Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.287
Filtrar
1.
FASEB J ; 38(13): e23788, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38963329

RESUMEN

Intermittent hypoxia (IH) is an independent risk factor for metabolic dysfunction-associated fatty liver disease (MAFLD). Copper deficiency can disrupt redox homeostasis, iron, and lipid metabolism. Here, we investigated whether hepatic copper deficiency plays a role in IH-associated MAFLD and explored the underlying mechanism(s). Male C57BL/6 mice were fed a western-type diet with adequate copper (CuA) or marginally deficient copper (CuD) and were exposed separately to room air (RA) or IH. Hepatic histology, plasma biomarkers, copper-iron status, and oxidative stress were assessed. An in vitro HepG2 cell lipotoxicity model and proteomic analysis were used to elucidate the specific targets involved. We observed that there were no differences in hepatic phenotypes between CuA-fed and CuD-fed mice under RA. However, in IH exposure, CuD-fed mice showed more pronounced hepatic steatosis, liver injury, and oxidative stress than CuA-fed mice. IH induced copper accumulation in the brain and heart and exacerbated hepatic copper deficiency and secondary iron deposition. In vitro, CuD-treated cells with IH exposure showed elevated levels of lipid accumulation, oxidative stress, and ferroptosis susceptibility. Proteomic analysis identified 360 upregulated and 359 downregulated differentially expressed proteins between CuA and CuD groups under IH; these proteins were mainly enriched in citrate cycle, oxidative phosphorylation, fatty acid metabolism, the peroxisome proliferator-activated receptor (PPAR)α pathway, and ferroptosis. In IH exposure, CuD significantly upregulated the ferroptosis-promoting factor arachidonyl-CoA synthetase long chain family member (ACSL)4. ACSL4 knockdown markedly eliminated CuD-induced ferroptosis and lipid accumulation in IH exposure. In conculsion, IH can lead to reduced hepatic copper reserves and secondary iron deposition, thereby inducing ferroptosis and subsequent MAFLD progression. Insufficient dietary copper may worsen IH-associated MAFLD.


Asunto(s)
Cobre , Ferroptosis , Hipoxia , Ratones Endogámicos C57BL , Animales , Cobre/metabolismo , Cobre/deficiencia , Masculino , Ratones , Hipoxia/metabolismo , Humanos , Células Hep G2 , Hígado/metabolismo , Hígado/patología , Estrés Oxidativo , Metabolismo de los Lípidos , Hígado Graso/metabolismo , Hígado Graso/patología , Hígado Graso/etiología , Hierro/metabolismo , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , PPAR alfa/metabolismo , PPAR alfa/genética
2.
Nutrients ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38999801

RESUMEN

Trace elements are essential for several physiological processes. To date, various data have suggested that inadequate levels of trace elements may be involved in the pathogenesis of different chronic diseases, including immune-mediated ones, or may develop during their course. Systemic sclerosis (SSc) is a complex autoimmune multisystemic disease, primarily characterized by microvascular dysregulation, the widespread activation of the immune system and tissue fibrosis. According to the latest reports regarding the pathogenesis of SSc, the main pathophysiological processes-inflammation, vasculopathy and fibrosis-may include various trace element derangements. The present literature review aims to update the available data regarding iron, zinc, copper and selenium status in SSc as well as to underline the possible implications of these trace elements in the complexity of the pathogenic process of the disease. We observe that the status of trace elements in SSc plays a crucial role in numerous pathogenic processes, emphasizing the necessity for proper monitoring and supplementation. The reported data are heterogenous and scarce, and future studies are needed in order to draw clearer conclusions about their complete spectrum.


Asunto(s)
Esclerodermia Sistémica , Selenio , Oligoelementos , Humanos , Oligoelementos/deficiencia , Selenio/deficiencia , Selenio/sangre , Zinc/deficiencia , Zinc/sangre , Cobre/deficiencia , Cobre/sangre , Hierro/sangre , Estado Nutricional
3.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000099

RESUMEN

Copper (Cu) is an essential nutrient for plant growth and development. This metal serves as a constituent element or enzyme cofactor that participates in many biochemical pathways and plays a key role in photosynthesis, respiration, ethylene sensing, and antioxidant systems. The physiological significance of Cu uptake and compartmentalization in plants has been underestimated, despite the importance of Cu in cellular metabolic processes. As a micronutrient, Cu has low cellular requirements in plants. However, its bioavailability may be significantly reduced in alkaline or organic matter-rich soils. Cu deficiency is a severe and widespread nutritional disorder that affects plants. In contrast, excessive levels of available Cu in soil can inhibit plant photosynthesis and induce cellular oxidative stress. This can affect plant productivity and potentially pose serious health risks to humans via bioaccumulation in the food chain. Plants have evolved mechanisms to strictly regulate Cu uptake, transport, and cellular homeostasis during long-term environmental adaptation. This review provides a comprehensive overview of the diverse functions of Cu chelators, chaperones, and transporters involved in Cu homeostasis and their regulatory mechanisms in plant responses to varying Cu availability conditions. Finally, we identified that future research needs to enhance our understanding of the mechanisms regulating Cu deficiency or stress in plants. This will pave the way for improving the Cu utilization efficiency and/or Cu tolerance of crops grown in alkaline or Cu-contaminated soils.


Asunto(s)
Cobre , Plantas , Cobre/metabolismo , Cobre/deficiencia , Plantas/metabolismo , Homeostasis , Estrés Oxidativo , Estrés Fisiológico , Transporte Biológico
4.
J Trace Elem Med Biol ; 85: 127483, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38878467

RESUMEN

INTRODUCTION: As an essential trace element, Copper (Cu) participates in numerous physiological and biological reactions in the body. Cu is closely related to heart health, and an imbalance of Cu will cause cardiac dysfunction. The research aims to examine how Cu deficiency affects the heart, assess mitochondrial function in the hearts, and disclose possible mechanisms of its influence. METHODS: Weaned mice were fed Cu-deficient diets and intraperitoneally given copper sulfate (CuSO4) to correct the Cu deficiency. The pathological change of the heart was assessed using histological inspection. Cardiac function and oxidative stress levels were evaluated by biochemical assay kits. ELISA and ATP detection kits were used to detect the levels of complexes I-IV in the mitochondrial respiratory chain (MRC) and ATP, respectively. Real time PCR was utilized to determine mRNA expressions, and Western blotting was adopted to determine protein expressions, of molecules related to mitochondrial fission and fusion. RESULTS: Cu deficiency gave rise to elevated heart index, cardiac histological alterations and oxidation injury, increased serum levels of creatine kinase (CK), lactic dehydrogenase (LDH), and creatine kinase isoenzyme MB (CK-MB) together with increased malondialdehyde (MDA) production, decreased the glutathione (GSH), Superoxide Dismutase (SOD), and Catalase (CAT) activities or contents. Besides, Cu deficiency caused mitochondrial damage characterized by decreased contents of complexes I-IV in the MRC and ATP in the heart. In the meantime, Cu deficiency also reduced protein and mRNA expressions of factors associated with mitochondrial fusion, including Mfn1 and Mfn2, while significantly increased factors Drip1 and Fis1 related to mitochondrial fission. However, adding CuSO4 improved the above changes significantly. CONCLUSION: According to research results, Cu deficiency can cause heart damage in mice, along with oxidative damage and mitochondrial dysfunction, which are closely related to mitochondrial fusion and fission disorders.


Asunto(s)
Cobre , Dinámicas Mitocondriales , Estrés Oxidativo , Animales , Cobre/deficiencia , Cobre/metabolismo , Ratones , Masculino , Miocardio/metabolismo , Miocardio/patología , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología
5.
Clin Nutr ESPEN ; 61: 369-376, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777456

RESUMEN

BACKGROUND: Trace elements are an essential component of metabolism and medical nutrition therapy, with key roles in metabolic pathways, antioxidation, and immunity, which the present course aims at summarizing. RESULTS: Medical nutrition therapy includes the provision of all essential trace elements. The clinical essential issues are summarized for Copper, Iron, Selenium, Zinc, Iodine, Chromium, Molybdenum, and Manganese: the optimal analytical techniques are presented. The delivery of all these elements occurs nearly automatically when the patient is fed with enteral nutrition, but always requires separate prescription in case of parenteral nutrition. Isolated deficiencies may occur, and some patients have increased requirements, therefore a regular monitoring is required. The clinicians should always consider the impact of inflammation on blood levels, mostly lowering them even in absence of deficiency. CONCLUSION: This text summarises the most relevant clinical manifestations of trace element depletion and deficiency, the difficulties in assessing status, and makes practical recommendations for provision for enteral and parenteral nutrition.


Asunto(s)
Nutrición Enteral , Micronutrientes , Nutrición Parenteral , Oligoelementos , Humanos , Oligoelementos/deficiencia , Oligoelementos/administración & dosificación , Oligoelementos/sangre , Micronutrientes/deficiencia , Selenio/deficiencia , Selenio/sangre , Estado Nutricional , Zinc/deficiencia , Zinc/sangre , Necesidades Nutricionales , Cobre/deficiencia , Cobre/sangre , Molibdeno , Hierro/sangre
6.
Cent Eur J Public Health ; 32(1): 31-38, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38669155

RESUMEN

OBJECTIVE: Trace elements are essential for the biochemistry of the cell. Their reference values have been found to differ considerably in pregnant women stratified by age, place of residence, anthropometric status, and length of pregnancy. In optimal amounts, these elements reduce the risk of pregnancy complications. Subclinical hypothyroidism in pregnancy is associated with adverse maternal and neonatal outcomes. The aim of the study was to determine the effects of zinc (Zn), copper (Cu), magnesium (Mg), and rubidium (Rb) on pregnant women in an iodine deficiency region and find the relationship with the thyroid status and nutrition. METHODS: We evaluated the iodine status of 61 healthy pregnant women from an iodine deficient region in Bulgaria. Thyroid stimulating hormone (TSH) and thyroxin free (FT4) levels were measured using ELISA. RESULTS: We found elevated levels of copper that differed the most between the first and second trimesters; Cu and TSH were found to be positively correlated (р < 0.05). Lower Cu levels were found in pregnant women consuming pulses more than 2-3 times a week (р = 0.033). The women consuming fish more than 2-3 times a week had higher levels of Rb. We found a pronounced iodine deficiency in more than half of the examined women in the first to third trimesters, without any effect of pregnancy on the ioduria (р=0.834). All second and third trimester cases were associated with severe ioduria (< 150 µg/L). CONCLUSION: The high Cu levels were associated with subclinical hypothyroidism (SCH) and less pulse consumption during pregnancy in an iodine deficiency endemic area. SCH was found in 24% of the pregnant women in such an area while in 13% of them SCH had progressed to overt hypothyroidism.


Asunto(s)
Cobre , Yodo , Estado Nutricional , Zinc , Humanos , Femenino , Embarazo , Yodo/deficiencia , Yodo/administración & dosificación , Adulto , Zinc/deficiencia , Zinc/sangre , Cobre/deficiencia , Cobre/sangre , Bulgaria/epidemiología , Magnesio/sangre , Magnesio/análisis , Magnesio/administración & dosificación , Oligoelementos/deficiencia , Complicaciones del Embarazo/epidemiología , Tirotropina/sangre , Hipotiroidismo/epidemiología
7.
Apoptosis ; 29(7-8): 1007-1018, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38649508

RESUMEN

Ischemic vascular diseases are on the rise globally, including ischemic heart diseases, ischemic cerebrovascular diseases, and ischemic peripheral arterial diseases, posing a significant threat to life. Copper is an essential element in various biological processes, copper deficiency can reduce blood vessel elasticity and increase platelet aggregation, thereby increasing the risk of ischemic vascular disease; however, excess copper ions can lead to cytotoxicity, trigger cell death, and ultimately result in vascular injury through several signaling pathways. Herein, we review the role of cuproptosis and copper deficiency implicated in ischemic injury and repair including myocardial, cerebral, and limb ischemia. We conclude with a perspective on the therapeutic opportunities and future challenges of copper biology in understanding the pathogenesis of ischemic vascular disease states.


Asunto(s)
Cobre , Isquemia , Cobre/metabolismo , Cobre/deficiencia , Humanos , Animales , Isquemia/metabolismo , Isquemia/genética , Isquemia/patología , Lesiones del Sistema Vascular/genética , Lesiones del Sistema Vascular/metabolismo , Lesiones del Sistema Vascular/patología , Transducción de Señal
8.
Nutr Res ; 126: 1-10, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38555686

RESUMEN

Maternal nutritional deficiencies during pregnancy result in birth defects and elevate the risk of cardiovascular diseases and metabolic diseases. Accumulating evidence suggests that deficiency of copper, a fundamental trace element involved in several pivotal physiological processes, promotes the onset of multiple diseases, notably heart and liver diseases. Yet, exploration into the effects of maternal copper deficiency (CuD) on offspring is still limited. In this study, we hypothesized that maternal CuD induced cardiomyopathy and liver injury in offspring through the activation of autophagy. We established a maternal CuD mouse model by feeding pregnant C57BL/6 mice with a CuD diet until the end of the experiment. Echocardiography, histological analysis, western blotting, and quantitative polymerase chain reaction were performed on offspring at postnatal day 14. We found that maternal CuD caused growth retardation and early postnatal death in the offspring. Furthermore, our results revealed that CuD induced cardiac systolic dysfunction, cardiac hypertrophy, hepatic steatosis, and liver injury. Moreover, higher expression of LC3 and lower expression of p62 were observed in the heart tissues and liver tissues of CuD mice compared with the control group, indicating that CuD induced autophagy activation. In conclusion, maternal CuD caused severely deleterious effects on the heart and liver of the offspring via activating autophagy.


Asunto(s)
Autofagia , Cardiomiopatías , Cobre , Hígado , Fenómenos Fisiologicos Nutricionales Maternos , Ratones Endogámicos C57BL , Efectos Tardíos de la Exposición Prenatal , Animales , Cobre/deficiencia , Embarazo , Femenino , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Hígado/metabolismo , Hígado/patología , Ratones , Dieta/efectos adversos , Miocardio/metabolismo , Miocardio/patología , Masculino , Modelos Animales de Enfermedad
9.
J Pharm Pharmacol ; 76(5): 567-578, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38271051

RESUMEN

OBJECTIVES: Accumulating evidence demonstrates that copper deficiency (CuD) is a risk factor for cardiovascular diseases, besides, fructose has been strongly linked to the development of cardiovascular diseases. However, how CuD or fructose causes cardiovascular diseases is not clearly delineated. The present study aims to investigate the mechanism of CuD or fructose on cardiac remodeling. METHODS: We established a model of CuD- or fructose-induced cardiac hypertrophy in 3-week-old male Sprague-Dawley (SD) rats by CuD diet supplemented with or without 30% fructose for 4 weeks. In vitro study was performed by treating cardiomyocytes with tetrathiomolydbate (TM) and fructose. Echocardiography, histology analysis, immunofluorescence, western blotting, and qPCR were performed. KEY FINDINGS: Our findings revealed that CuD caused noticeable cardiac hypertrophy either in the presence or absence of fructose supplement. Fructose exacerbated CuD-induced cardiac remodeling and intramyocardial lipid accumulation. Furthermore, we presented that the inhibition of autophagic flux caused by Ca2+ disturbance is the key mechanism by which CuD- or fructose-induced cardiac remodeling. The reduced expression of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) in cardiomyocytes accounts for the elevated cytoplasmic Ca2+ concentration. CONCLUSIONS: Collectively, our study suggested that fructose aggravated CuD-induced cardiac remodeling through the blockade of autophagic flux via SERCA2a decreasing-induced Ca2+ imbalance.


Asunto(s)
Cardiomegalia , Cobre , Fructosa , Miocitos Cardíacos , Ratas Sprague-Dawley , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Remodelación Ventricular , Animales , Fructosa/efectos adversos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Masculino , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos , Ratas , Cobre/metabolismo , Cobre/deficiencia , Cardiomegalia/metabolismo , Cardiomegalia/etiología , Calcio/metabolismo , Modelos Animales de Enfermedad , Autofagia/efectos de los fármacos
12.
Vet Res Commun ; 45(4): 305-317, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34227027

RESUMEN

Copper deficiency (CuD) is a common cause of oxidative cardiac tissue damage in ruminants. The expression of copper chaperone (Cu-Ch) encoding genes enables an in-depth understanding of copper-associated disorders, but no previous studies have been undertaken to highlight Cu-Ch disturbances in heart tissue in ruminants due to CuD. The current study aimed to investigate the Cu-Ch mRNA expression in the heart of goats after experimental CuD and highlight their relationship with the cardiac measurements. Eleven male goats were enrolled in this study and divided into the control group (n = 4) and CuD group (n = 7), which received copper-reducing dietary regimes for 7 months. Heart function was evaluated by electrocardiography and echocardiography, and at the end of the experiment, all animals were sacrificed and the cardiac tissues were collected for histopathology and quantitative mRNA expression by real-time PCR. In the treatment group, cardiac measurements revealed increased preload and the existence of cardiac dilatation, and significant cardiac tissue damage by histopathology. Also, the relative mRNA expression of Cu-Ch encoding genes; ATP7A, CTr1, LOX, COX17, as well as ceruloplasmin (CP), troponin I3 (TNNI3), glutathione peroxidase (GPX1), and matrix metalloprotease inhibitor (MMPI1) genes were significantly down-regulated in CuD group. There was a significant correlation between investigated genes and some cardiac function measurements; meanwhile, a significant inverse correlation was observed between histopathological score and ATP7B, CTr1, LOX, and COX17. In conclusion, this study revealed that CuD induces cardiac dilatation and alters the mRNA expression of Cu-Ch genes, in addition to TNNI3, GPX1, and MMPI1 that are considered key factors in clinically undetectable CuD-induced cardiac damage in goats which necessitate further studies for feasibility as biomarkers.


Asunto(s)
Cobre/deficiencia , Regulación de la Expresión Génica , Cabras/genética , Corazón/fisiología , Animales , Ecocardiografía/veterinaria , Electrocardiografía/veterinaria , Cabras/metabolismo , Masculino
13.
Surg Today ; 51(11): 1764-1774, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33839932

RESUMEN

PURPOSES: The increasing use of bariatric surgery in adolescents has raised some concerns regarding the postoperative outcomes and the optimal time of surgery at young ages. However, no study has yet compared the weight loss and comorbidity resolution following bariatric surgery between adolescents and young adults. METHODS: This study was conducted on a case group of adolescents (aged 11-18) and a control group of young adults (aged 19-29) undergoing bariatric surgery (sleeve gastrectomy or gastric bypass). The two groups were matched in terms of gender, body mass index (BMI), and surgery type and were assessed regarding the surgical outcomes at 1 year after surgery. RESULTS: The baseline characteristics of the adolescents (n = 118, mean age: 17.0 ± 1.6 years) and young adults (n = 236, mean age: 25.2 ± 3.2 years) were similar, as well as surgery-associated complications. The mean loss of BMI (- 15.4 ± 3.6 vs. -15.8 ± 4.6 kg/m2) and 12-month percentage of excess weight loss (80.4 ± 20.1 vs. 80.2 ± 20.1%) were similar in the two groups. Both groups showed parallel reductions in the cardiovascular risk factors. The remission of hypertension, diabetes mellitus, and dyslipidemia was similar between the groups. The increase in the hemoglobin level and copper deficiency was greater in young adults, whereas the increase in ferritin deficiency was greater in adolescents. CONCLUSION: Similar to young adults, bariatric surgery is an effective and safe method to achieve weight loss, resolve obesity-related comorbidities, and improve cardiovascular risk factors in the adolescents.


Asunto(s)
Cirugía Bariátrica , Obesidad/cirugía , Adolescente , Adulto , Factores de Edad , Cirugía Bariátrica/métodos , Índice de Masa Corporal , Estudios de Casos y Controles , Niño , Comorbilidad , Cobre/deficiencia , Diabetes Mellitus/epidemiología , Dislipidemias/epidemiología , Ferritinas/deficiencia , Factores de Riesgo de Enfermedad Cardiaca , Hemoglobinas , Humanos , Hipertensión/epidemiología , Irán/epidemiología , Obesidad/epidemiología , Seguridad , Factores de Tiempo , Resultado del Tratamiento , Pérdida de Peso , Adulto Joven
14.
Plant J ; 106(3): 766-784, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33583065

RESUMEN

Copper (Cu) and iron (Fe) are essential for plant growth and are often in short supply under natural conditions. Molecular responses to simultaneous lack of both metals (-Cu-Fe) differ from those seen in the absence of either alone. Metabolome profiling of plant leaves previously revealed that fumarate levels fall under -Cu-Fe conditions. We employed lines lacking cytosolic FUMARASE2 (FUM2) activity to study the impact of constitutive suppression of cytosolic fumarate synthesis on plant growth under Cu and/or Fe deficiency. In fum2 mutants, photosynthesis and growth were less impaired under -Cu-Fe conditions than in wild-type (WT) seedlings. In particular, levels of photosynthetic proteins, chloroplast ultrastructure, amino acid profiles and redox state were less perturbed by simultaneous Cu-Fe deficiency in lines that cannot produce fumarate in the cytosol. Although cytosolic fumarate has been reported to promote acclimation of photosynthesis to low temperatures when metal supplies are adequate, the photosynthetic efficiency of fum2 lines grown under Cu-Fe deficiency in the cold was higher than in WT. Uptake and contents of Cu and Fe are similar in WT and fum2 plants under control and -Cu-Fe conditions, and lack of FUM2 does not alter the ability to sense metal deficiency, as indicated by marker gene expression. Collectively, we propose that reduced levels of cytosolic fumarate synthesis ultimately increase the availability of Fe for incorporation into metalloproteins.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Cobre/deficiencia , Fumarato Hidratasa/fisiología , Hierro/metabolismo , Fotosíntesis , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fumarato Hidratasa/genética , Fumaratos/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Tilacoides/metabolismo
15.
Plant Physiol ; 185(2): 441-456, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33580795

RESUMEN

Age-dependent changes in reactive oxygen species (ROS) levels are critical in leaf senescence. While H2O2-reducing enzymes such as catalases and cytosolic ASCORBATE PEROXIDASE1 (APX1) tightly control the oxidative load during senescence, their regulation and function are not specific to senescence. Previously, we identified the role of ASCORBATE PEROXIDASE6 (APX6) during seed maturation in Arabidopsis (Arabidopsis thaliana). Here, we show that APX6 is a bona fide senescence-associated gene. APX6 expression is specifically induced in aging leaves and in response to senescence-promoting stimuli such as abscisic acid (ABA), extended darkness, and osmotic stress. apx6 mutants showed early developmental senescence and increased sensitivity to dark stress. Reduced APX activity, increased H2O2 level, and altered redox state of the ascorbate pool in mature pre-senescing green leaves of the apx6 mutants correlated with the early onset of senescence. Using transient expression assays in Nicotiana benthamiana leaves, we unraveled the age-dependent post-transcriptional regulation of APX6. We then identified the coding sequence of APX6 as a potential target of miR398, which is a key regulator of copper redistribution. Furthermore, we showed that mutants of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7), the master regulator of copper homeostasis and miR398 expression, have a higher APX6 level compared with the wild type, which further increased under copper deficiency. Our study suggests that APX6 is a modulator of ROS/redox homeostasis and signaling in aging leaves that plays an important role in developmental- and stress-induced senescence programs.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Ascorbato Peroxidasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Ascorbato Peroxidasas/genética , Cobre/deficiencia , Proteínas de Unión al ADN/genética , Oscuridad , Homeostasis , Peróxido de Hidrógeno/metabolismo , MicroARNs/genética , Oxidación-Reducción , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Nicotiana/enzimología , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/genética
16.
Nutrients ; 13(2)2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33562891

RESUMEN

Osteoporosis is one of the most common extraintestinal complications among patients suffering from inflammatory bowel diseases. The role of vitamin D and calcium in the prevention of a decreased bone mineral density is well known, although other nutrients, including micronutrients, are also of extreme importance. Despite the fact that zinc, copper, selenium, iron, cadmium, silicon and fluorine have not been frequently discussed with regard to the prevention of osteoporosis, it is possible that a deficiency or excess of the abovementioned elements may affect bone mineralization. Additionally, the risk of malnutrition, which is common in patients with ulcerative colitis or Crohn's disease, as well as the composition of gut microbiota, may be associated with micronutrients status.


Asunto(s)
Densidad Ósea , Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino/complicaciones , Desnutrición/complicaciones , Micronutrientes/deficiencia , Osteoporosis/etiología , Cadmio/administración & dosificación , Cadmio/efectos adversos , Cadmio/metabolismo , Calcio/fisiología , Colitis Ulcerosa/complicaciones , Cobre/administración & dosificación , Cobre/análisis , Cobre/deficiencia , Enfermedad de Crohn/complicaciones , Femenino , Flúor/administración & dosificación , Flúor/efectos adversos , Flúor/farmacología , Humanos , Deficiencias de Hierro , Sobrecarga de Hierro/complicaciones , Masculino , Micronutrientes/administración & dosificación , Micronutrientes/sangre , Osteoporosis/prevención & control , Factores de Riesgo , Selenio/administración & dosificación , Selenio/sangre , Selenio/deficiencia , Silicio/administración & dosificación , Vitamina D/fisiología , Zinc/administración & dosificación , Zinc/deficiencia , Zinc/metabolismo
18.
J Trace Elem Med Biol ; 65: 126715, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33465739

RESUMEN

BACKGROUND: Lysyl oxidase (LOX) is a metalloenzyme that requires Cu as a cofactor and it is responsible for the formation of collagen and elastin cross-linking. The objective of this work was to measure the LOX enzyme activity in the heart of bovines with Cu deficiency induced by high molybdenum and sulfur levels in the diet. METHODS: Eighteen myocardial samples were obtained from Cu-deficient (n = 9) and control (n = 9) Holstein bovines during two similar assays. The samples were frozen in liquid nitrogen and stored at -70 °C to measure enzymatic activity. A commercial kit was used, following producer instructions. RESULTS: The results showed that LOX activity from the hearts of Cu-deficient bovines is 29 % lower than the ones of control bovines, being this difference statistically significant (p = 0.03). CONCLUSION: To our knowledge, this is the first report that determined LOX enzymatic activity in bovine heart of Cu-deficient animals. The microscopic alterations found in these animals in our previous work, could be explained by a diminished LOX activity. The results are in agreement with other authors, who found a relationship between LOX activity and dietary Cu intake. The information provided by this work could help to clarify the pathogenesis of cardiac lesions in cattle with dietary Cu deficiency.


Asunto(s)
Cobre/metabolismo , Corazón/efectos de los fármacos , Molibdeno/farmacología , Proteína-Lisina 6-Oxidasa/antagonistas & inhibidores , Azufre/farmacología , Animales , Bovinos , Cobre/deficiencia , Dieta , Molibdeno/administración & dosificación , Proteína-Lisina 6-Oxidasa/metabolismo , Azufre/administración & dosificación
19.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291628

RESUMEN

Copper is one of the most abundant basic transition metals in the human body. It takes part in oxygen metabolism, collagen synthesis, and skin pigmentation, maintaining the integrity of blood vessels, as well as in iron homeostasis, antioxidant defense, and neurotransmitter synthesis. It may also be involved in cell signaling and may participate in modulation of membrane receptor-ligand interactions, control of kinase and related phosphatase functions, as well as many cellular pathways. Its role is also important in controlling gene expression in the nucleus. In the nervous system in particular, copper is involved in myelination, and by modulating synaptic activity as well as excitotoxic cell death and signaling cascades induced by neurotrophic factors, copper is important for various neuronal functions. Current data suggest that both excess copper levels and copper deficiency can be harmful, and careful homeostatic control is important. This knowledge opens up an important new area for potential therapeutic interventions based on copper supplementation or removal in neurodegenerative diseases including Wilson's disease (WD), Menkes disease (MD), Alzheimer's disease (AD), Parkinson's disease (PD), and others. However, much remains to be discovered, in particular, how to regulate copper homeostasis to prevent neurodegeneration, when to chelate copper, and when to supplement it.


Asunto(s)
Cobre/metabolismo , Susceptibilidad a Enfermedades , Degeneración Hepatolenticular/complicaciones , Degeneración Hepatolenticular/metabolismo , Enfermedades Neurodegenerativas/etiología , Animales , Astrocitos/metabolismo , Transporte Biológico , Biomarcadores , Encéfalo/metabolismo , Encéfalo/patología , Cobre/deficiencia , Manejo de la Enfermedad , Degeneración Hepatolenticular/genética , Homeostasis , Humanos , Redes y Vías Metabólicas , Enfermedades Neurodegenerativas/diagnóstico , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/terapia , Neuronas/metabolismo , Especificidad de Órganos
20.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081273

RESUMEN

Copper is an essential metal ion that performs many physiological functions in living organisms. Deletion of Afmac1, which is a copper-responsive transcriptional activator in A. fumigatus, results in a growth defect on aspergillus minimal medium (AMM). Interestingly, we found that zinc starvation suppressed the growth defect of the Δafmac1 strain on AMM. In addition, the growth defect of the Δafmac1 strain was recovered by copper supplementation or introduction of the CtrC gene into the Δafmac1 strain. However, chelation of copper by addition of BCS to AMM failed to recover the growth defect of the Δafmac1 strain. Through Northern blot analysis, we found that zinc starvation upregulated CtrC and CtrA2, which encode membrane copper transporters. Interestingly, we found that the conserved ZafA binding motif 5'-CAA(G)GGT-3' was present in the upstream region of CtrC and CtrA2 and that mutation of the binding motif led to failure of ZafA binding to the upstream region of CtrC and upregulation of CtrC expression under zinc starvation. Furthermore, the binding activity of ZafA to the upstream region of CtrC was inversely proportional to the zinc concentration, and copper inhibited the binding of ZafA to the upstream region of CtrC under a low zinc concentration. Taken together, these results suggest that ZafA upregulates copper metabolism by binding to the ZafA binding motif in the CtrC promoter region under low zinc concentration, thus regulating copper homeostasis. Furthermore, we found that copper and zinc interact in cells to maintain metal homeostasis.


Asunto(s)
Aspergillus fumigatus/metabolismo , Cobre/metabolismo , Zinc/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/crecimiento & desarrollo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Cobre/deficiencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Estrés Fisiológico , Regulación hacia Arriba , Zinc/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA