Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.765
Filtrar
1.
Curr Genet ; 70(1): 5, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709348

RESUMEN

The nonsense-mediated mRNA decay (NMD) pathway was initially identified as a surveillance pathway that degrades mRNAs containing premature termination codons (PTCs). NMD is now also recognized as a post-transcriptional regulatory pathway that regulates the expression of natural mRNAs. Earlier studies demonstrated that regulation of functionally related natural mRNAs by NMD can be differential and condition-specific in Saccharomyces cerevisiae. Here, we investigated the regulation of MAC1 mRNAs by NMD in response to copper as well as the role the MAC1 3'-UTR plays in this regulation. MAC1 is a copper-sensing transcription factor that regulates the high-affinity copper uptake system. MAC1 expression is activated upon copper deprivation. We found that MAC1 mRNAs are regulated by NMD under complete minimal (CM) but escaped NMD under low and high copper conditions. Mac1 protein regulated gene, CTR1 is not regulated by NMD in conditions where MAC1 mRNAs are NMD sensitive. We also found that the MAC1 3'-UTR is the NMD targeting feature on the mRNAs, and that MAC1 mRNAs lacking 3'-UTRs were stabilized during copper deprivation. Our results demonstrate a mechanism of regulation for a metal-sensing transcription factor, at both the post-transcriptional and post-translational levels, where MAC1 mRNA levels are regulated by NMD and copper, while the activity of Mac1p is controlled by copper levels.


Asunto(s)
Regiones no Traducidas 3' , Transportador de Cobre 1 , Cobre , Regulación Fúngica de la Expresión Génica , Degradación de ARNm Mediada por Codón sin Sentido , Proteínas Nucleares , ARN Mensajero , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factores de Transcripción , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cobre/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Codón sin Sentido/genética
2.
Nat Commun ; 15(1): 2957, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580646

RESUMEN

Nonsense mutations - the underlying cause of approximately 11% of all genetic diseases - prematurely terminate protein synthesis by mutating a sense codon to a premature stop or termination codon (PTC). An emerging therapeutic strategy to suppress nonsense defects is to engineer sense-codon decoding tRNAs to readthrough and restore translation at PTCs. However, the readthrough efficiency of the engineered suppressor tRNAs (sup-tRNAs) largely varies in a tissue- and sequence context-dependent manner and has not yet yielded optimal clinical efficacy for many nonsense mutations. Here, we systematically analyze the suppression efficacy at various pathogenic nonsense mutations. We discover that the translation velocity of the sequence upstream of PTCs modulates the sup-tRNA readthrough efficacy. The PTCs most refractory to suppression are embedded in a sequence context translated with an abrupt reversal of the translation speed leading to ribosomal collisions. Moreover, modeling translation velocity using Ribo-seq data can accurately predict the suppression efficacy at PTCs. These results reveal previously unknown molecular signatures contributing to genotype-phenotype relationships and treatment-response heterogeneity, and provide the framework for the development of personalized tRNA-based gene therapies.


Asunto(s)
Codón sin Sentido , ARN de Transferencia , Codón sin Sentido/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Codón/genética , Ribosomas/metabolismo , Terapia Genética , Biosíntesis de Proteínas/genética , Codón de Terminación
3.
EMBO Rep ; 25(4): 2118-2143, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38499809

RESUMEN

Stop codon readthrough (SCR) is the process where translation continues beyond a stop codon on an mRNA. Here, we describe a strategy to enhance or induce SCR in a transcript-selective manner using a CRISPR-dCas13 system. Using specific guide RNAs, we target dCas13 to the region downstream of canonical stop codons of mammalian AGO1 and VEGFA mRNAs, known to exhibit natural SCR. Readthrough assays reveal enhanced SCR of these mRNAs (both exogenous and endogenous) caused by the dCas13-gRNA complexes. This effect is associated with ribosomal pausing, which has been reported for several SCR events. Our data show that CRISPR-dCas13 can also induce SCR across premature termination codons (PTCs) in the mRNAs of green fluorescent protein and TP53. We demonstrate the utility of this strategy in the induction of readthrough across the thalassemia-causing PTC in HBB mRNA and hereditary spherocytosis-causing PTC in SPTA1 mRNA. Thus, CRISPR-dCas13 can be programmed to enhance or induce SCR in a transcript-selective and stop codon-specific manner.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ARN Guía de Sistemas CRISPR-Cas , Animales , Codón de Terminación/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Codón sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Biosíntesis de Proteínas , Mamíferos/genética , Mamíferos/metabolismo
4.
Nat Commun ; 15(1): 2486, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509072

RESUMEN

Protein synthesis terminates when a stop codon enters the ribosome's A-site. Although termination is efficient, stop codon readthrough can occur when a near-cognate tRNA outcompetes release factors during decoding. Seeking to understand readthrough regulation we used a machine learning approach to analyze readthrough efficiency data from published HEK293T ribosome profiling experiments and compared it to comparable yeast experiments. We obtained evidence for the conservation of identities of the stop codon, its context, and 3'-UTR length (when termination is compromised), but not the P-site codon, suggesting a P-site tRNA role in readthrough regulation. Models trained on data from cells treated with the readthrough-promoting drug, G418, accurately predicted readthrough of premature termination codons arising from CFTR nonsense alleles that cause cystic fibrosis. This predictive ability has the potential to aid development of nonsense suppression therapies by predicting a patient's likelihood of improvement in response to drugs given their nonsense mutation sequence context.


Asunto(s)
Codón sin Sentido , Biosíntesis de Proteínas , Humanos , Codón de Terminación/genética , Codón sin Sentido/genética , Células HEK293 , Biosíntesis de Proteínas/genética , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
5.
J Oral Biosci ; 66(1): 225-231, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38244688

RESUMEN

OBJECTIVES: Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked genetic disorder caused by mutations in the BCL6 co-repressor (BCOR) and is mainly characterized by radiculomegaly (elongated dental roots). All BCOR mutations reported to date have been associated with premature termination codons, indicating that nonsense-mediated mRNA decay (NMD) might play a vital role in the pathogenesis of OFCD syndrome. However, the molecular mechanisms underlying NMD remain unclear. In this study, we investigated the involvement of up-frameshift protein 1 (UPF1), which plays a central role in NMD, in the hyperactive root formation caused by BCOR mutations. METHODS: Periodontal ligament cells, isolated from a Japanese woman with a c.3668delC frameshift mutation in BCOR, and primary human periodontal ligament fibroblasts (HPdLFs) were used for an RNA immunoprecipitation assay to confirm the binding of UPF1 to mutated BCOR. Additionally, the effects of UPF1 on the BCOR transcription levels and corresponding gene expression were determined by performing relative quantitative real-time polymerase chain reactions. RESULTS: RNA immunoprecipitation revealed that UPF1 binds to exon 9 of mutated BCOR. Additionally, UPF1 knockdown via siRNA upregulated the transcription of BCOR, whereas overexpression of wild-type and mutated BCOR with the same frameshift mutation in HPdLFs altered bone morphogenetic protein 2 (BMP2) expression. CONCLUSIONS: Our findings indicate that BCOR mutations regulate the transcription of BCOR via UPF1, which may in turn regulate the expression of BMP2. NMD, caused by a c.3668delC mutation, potentially leads to an OFCD syndrome phenotype, including elongated dental roots.


Asunto(s)
Catarata/congénito , Mutación del Sistema de Lectura , Defectos de los Tabiques Cardíacos , Microftalmía , Degradación de ARNm Mediada por Codón sin Sentido , Femenino , Humanos , Mutación del Sistema de Lectura/genética , Degradación de ARNm Mediada por Codón sin Sentido/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Codón sin Sentido/genética , Transactivadores/genética , Transactivadores/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo
6.
Adv Sci (Weinh) ; 11(13): e2306792, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38288517

RESUMEN

This investigation addresses the challenge of suboptimal unnatural amino acid (UAA) utilization in the site-specific suppression of nonsense mutations through genetic code expansion, which is crucial for protein restoration and precise property tailoring. A facile and economical oral liquid formulation is developed by converting UAAs into ionic liquids, significantly enhancing their bioavailability and tissue accumulation. Empirical data reveal a 10-fold increase in bioavailability and up to a 13-fold rise in focal tissue accumulation, alongside marked improvements in UAA incorporation efficiency. A 4-week oral administration in mdx mice, a model for Duchenne muscular dystrophy (DMD), demonstrates the formulation's unprecedented therapeutic potential, with up to 40% dystrophin expression restoration and 75% recovery of normal fiber functions, surpassing existing treatments and exhibiting substantial long-term safety. This study presents a potent oral dosage form that dramatically improves UAA incorporation into target proteins in vivo, offering a significant advance in the treatment of nonsense mutation-mediated disorders and holding considerable promise for clinical translation.


Asunto(s)
Líquidos Iónicos , Distrofia Muscular de Duchenne , Animales , Ratones , Codón sin Sentido/genética , Ratones Endogámicos mdx , Líquidos Iónicos/uso terapéutico , Aminoácidos , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
7.
Physiol Genomics ; 56(1): 65-73, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955133

RESUMEN

Recently, we have identified a recessive mutation, an abnormal coat appearance in the BXH6 strain, a member of the HXB/BXH set of recombinant inbred (RI) strains. The RI strains were derived from the spontaneously hypertensive rat (SHR) and Brown Norway rat (BN-Lx) progenitors. Whole genome sequencing of the mutant rats identified the 195875980 G/A mutation in the tuftelin 1 (Tuft1) gene on chromosome 2, which resulted in a premature stop codon. Compared with wild-type BXH6 rats, BXH6-Tuft1 mutant rats exhibited lower body weight due to reduced visceral fat and ectopic fat accumulation in the liver and heart. Reduced adiposity was associated with decreased serum glucose and insulin and increased insulin-stimulated glycogenesis in skeletal muscle. In addition, mutant rats had lower serum monocyte chemoattractant protein-1 and leptin levels, indicative of reduced inflammation. Analysis of the liver proteome identified differentially expressed proteins from fatty acid metabolism and ß-oxidation, peroxisomes, carbohydrate metabolism, inflammation, and proteasome pathways. These results provide evidence for the important role of the Tuft1 gene in the regulation of lipid and glucose metabolism and suggest underlying molecular mechanisms.NEW & NOTEWORTHY A new spontaneous mutation, abnormal hair appearance in the rat, has been identified as a nonfunctional tuftelin 1 (Tuft1) gene. The pleiotropic effects of this mutation regulate glucose and lipid metabolism. Analysis of the liver proteome revealed possible molecular mechanisms for the metabolic effects of the Tuft1 gene.


Asunto(s)
Codón sin Sentido , Glucosa , Ratas , Animales , Glucosa/metabolismo , Codón sin Sentido/genética , Metabolismo de los Lípidos/genética , Proteoma/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas BN , Insulina/metabolismo , Inflamación
8.
Gene ; 895: 148012, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-37995796

RESUMEN

BACKGROUND: Although structural heart disease is frequently present among patients who experience sudden cardiac death (SCD), inherited arrhythmia syndromes can also play an important role in the occurrence of SCD. CPVT2, which is the second-most prevalent form of CPVT, arises from an abnormality in the CASQ2 gene. OBJECTIVE: We represent a novel CASQ2 variant that causes CPVT2 and conduct a comprehensive review on this topic. METHODS: The proband underwent Whole-exome sequencing (WES) in order to ascertain the etiology of CPVT. Subsequently, the process of segregating the available family members was carried out through the utilization of PCR and Sanger Sequencing. We searched the google scholar and PubMed/Medline for studies reporting CASQ2 variants, published up to May 10,2023. We used the following mesh term "Calsequestrin" and using free-text method with terms including "CASQ2","CASQ2 variants", and "CASQ2 mutation". RESULTS: The CASQ2 gene was found to contain an autosomal recessive nonsense variant c.268_269insTA:p.Gly90ValfsTer4, which was identified by WES. This variant was determined to be the most probable cause of CPVT in the pedigree under investigation. CONCLUSION: CASQ2 variants play an important role in pathogenesis of CPVT2. Notabely, based on results of our study and other findings in the literature the variant in this gene may cause an neurological signs in the patients with CPVT2. Further studies are needed for more details about the role of this gene in CPVT evaluation, diagnosis, and gene therapy.


Asunto(s)
Calsecuestrina , Taquicardia Ventricular , Niño , Femenino , Humanos , Masculino , Calsecuestrina/genética , Electrocardiografía , Secuenciación del Exoma , Corazón/fisiopatología , Linaje , Síncope/genética , Taquicardia Ventricular/genética , Codón sin Sentido/genética , Mutación
9.
BMB Rep ; 56(12): 625-632, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38052423

RESUMEN

Nonsense-mediated mRNA decay (NMD) is both a quality control mechanism and a gene regulation pathway. It has been studied for more than 30 years, with an accumulation of many mechanistic details that have often led to debate and hence to different models of NMD activation, particularly in higher eukaryotes. Two models seem to be opposed, since the first requires intervention of the exon junction complex (EJC) to recruit NMD factors downstream of the premature termination codon (PTC), whereas the second involves an EJC-independent mechanism in which NMD factors concentrate in the 3'UTR to initiate NMD in the presence of a PTC. In this review we describe both models, giving recent molecular details and providing experimental arguments supporting one or the other model. In the end it is certainly possible to imagine that these two mechanisms co-exist, rather than viewing them as mutually exclusive. [BMB Reports 2023; 56(12): 625-632].


Asunto(s)
Codón sin Sentido , Degradación de ARNm Mediada por Codón sin Sentido , Degradación de ARNm Mediada por Codón sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exones , Codón sin Sentido/genética , Regulación de la Expresión Génica
10.
PLoS Biol ; 21(11): e3002355, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37943958

RESUMEN

The introduction of premature termination codons (PTCs), as a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes. Thus, further efforts are required to improve the clinical outcome of nonsense mutation suppressors. Here, by focusing on enhancing readthrough of pathogenic nonsense mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, we show that disturbing the protein translation initiation complex, as well as targeting other stages of the protein translation machinery, enhances both antibiotic and non-antibiotic-mediated readthrough of nonsense mutations. These findings strongly increase our understanding of the mechanisms involved in nonsense mutation readthrough and facilitate the development of novel therapeutic targets for nonsense suppression to restore protein expression from a large variety of disease-causing mutated transcripts.


Asunto(s)
Codón sin Sentido , Neoplasias , Humanos , Codón sin Sentido/genética , Biosíntesis de Proteínas/genética , Antibacterianos/farmacología
11.
PLoS One ; 18(11): e0292468, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37917619

RESUMEN

The retinoblastoma protein (Rb) is encoded by the RB1 tumor suppressor gene. Inactivation of RB1 by inherited or somatic mutation occurs in retinoblastoma and various other types of tumors. A significant fraction (25.9%) of somatic RB1 mutations are nonsense substitutions leading to a premature termination codon (PTC) in the RB1 coding sequence and expression of truncated inactive Rb protein. Here we show that aminoglycoside G418, a known translational readthrough inducer, can induce full-length Rb protein in SW1783 astrocytoma cells with endogenous R579X nonsense mutant RB1 as well as in MDA-MB-436 breast carcinoma cells transiently transfected with R251X, R320X, R579X or Q702X nonsense mutant RB1 cDNA. Readthrough was associated with increased RB1 mRNA levels in nonsense mutant RB1 cells. Induction of full-length Rb protein was potentiated by the cereblon E3 ligase modulator CC-90009. These results suggest that pharmacological induction of translational readthrough could be a feasible strategy for therapeutic targeting of tumors with nonsense mutant RB1.


Asunto(s)
Neoplasias de la Retina , Retinoblastoma , Humanos , Retinoblastoma/genética , Codón sin Sentido/genética , Proteína de Retinoblastoma/genética , Biosíntesis de Proteínas , Neoplasias de la Retina/patología , Ubiquitina-Proteína Ligasas/genética , Proteínas de Unión a Retinoblastoma/genética
12.
DNA Cell Biol ; 42(11): 697-708, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37797217

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a heritable neurodegenerative disease of peripheral nervous system diseases in which more than 100 genes and their mutations are associated. Two consanguineous families Dera Ghazi Khan (PAK-CMT1-DG KHAN) and Layyah (PAK-CMT2-LAYYAH) with multiple CMT-affected subjects were enrolled from Punjab province in Pakistan. Basic epidemiological data were collected for the subjects. Nerve conduction study (NCS) and electromyography (EMG) were performed for the patients. Whole-exome sequencing (WES) followed by Sanger sequencing was applied to report the genetic basic of CMT. The NCS findings revealed that sensory and motor nerve conduction velocities for both families were <38 m/s. EMG presented denervation, neuropathic motor unit potential, and reduced interference pattern of peripheral nerves. WES identified that a novel nonsense mutation (c. 226 G>T) in GADP1 gene and a previously known missense mutation in MFN2 gene (c. 334 G>A) cause CMT4A (Charcot-Marie-Tooth disease type 4A) in the PAK-CMT1-DG KHAN family and CMT2A (Charcot-Marie-Tooth disease type 2A) in the PAK-CMT2-LAYYAH family, respectively. Mutations followed Mendelian pattern with autosomal recessive mode of inheritance. Multiple sequence alignment by Clustal Omega indicated that mutation-containing domain in both genes is highly conserved, and in situ analysis revealed that both mutations are likely to be pathogenic. We reported that a novel nonsense mutation and a previously known missense mutation in GAPD1 gene and MFN2 gene, respectively, cause CMT in consanguineous Pakistani families.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Enfermedades Neurodegenerativas , Humanos , Enfermedad de Charcot-Marie-Tooth/genética , Codón sin Sentido/genética , Consanguinidad , GTP Fosfohidrolasas/genética , Proteínas Mitocondriales/genética , Mutación , Pakistán , Linaje
13.
Genet Res (Camb) ; 2023: 9999660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37829154

RESUMEN

EDSS1, a syndrome characterized by ectodermal dysplasia-syndactyly, is inherited in an autosomal recessive manner due to mutations in the NECTIN4/PVRL4 gene. Clinical manifestations of the syndrome include defective nail plate, sparse to absent scalp and body hair, spaced teeth with enamel hypoplasia, and bilateral cutaneous syndactyly in the fingers and toes. Here, we report a consanguineous family of Kashmiri origin presenting features of EDSS1. Using whole exome sequencing, we found a recurrent nonsense mutation (NM_030916: c.181C > T, p.(Gln61 ∗)) in the NECTIN4 gene. The variant segregated perfectly with the disorder within the family. The candidate variant was absent in 50 in-house exomes pertaining to other disorders from the same population. In addition to the previously reported clinical phenotype, an upper lip cleft was found in one of the affected members as a novel phenotype that is not reported by previous studies in EDSS1 patients. Therefore, the study presented here, which was conducted on the Kashmiri population, is the first to document a NECTIN4 mutation associated with the upper lip cleft as a novel phenotype. This finding broadens the molecular and phenotypic spectrum of EDSS1.


Asunto(s)
Labio Leporino , Displasia Ectodérmica , Anomalías Maxilomandibulares , Nectinas , Sindactilia , Humanos , Alopecia/complicaciones , Moléculas de Adhesión Celular/genética , Labio Leporino/genética , Labio Leporino/complicaciones , Codón sin Sentido/genética , Consanguinidad , Displasia Ectodérmica/genética , Displasia Ectodérmica/complicaciones , Anomalías Maxilomandibulares/complicaciones , Mutación , Nectinas/genética , Linaje , Fenotipo , Sindactilia/genética , Sindactilia/complicaciones , Síndrome
14.
Mamm Genome ; 34(4): 559-571, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37656189

RESUMEN

The spontaneous mutation stubby (stb) in mice causes chondrodysplasia and male infertility due to impotence through autosomal recessive inheritance. In this study, we conducted linkage analysis to localize the stb locus within a 1.6 Mb region on mouse chromosome 2 and identified a nonsense mutation in Adamtsl2 of stb/stb mice. Histological analysis revealed disturbed endochondral ossification with a reduced hypertrophic chondrocyte layer and stiff skin with a thickened dermal layer. These phenotypes are similar to those observed in humans and mice with ADAMTSL2/Adamtsl2 mutations. Moreover, stb/stb female mice exhibited severe uterine hypoplasia at 5 weeks of age and irregular estrous cycles at 10 weeks of age. In normal mice, Adamtsl2 was more highly expressed in the ovary and pituitary gland than in the uterus, and this expression was decreased in stb/stb mice. These findings suggest that Adamtsl2 may function in these organs rather than in the uterus. Thus, we analyzed Gh expression in the pituitary gland and plasma estradiol and IGF1 levels, which are required for the development of the female reproductive tract. There was no significant difference in Gh expression and estradiol levels, whereas IGF1 levels in stb/stb mice were significantly reduced to 54-59% of those in +/+ mice. We conclude that Adamtsl2 is required for the development of the uterus and regulation of the estrous cycle in female mice, and decreased IGF1 may be related to these abnormalities.


Asunto(s)
Codón sin Sentido , Estradiol , Humanos , Animales , Ratones , Masculino , Femenino , Codón sin Sentido/genética , Mutación , Útero , Ciclo Estral/genética , Proteínas ADAMTS/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo
15.
Clin Oral Investig ; 27(10): 6111-6123, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37615776

RESUMEN

OBJECTIVES: The current research on single-nucleotide polymorphism (SNP) mutation sites at different positions of the FAM83H gene and their phenotypic changes leading to amelogenesis imperfecta (AI) is inconsistent. We identified a previously reported heterozygous nonsense mutation c.1192C>T (p.Q398*) in the FAM83H gene and conducted a comprehensive analysis of the dental ultrastructure and chemical composition changes induced by this mutation. Additionally, we predicted the protein feature affected by this mutation site. The aim was to further deepen our understanding of the diversity of AI caused by different mutation sites in the FAM83H gene. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the mutation sites. Physical features of the patient's teeth were investigated using various methods including cone beam computer tomography (CBCT), scanning electron microscopy (SEM), contact profilometry (roughness measurement), and a nanomechanical tester (nanoindentation measurement). The protein features of wild-type and mutant FAM83H were predicted using bioinformatics methods. RESULTS: One previously discovered FAM83H heterozygous nonsense mutation c.1192C>T (p.Q398*) was detected in the patient. SEM revealed inconsistent dentinal tubules, and EDS showed that calcium and phosphorus were lower in the patient's dentin but higher in the enamel compared to the control tooth. Roughness measurements showed that AI patients' teeth had rougher occlusal surfaces than those of the control tooth. Nanoindentation measurements showed that the enamel and dentin hardness values of the AI patients' teeth were both significantly reduced compared to those of the control tooth. Compared to the wild-type FAM83H protein, the mutant FAM83H protein shows alterations in stability, hydrophobicity, secondary structure, and tertiary structure. These changes could underlie functional differences and AI phenotype variations caused by this mutation site. CONCLUSIONS: This study expands the understanding of the effects of FAM83H mutations on tooth structure. CLINICAL RELEVANCE: Our study enhances our understanding of the genetic basis of AI and may contribute to improved diagnostics and personalized treatment strategies for patients with FAM83H-related AI.


Asunto(s)
Amelogénesis Imperfecta , Humanos , Amelogénesis Imperfecta/genética , Codón sin Sentido/genética , Codón sin Sentido/análisis , Esmalte Dental/química , Proteínas/análisis , Proteínas/genética , Mutación
16.
Sci Rep ; 13(1): 14294, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653005

RESUMEN

In most eukaryotes and prokaryotes TGA is used at a significantly higher frequency than TAG as termination codon of protein-coding genes. Although this phenomenon has been recognized several years ago, there is no generally accepted explanation for the TAG-TGA paradox. Our analyses of human mutation data revealed that out of the eighteen sense codons that can give rise to a nonsense codon by single base substitution, the CGA codon is exceptional: it gives rise to the TGA stop codon at an order of magnitude higher rate than the other codons. Here we propose that the TAG-TGA paradox is due to methylation and hypermutabilty of CpG dinucleotides. In harmony with this explanation, we show that the coding genomes of organisms with strong CpG methylation have a significant bias for TGA whereas those from organisms that lack CpG methylation use TGA and TAG termination codons with similar probability.


Asunto(s)
Codón sin Sentido , Magnoliopsida , Humanos , Codón de Terminación/genética , Codón sin Sentido/genética , Eucariontes , Mutación
17.
Hum Mol Genet ; 32(23): 3237-3248, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37649273

RESUMEN

Small molecule drugs known as modulators can treat ~90% of people with cystic fibrosis (CF), but do not work for premature termination codon variants such as W1282X (c.3846G>A). Here we evaluated two gene editing strategies, Adenine Base Editing (ABE) to correct W1282X, and Homology-Independent Targeted Integration (HITI) of a CFTR superexon comprising exons 23-27 (SE23-27) to enable expression of a CFTR mRNA without W1282X. In Flp-In-293 cells stably expressing a CFTR expression minigene bearing W1282X, ABE corrected 24% of W1282X alleles, rescued CFTR mRNA from nonsense mediated decay and restored protein expression. However, bystander editing at the adjacent adenine (c.3847A>G), caused an amino acid change (R1283G) that affects CFTR maturation and ablates ion channel activity. In primary human nasal epithelial cells homozygous for W1282X, ABE corrected 27% of alleles, but with a notably lower level of bystander editing, and CFTR channel function was restored to 16% of wild-type levels. Using the HITI approach, correct integration of a SE23-27 in intron 22 of the CFTR locus in 16HBEge W1282X cells was detected in 5.8% of alleles, resulting in 7.8% of CFTR transcripts containing the SE23-27 sequence. Analysis of a clonal line homozygous for the HITI-SE23-27 produced full-length mature protein and restored CFTR anion channel activity to 10% of wild-type levels, which could be increased three-fold upon treatment with the triple combination of CF modulators. Overall, these data demonstrate two different editing strategies can successfully correct W1282X, the second most common class I variant, with a concomitant restoration of CFTR function.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Edición Génica , Codón sin Sentido/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mutación
18.
Adv Exp Med Biol ; 1415: 149-155, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440028

RESUMEN

Nonsense mutations occur within the open-reading frame of a gene resulting in a premature termination codon (PTC). PTC-containing mRNAs can either be degeraded or cause premature translation termination producing a truncated protein that can be either nonfunctional or toxic. Translational readthrough inducing drugs (TRIDs) are small molecules that are able to induce readthrough, resulting in the restoration of full-length protein expression. The re-expressed proteins usually harbor a missense change. The effciency of individual TRIDs is variable and varies between different genes and even different nonsense mutations in the same gene. This review summarizes factors, including the sequences located upstream and downstream the disease-causing mutation and the type of PTC, affecting the translational readthrough process by modulating the type of amino acid insertion and the efficiency of the process during readthrough following TRIDs treatments.


Asunto(s)
Codón sin Sentido , Biosíntesis de Proteínas , Codón sin Sentido/genética , Biosíntesis de Proteínas/genética , Aminoácidos , ARN Mensajero/genética
19.
Int J Mol Sci ; 24(11)2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37298560

RESUMEN

Cystic Fibrosis (CF) is an autosomal recessive genetic disease caused by mutations in the CFTR gene, coding for the CFTR chloride channel. About 10% of the CFTR gene mutations are "stop" mutations that generate a premature termination codon (PTC), thus synthesizing a truncated CFTR protein. A way to bypass PTC relies on ribosome readthrough, which is the ribosome's capacity to skip a PTC, thus generating a full-length protein. "TRIDs" are molecules exerting ribosome readthrough; for some, the mechanism of action is still under debate. We investigate a possible mechanism of action (MOA) by which our recently synthesized TRIDs, namely NV848, NV914, and NV930, could exert their readthrough activity by in silico analysis and in vitro studies. Our results suggest a likely inhibition of FTSJ1, a tryptophan tRNA-specific 2'-O-methyltransferase.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Codón sin Sentido/genética , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Metiltransferasas/metabolismo , Proteínas Nucleares/genética , ARN de Transferencia/genética , Triptófano/genética
20.
Biomed Pharmacother ; 164: 114968, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37276642

RESUMEN

Therapeutic strategies that promote read-through of a mutant gene have proved effective for certain non-neoplastic diseases. However, the efficacy of this approach is unproven regarding neoplastic diseases with germline nonsense mutations, including familial adenomatous polyposis. Here we examined the cancer-preventive efficacy of the macrolide antibiotic azithromycin, with a reported read-through effect, on intestinal tumorigenesis in C3B6F1 ApcMin/+ mice harboring a nonsense Apc mutation resulting in a truncated Apc protein. Mice were given drinking water lacking azithromycin or containing 0.0125-0.2 mg/mL azithromycin from 3 weeks of age. The small intestine and cecum were analyzed for pathological changes and alterations of intestinal flora. Azithromycin suppressed the number of tumors and the proportion of adenocarcinomas, with the most effective drinking-water concentration being 0.0125 mg/mL. Furthermore, azithromycin recovered the cellular level of full-length Apc, resulting in downregulation of ß-catenin and cyclin D1. Conversely, the effect of azithromycin on the diversity of the intestinal microbiota depended on the drinking-water concentration. These results suggest that the balance between azithromycin-mediate read-through of mutant Apc mRNA and antibacterial effects influences intestinal tumorigenesis. Thus, azithromycin is a potential anticancer agent for familial adenomatous polyposis patients harboring nonsense mutations.


Asunto(s)
Poliposis Adenomatosa del Colon , Azitromicina , Ratones , Animales , Azitromicina/farmacología , Azitromicina/uso terapéutico , Codón sin Sentido/genética , Alelos , Poliposis Adenomatosa del Colon/tratamiento farmacológico , Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/prevención & control , Transformación Celular Neoplásica/metabolismo , Agua , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...