfection of a miRNA-199a-5p mimic, which was reversed by an miRNA-199a-5p mimic inhibitor. We also show treatment of mice after CBDL with the potent nuclear receptor FXR agonist obeticholic acid (OCA) significantly increased Abcb11 mRNA and protein and decreased miR-199a-5p expression. Computational mapping revealed a well-conserved FXR-binding site (FXRE) in the promoter of the gene encoding miR-199a-5, termed miR199a-2. Electromobility shift, chromatin immunoprecipitation, and miR199a-2 promoter-luciferase assays confirmed that this binding site was functional. Finally, CBDL in mice led to depletion of nuclear repressor NcoR1 binding at the miR199a-2 promoter, which facilitates transcription of miR199a-2. In CBDL mice treated with OCA, NcoR1 recruitment to the miR199a-2 FXRE was maintained at levels found in sham-operated mice. In conclusion, we demonstrate that miR-199a-5p is involved in regulating ABCB11/Abcb11 expression, is aberrantly upregulated in obstructive cholestasis, and is downregulated by the FXR agonist OCA.


Asunto(s)
Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/biosíntesis , Colestasis/metabolismo , Regulación de la Expresión Génica , MicroARNs/metabolismo , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/genética , Animales , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Colestasis/tratamiento farmacológico , Colestasis/genética , Colestasis/patología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...