Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
Biochem Pharmacol ; 220: 115985, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38154545

RESUMEN

Despite the availability of many therapeutic options, the prevalence of hypercholesterolemia remains high. There exists a significant unmet medical need for novel drugs and/or treatment combinations to effectively combat hypercholesterolemia while minimizing adverse reactions. The modulation of cholesterol 7α-hydroxylase (CYP7A1) expression via perturbation of the farnesoid X receptor (FXR) - dependent pathways, primarily FXR/small heterodimer partner (SHP) and FXR/ fibroblast growth factor (FGF)-19/ fibroblast growth factor receptor (FGFR)-4 pathways, presents as a potential option to lower cholesterol levels. This paper provides a comprehensive review of the important role that CYP7A1 plays in cholesterol homeostasis and how its expression can be exploited to assert differential control of bile acid synthesis and cholesterol metabolism. Additionally, the paper also summarizes the current therapeutic options for hypercholesterolemia, and positions modulators of CYP7A1 expression, namely FGFR4 inhibitors and FXR antagonists, as emerging and distinct pharmacological agents to complement and diversify the treatment regime. Their mechanistic and clinical considerations are also extensively described to interrogate the benefits and risks associated with using FXR-mediating agents, either singularly or in combination with recognised agents such as statins to target hypercholesterolemia.


Asunto(s)
Hipercolesterolemia , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Hígado/metabolismo , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 43(11): 1977-1983, 2023 Nov 20.
Artículo en Chino | MEDLINE | ID: mdl-38081618

RESUMEN

OBJECTIVE: To investigate the effect of yacon root extract on lipid metabolism in rats with hyperlipidemia (HLP) and its underlying mechanisms. METHODS: SD rat models of HLP induced by high- fat diet feeding for 8 weeks were randomized into the model group, fenofibrate treatment group (27 mg/kg), and yacon extract treatment groups at doses of 5, 2.5 and 1.25 g/kg (n=10). The rats were given corresponding drug treatments via gavage for 8 weeks. After the treatments, the rats were observed for body weight changes, liver coefficient, liver pathology, and serum levels of triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C). The mRNA and protein expressions of HMGCR, PPARα, CYP7A1, and CPT-1 in the liver were detected using RT-qPCR and Western blotting. RESULTS: Compared with those in the model group, the rats treated with fenofibrate and 5 g/kg yacon root extract showed significantly slower body weight gain and lower liver coefficient (P < 0.05) with lower serum levels of TG, TC, and LDL- C (P < 0.05) but higher HDL- C level (P < 0.05). The HLP rat models showed obvious fatty degeneration and vacuolar changes in the liver, which were significantly alleviated by fenofibrate treatment and by treatment with yacon root extract in a dose-dependent manner. Both fenofibrate and 5 g/kg yacon root extract significantly lowered the mRNA and protein expression levels of HMGCR (P < 0.001) and increased the expressions of PPARα, CYP7A1, and CPT-1 in the liver of HLP rats (P < 0.001). CONCLUSION: Yacon root extract can reduce serum TG and TC levels in HLP rats possibly by inhibiting HMGCR expression and activating the PPARα/CYP7A1/CPT-1 signaling pathway, thereby promoting fatty acid ß oxidation and bile acid metabolism.


Asunto(s)
Fenofibrato , Hiperlipidemias , Animales , Ratas , Peso Corporal , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , LDL-Colesterol , Dieta Alta en Grasa , Hiperlipidemias/tratamiento farmacológico , Metabolismo de los Lípidos , Hígado/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Ratas Sprague-Dawley , ARN Mensajero/metabolismo , Triglicéridos
3.
J Med Food ; 26(8): 529-539, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37594559

RESUMEN

In this study, we evaluated the effects of Lactobacillus reuteri NCIMB (LRC™) supplementation on hypercholesterolemia by researching its effects on cellular cholesterol metabolism in hypercholesterolemic rats (KHGASP-22-170) and HepG2 cell line. Rats were separated into six groups after adaptation and were then fed a normal control (NC), a high-cholesterol diet (HC), or a HC supplemented with simvastatin 15 mg/kg body weight (positive control [PC]), LRC 1 × 109 colony-forming units (CFU)/rat/day, LRC 4 × 109 CFU/rat/day, or LRC 1 × 1010 CFU/rat/day (1 × 109, 4 × 109, or 1 × 1010). The rats were dissected to study the effects of LRC on cholesterol metabolism and intestinal excretion at the end of experimental period. We discovered that LRC mainly participated in the restraint of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, the uptake of low-density lipoprotein (LDL) cholesterol into tissues, partially in the transport of cholesteryl esters into high density lipoprotein for maturation, and intestinal excretion of cholesterol. These results are supported by the expression of transcription factors and enzymes such as HMG-CoA reductase, SREBP2, CYP7A1, CETP, and LCAT in both messenger RNA (mRNA) and protein levels in serum and hepatic tissue. Furthermore, the LRC treatment in HepG2 significantly reduced the mRNA expression of HMG-CoA reductase, SREBP2, and CEPT and significantly increased the mRNA expression of LDL-receptor, LCAT, and CYP7A1 at all doses. Hence, we suggest that LRC supplementation could alleviate the serum cholesterol level by inhibiting the intracellular cholesterol synthesis, and augmenting excretion of intestinal cholesterol.


Asunto(s)
Hipercolesterolemia , Limosilactobacillus reuteri , Animales , Ratas , Colesterol , Hipercolesterolemia/tratamiento farmacológico , Metabolismo de los Lípidos , Colesterol 7-alfa-Hidroxilasa/genética
4.
Eur J Pharmacol ; 955: 175891, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37429516

RESUMEN

BACKGROUND & AIMS: Hyodeoxycholic acid (HDCA), a hydrophilic bile acid (BA), may prevent and suppress the formation of cholesterol gallstones (CGs). However, the mechanism by which HDCA prevents CGs formation remains unclear. This study aimed to investigate the underlying mechanism of HDCA in preventing CG formation. METHODS: C57BL/6J mice were fed either a lithogenic diet (LD), a chow diet, or LD combined with HDCA. The concentration of BAs in the liver and ileum were determined using liquid chromatography-mass spectrometry (LC-MS/MS). Genes involved in cholesterol and BAs metabolism were detected using polymerase chain reaction (PCR). The gut microbiota in the faeces was determined using 16S rRNA. RESULTS: HDCA supplementation effectively prevented LD-induced CG formation. HDCA increased the gene expression of BA synthesis enzymes, including Cyp7a1, Cyp7b1, and Cyp8b1, and decreased the expression of the cholesterol transporter Abcg5/g8 gene in the liver. HDCA inhibited LD-induced Nuclear farnesoid X receptor (Fxr) activation and reduced the gene expression of Fgf15 and Shp in the ileum. These data indicate that HDCA could prevent CGs formation partly by promoting BA synthesis in the liver and reduced the cholesterol efflux. In addition, HDCA administration reversed the LD-induced decrease in the abundance of norank_f_Muribaculaceae, which was inversely proportional to cholesterol levels. CONCLUSIONS: HDCA attenuated CG formation by modulating BA synthesis and gut microbiota. This study provides new insights into the mechanism by which HDCA prevents CG formation. LAY SUMMARY: In this study, we found that HDCA supplementation suppressed LD-induced CGs in mice by inhibiting Fxr in the ileum, enhancing BA synthesis, and increasing the abundance of norank_f_Muribaculaceae in the gut microbiota. HDCA can also downregulate the level of total cholesterol in the serum, liver, and bile.


Asunto(s)
Cálculos Biliares , Microbioma Gastrointestinal , Animales , Ratones , Cálculos Biliares/etiología , Cálculos Biliares/prevención & control , Cálculos Biliares/metabolismo , ARN Ribosómico 16S/genética , Cromatografía Liquida , Ratones Endogámicos C57BL , Espectrometría de Masas en Tándem , Colesterol/metabolismo , Hígado , Ácidos y Sales Biliares/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética
5.
Zoolog Sci ; 40(3): 208-218, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37256568

RESUMEN

Two cytochrome P450 genes homologous to human CYP7A1 and CYP27A1 were cloned from the non-parasitic Japanese lamprey Lethenteron reissneri. Lamprey cyp7a1 mRNA had varied expression levels among individuals: about four orders of magnitude differences in larval liver and nearly three orders of magnitude differences in male adult liver. Overexpressed Cyp7a1 protein tagged with green fluorescent protein (GFP) was localized to the endoplasmic reticulum. Lamprey cyp27a1 mRNA had relatively constant expression levels: within two orders of magnitude differences in larvae and adult liver and intestine. GFP-tagged Cyp27a1 protein was localized to mitochondria. The expression profiles of lamprey cyp7a1 and cyp27a1 genes and the cellular localizations of their products were in good agreement with their counterparts in mammals, where these two P450s catalyze initial hydroxylation reactions of cholesterol in classical and alternative pathways of bile acid synthesis, respectively. The cyp7a1 mRNA levels in adult male liver showed significant negative correlations to both body weight and total length of the animal, implying the involvement of the gene in the production of female-attractive pheromones in sexually matured male livers. The lamprey Cyp7a1 contains a long extension of 116 amino acids between helices D and E of the protein. Possible roles of this extension in regulating the enzymatic activity of lamprey Cyp7a1 are discussed.


Asunto(s)
Lampreas , Hígado , Animales , Femenino , Masculino , Ácidos y Sales Biliares/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colestanotriol 26-Monooxigenasa/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Lampreas/genética , Lampreas/metabolismo , Hígado/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
6.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 361-366, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-36949699

RESUMEN

Objective: To investigate the cholesterol 7α-hydroxylase gene ( CYP7A1)-204A/C single nucleotide polymorphism and its relationship with the blood lipid levels of pregnant women with gestational diabetes mellitus (GDM) and normal pregnant women. Methods: The genotype and allele frequencies of CYP7A1-204A/C gene polymorphism of 1037 normal pregnant women, the normal controls, and 627 pregnant women with GDM were examined by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) analysis. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and blood glucose (Glu) were measured by enzymatic assay. Chemiluminescence determination of plasma insulin (Ins) was conducted. Apolipoproteins A1 (apoA1) and B (apoB) were measured by the turbidimetric immunoassay. Results: Allele frequencies of A and C at the CYP7A1-204A/C polymorphic locus were 0.586 and 0.414, respectively, in the GDM group and 0.557 and 0.443, respectively in the control group. The distribution of genotype frequencies in both groups showed conformity with the Hardy-Weinberg principle. There was no significant difference in allele and genotype frequencies between the GDM group and the control group. In the control group, carriers of the genotype AA were associated with significantly higher concentrations of apoA1 and lower levels of Ins and homeostatic model assessment of insulin resistance (HOMA-IR) compared with those with genotype CC (all P<0.05). In the non-obese subgroup of the control subjects, carriers of the genotype CC were associated with significantly higher plasma TG or apoA1 levels compared with those with genotype AA ( P<0.05). In the GDM group, carriers with genotype AA of CYP7A1-204A/C polymorphism had elevated levels of gestational weight gain (GWG) compared with those with genotype CC ( P<0.05). Conclusion: These results suggest that 204A/C polymorphism in the CYP7A1 gene is not associated with GDM, but may be closely associated with gestational weight gain in pregnant women with GDM. Variants in this locus are strongly associated with plasma apoA1, Ins, and HOMA-IR levels in the controls and elevated plasma TG levels in non-obese controls.


Asunto(s)
Diabetes Gestacional , Ganancia de Peso Gestacional , Femenino , Humanos , Embarazo , Colesterol 7-alfa-Hidroxilasa/genética , HDL-Colesterol , Diabetes Gestacional/genética , Predisposición Genética a la Enfermedad , Genotipo , Polimorfismo de Nucleótido Simple , Triglicéridos
7.
J Sci Food Agric ; 103(3): 1283-1293, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36087337

RESUMEN

BACKGROUND: l-Theanine (LTA) is a biologically active ingredient in tea that shows great potential for regulating lipid metabolism. Bile acids (BA), an important end-product of cholesterol catabolism, participate in the regulation of lipid metabolism and gut microbiota. Here, we investigated the effect of LTA on lipid metabolism and the mechanism by which it regulates BA metabolism and gut microbiota. Male BALB/c mice were treated with LTA for 28 days. RESULTS: Daily LTA doses of 100 and 300 mg kg-1  d-1 altered the gut microbiota in mice, predominantly by decreasing Lactobacillus, Streptococcus, Bacteroides, Clostridium and Enterorhabdus microbes associated with bile-salt hydrolase (BSH) activity, thereby decreasing the activity of BSH and increasing the levels of ileum conjugated BA (such as glycocholic acid (GCA) and lithocholic acid), thereby inhibiting the intestinal farnesoid X receptor (FXR)-fibroblast growth factor 15 (FGF15) signaling pathway. Inhibition of FXR-FGF15 signaling was accompanied by upregulation of cholesterol 7α-hydroxylase (CYP7A1) mRNA and protein expression and increased hepatic production of cholic acid, deoxycholic acid, GCA, glycine cholic acid and glycine ursodeoxycholic acid. Meanwhile, increasing hepatic unconjugated BA upregulated the mRNA and protein expression of liver 3-hydroxy-3-methylglutaryl-CoA reductase and downregulated the mRNA and protein expression of stearoyl-CoA desaturase-1, liver low-density lipoprotein receptor and type B scavenger receptor. Therefore, the serum levels of cholesterol and triglycerides decreased. CONCLUSION: Our findings indicate that LTA regulates lipid metabolism by modulating the gut microbiota and BA metabolism via the FXR-FGF15-CYP7A1 pathway. © 2022 Society of Chemical Industry.


Asunto(s)
Microbioma Gastrointestinal , Metabolismo de los Lípidos , Masculino , Ratones , Animales , Ácidos y Sales Biliares/metabolismo , Hígado/metabolismo , Colesterol/metabolismo , ARN Mensajero/metabolismo , Ratones Endogámicos C57BL , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo
8.
Food Funct ; 13(20): 10665-10679, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36172720

RESUMEN

The improvement of lipid metabolism by capsaicin (CAP) has been extensively studied, mostly with respect to the vanilloid type 1 (TRPV1) ion channel and intestinal flora. In this study, a model was established in germ-free mice by using resiniferatoxin (RTX) to ablate TRPV1 ion channels. Bile acid composition, blood parameters, and colonic transcriptome analyses revealed that CAP could improve dyslipidemia caused by high-fat diet even in the absence of TRPV1 ion channels and intestinal flora. CAP fed to germ mice decreased the concentrations of low-density lipoprotein cholesterol (LDL-C), triglycerides (TG), fasting blood glucose and fasting insulin, increased the concentration of high-density lipoprotein (HDL-C), and decreased the levels of plasma endotoxin and pro-inflammatory factor interleukin 6 (IL-6). Furthermore, CAP could affect both classical and alternative pathways of cholesterol conversion by changing the composition of bile acids, reducing the concentrations of glycocholic acid (GCA), ursodeoxycholic acid (UDCA) and glycochenodeoxycholic acid (GCDCA). First, changing the composition of bile acids inhibited the expression of colon Fgf15. CAP promoted the expression of Cyp7a1 (Cytochrome p450, family 7, subfamily a, and polypeptide 1) in the liver, and thus reduced TC and TG levels. In addition, it could change the composition of bile acids and increase the expression of Cyp7b1 (Cytochrome p450, family 7, subfamily b, and polypeptide 1) in the colon, increase Cyp7b1 protein in the liver and thus inhibit fat accumulation. In conclusion, CAP could alter the composition of bile acids and promote the conversion of cholesterol to bile acids, thereby improving lipid metabolism abnormalities caused by a high-fat diet.


Asunto(s)
Dislipidemias , Insulinas , Animales , Ácidos y Sales Biliares/metabolismo , Glucemia/metabolismo , Capsaicina , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , LDL-Colesterol/metabolismo , Dieta Alta en Grasa/efectos adversos , Dislipidemias/tratamiento farmacológico , Dislipidemias/genética , Dislipidemias/metabolismo , Endotoxinas , Ácido Glicoquenodesoxicólico/metabolismo , Insulinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Lipoproteínas HDL , Hígado/metabolismo , Ratones , Triglicéridos/metabolismo , Ácido Ursodesoxicólico/metabolismo
9.
Nutrients ; 14(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36014836

RESUMEN

This study examined the effect of extruded Portulaca oleracea L. extract (PE) in rats fed a high-cholesterol diet through the AMP-activated protein kinase (AMPK) and microRNA (miR)-33/34a pathway. Sprague-Dawley rats were randomized into three groups and fed either a standard diet (SD), a high-cholesterol diet containing 1% cholesterol and 0.5% cholic acid (HC), or an HC diet containing 0.8% PE for 4 weeks. PE supplementation improved serum, liver, and fecal lipid profiles. PE upregulated the expression of genes involved in cholesterol efflux and bile acids' synthesis such as liver X receptor alpha (LXRα), ATP-binding cassette subfamily G5/G8 (ABCG5/8), and cholesterol 7 alpha-hydroxylase (CYP7A1), and downregulated farnesoid X receptor (FXR) in the liver. In addition, hepatic gene expression levels of apolipoprotein A-l (apoA-1), paraoxonase 1 (PON1), ATP-binding cassette subfamily A1/G1 (ABCA1/G1), lecithin-cholesterol acyltransferase (LCAT), and scavenger receptor class B type 1 (SR-B1), which are related to serum high-density lipoprotein cholesterol metabolism, were upregulated by PE. Furthermore, hepatic AMPK activity in the PE group was higher than in the HC group, and miR-33/34a expression levels were suppressed. These results suggest that PE improves the cholesterol metabolism by modulating AMPK activation and miR-33/34a expression in the liver.


Asunto(s)
Hipercolesterolemia , MicroARNs , Portulaca , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Colesterol , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dieta , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley
10.
J Biol Chem ; 298(7): 102056, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605662

RESUMEN

Peroxisome proliferator-activated receptor delta (PPARδ) agonists have been shown to exert beneficial effects in liver disease and reduce total bile acid levels. The mechanism(s) whereby PPARδ agonism reduces bile acid levels are, however, unknown, and therefore the aim of the present study was to investigate the molecular pathways responsible for reducing bile acid synthesis in hepatocytes, following treatment with the selective PPARδ agonist, seladelpar. We show that administration of seladelpar to WT mice repressed the liver expression of cholesterol 7 alpha-hydroxylase (Cyp7a1), the rate-limiting enzyme for bile acid synthesis, and decreased plasma 7α-hydroxy-4-cholesten-3-one (C4), a freely diffusible metabolite downstream of Cyp7a1. In primary mouse hepatocytes, seladelpar significantly reduced the expression of Cyp7a1 independent of the nuclear bile acid receptor, Farnesoid X receptor. In addition, seladelpar upregulated fibroblast growth factor 21 (Fgf21) in mouse liver, serum, and in cultured hepatocytes. We demonstrate that recombinant Fgf21 protein activated the c-Jun N-terminal kinase (JNK) signaling pathway and repressed Cyp7a1 gene expression in primary hepatocytes. The suppressive effect of seladelpar on Cyp7a1 expression was blocked by a JNK inhibitor as well as in the absence of Fgf21, indicating that Fgf21 plays an indispensable role in PPARδ-mediated downregulation of Cyp7a1. Finally, reduction of CYP7A1 expression by seladelpar was confirmed in primary human hepatocytes. In conclusion, we show that seladelpar reduces bile acid synthesis via an FGF21-dependent mechanism that signals at least partially through JNK to repress CYP7A1.


Asunto(s)
Acetatos , Ácidos y Sales Biliares , Colesterol 7-alfa-Hidroxilasa , Factores de Crecimiento de Fibroblastos , PPAR delta , Acetatos/farmacología , Animales , Ácidos y Sales Biliares/biosíntesis , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hepatocitos/metabolismo , Humanos , Ratones , PPAR delta/agonistas , Transducción de Señal
11.
Endocrinology ; 163(6)2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35451003

RESUMEN

Small heterodimer partner (Shp) regulates several metabolic processes, including bile acid levels, but lacks the conserved DNA binding domain. Phylogenetic analysis revealed conserved genetic evolution of SHP, FXR, CYP7A1, and CYP8B1. Shp, although primarily studied as a downstream target of Farnesoid X Receptor (Fxr), has a distinct hepatic role that is poorly understood. Here, we report that liver-specific Shp knockout (LShpKO) mice have impaired negative feedback of Cyp7a1 and Cyp8b1 on bile acid challenge and demonstrate that a single copy of the Shp gene is sufficient to maintain this response. LShpKO mice also exhibit elevated total bile acid pool with ileal bile acid composition mimicking that of cholic acid-fed control mice. Agonistic activation of Fxr (GW4064) in the LShpKO did not alter the elevated basal expression of Cyp8b1 but lowered Cyp7a1 expression. We found that deletion of Shp led to an enrichment of distinct motifs and pathways associated with circadian rhythm, copper ion transport, and DNA synthesis. We confirmed increased expression of metallothionein genes that can regulate copper levels in the absence of SHP. LShpKO livers also displayed a higher basal proliferation that was exacerbated specifically with bile acid challenge either with cholic acid or 3,5-diethoxycarbonyl-1,4-dihydrocollidine but not with another liver mitogen, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene. Overall, our data indicate that hepatic SHP uniquely regulates certain proliferative and metabolic cues.


Asunto(s)
Ácidos y Sales Biliares , Esteroide 12-alfa-Hidroxilasa , Animales , Ácidos y Sales Biliares/metabolismo , Ciclo Celular , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Ácido Cólico/metabolismo , Cobre/metabolismo , ADN/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Filogenia , Esteroide 12-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo
12.
Atherosclerosis ; 348: 56-67, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35287950

RESUMEN

BACKGROUND AND AIMS: Cholesterol 7alpha-hydroxylase (CYP7A1) is the rate limiting enzyme of the bile acid biosynthetic pathway to convert cholesterol to bile acids, which is a major output pathway for cholesterol catabolism. In this study, we aimed to assess the potential regulatory mechanisms of microRNA-185 (miR-185) in cholesterol and bile acid homeostasis. METHODS: Eight-week-old male ApoE KO mice fed a high-fat diet (HFD) were injected with lentiviruses encoding antisense miR-185 (miR-185-inh). Microarrays were applied to profile miR-185-regulated genes involved in bile acid metabolism. The expression of potential targets of miR-185 was validated using qPCR and Western blotting assay in human hepatoma HepG2 cells. RESULTS: The administration of miR-185-inh correlated with decreased serum total bile acids levels in ApoE KO mice. Microarray gene profiling revealed that inhibition of miR-185 upregulated hepatic CYP7A1 expression in vivo, which was further validated in HepG2 cells and primary hepatic cells in vitro by overexpression or inhibition of miR-185. Furthermore, it was revealed that miR-185 regulated CYP7A1 expression via a FoxO1-involved indirect pathway and that miR-185 directly modulated FoxO1 expression by binding to its mRNA 3'UTR in a traditional post-transcriptional manner. Besides, we also observed that miR-185 regulated CYP7A1 expression by increasing p-AKT/AKT level, which induced the phosphorylation of FoxO1 and promoted FoxO1 degradation at a post-translational level. CONCLUSIONS: This study provides convincing evidence on the critical role of miR-185 in FoxO1 modulation at both post-transcriptional and post-translational levels, which accounts for the effects on CYP7A1 gene and its mediated cholesterol-bile acid metabolism. These results suggest an important role of miR-185 as a novel atherosclerosis-protective target for drug discovery.


Asunto(s)
Colesterol 7-alfa-Hidroxilasa , MicroARNs , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Ácidos y Sales Biliares/metabolismo , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Hígado/metabolismo , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
13.
J Sci Food Agric ; 102(12): 5348-5357, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35318649

RESUMEN

BACKGROUND: Plant peptides have been reported to have cholesterol-lowering activities. Previous research has found that ≤1 kDa flaxseed peptide (FP5 ) reduces cholesterol absorption and synthesis in vitro. In this research, we investigated the cholesterol-lowering activity of FP5 in Sprague-Dawley (SD) rats fed a high-cholesterol and high-fat diet. In addition, amino acid sequences of FP5 were determined by high-performance liquid chromatography-electrospray ionization-Orbitrap mass spectrometry. RESULTS: FP5 supplement significantly decreased the serum and hepatic cholesterol levels and modulated the hepatic gene and protein expression of cholesterol metabolism-related enzymes or regulators (3-hydroxy-3-methylglutaryl coenzyme A reductase, Low-Density Lipoprotein Receptor (LDLR), Cholesterol 7 α-hydroxylase, Niemann-Pick C1-like 1, ATP-binding cassette transporters G5 and G8). Eleven peptides were identified from FP5 . These peptides were characterized as hydrophobic amino acids such as leucine (L), proline (P), glycine (G), isoleucine (I) and continuous sequences, including LP, LL, LG and II, with low molecular weights. CONCLUSION: FP5 has a certain cholesterol-lowering activity in SD rats fed a high-cholesterol and high-fat diet. The possible mechanism for ameliorating hepatic cholesterol metabolism of FP5 includes inhibiting hepatic cholesterol de novo synthesis, promoting the synthesis and excretion of bile acids, and inhibiting the reabsorption of bile acids during enterohepatic circulation. © 2022 Society of Chemical Industry.


Asunto(s)
Lino , Hipercolesterolemia , Animales , Ácidos y Sales Biliares/metabolismo , Colesterol , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dieta Alta en Grasa/efectos adversos , Lino/metabolismo , Hipercolesterolemia/metabolismo , Hígado/metabolismo , Péptidos/metabolismo , Ratas , Ratas Sprague-Dawley
14.
FASEB J ; 36(3): e22185, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35133032

RESUMEN

FGF19/FGF15 is an endocrine regulator of hepatic bile salt and lipid metabolism, which has shown promising effects in the treatment of NASH in clinical trials. FGF19/15 is transcribed and released from enterocytes of the small intestine into enterohepatic circulation in response to bile-induced FXR activation. Previously, the TSS of FGF19 was identified to bind Wnt-regulated TCF7L2/encoded transcription factor TCF4 in colorectal cancer cells. Impaired Wnt signaling and specifical loss of function of its coreceptor LRP6 have been associated with NASH. We, therefore, examined if TCF7L2/TCF4 upregulates Fgf19 in the small intestine and restrains NASH through gut-liver crosstalk. We examined the mice globally overexpressing, haploinsufficient, and conditional knockout models of TCF7L2 in the intestinal epithelium. The TCF7L2+/- mice exhibited increased plasma bile salts and lipids and developed diet-induced fatty liver disease while mice globally overexpressing TCF7L2 were protected against these traits. Comprehensive in vivo analysis revealed that TCF7L2 transcriptionally upregulates FGF15 in the gut, leading to reduced bile synthesis and diminished intestinal lipid uptake. Accordingly, VilinCreert2 ; Tcf7L2fl/fl mice showed reduced Fgf19 in the ileum, and increased plasma bile. The global overexpression of TCF7L2 in mice with metabolic syndrome-linked LRP6R611C substitution rescued the fatty liver and fibrosis in the latter. Strikingly, the hepatic levels of TCF4 were reduced and CYP7a1 was increased in human NASH, indicating the relevance of TCF4-dependent regulation of bile synthesis to human disease. These studies identify the critical role of TCF4 as an upstream regulator of the FGF15-mediated gut-liver crosstalk that maintains bile and liver triglyceride homeostasis.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Íleon/metabolismo , Metabolismo de los Lípidos , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Homeostasis , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baja Densidad/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteína 2 Similar al Factor de Transcripción 7/genética
15.
Nat Commun ; 13(1): 252, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017486

RESUMEN

Cholesterol gallstone disease is a worldwide common disease. Cholesterol supersaturation in gallbladder bile is the prerequisite for its pathogenesis, while the mechanism is not completely understood. In this study, we find enrichment of gut microbiota (especially Desulfovibrionales) in patients with gallstone disease. Fecal transplantation of gut microbiota from gallstone patients to gallstone-resistant strain of mice can induce gallstone formation. Carrying Desulfovibrionales is associated with enhanced cecal secondary bile acids production and increase of bile acid hydrophobicity facilitating intestinal cholesterol absorption. Meanwhile, the metabolic product of Desulfovibrionales, H2S increase and is shown to induce hepatic FXR and inhibit CYP7A1 expression. Mice carrying Desulfovibrionales present induction of hepatic expression of cholesterol transporters Abcg5/g8 to promote biliary secretion of cholesterol as well. Our study demonstrates the role of gut microbiota, Desulfovibrionales, as an environmental regulator contributing to gallstone formation through its influence on bile acid and cholesterol metabolism.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Colesterol/biosíntesis , Digestión/fisiología , Cálculos Biliares/metabolismo , Microbioma Gastrointestinal/fisiología , Animales , Bilis/metabolismo , Colelitiasis , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Desulfovibrionales/fisiología , Heces/microbiología , Absorción Intestinal , Metabolismo de los Lípidos , Lipogénesis , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota
16.
Neurol Sci ; 43(4): 2611-2620, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34546511

RESUMEN

BACKGROUND: Patients with multiple sclerosis (MS) have significantly lower vitamin D levels. Cholesterol is known to be the precursor for vitamin D synthesis, and cholesterol removal is regulated by cholesterol 7α-hydroxylase (CYP7A1) in the liver and cholesterol 24S-hydroxylase (CYP46A1) in the brain. In this study, single nucleotide polymorphisms (SNPs) within the genes CYP7A1 (rs3808607) and CYP46A1 (rs754203) were investigated for their effects on serum lipid profiles, vitamin D levels, and the risk of developing MS. METHODS: Patients with MS (n = 191) and controls (n = 100) were tested using the PCR-RFLP method to determine their genotypes for rs3808607 and rs754203 SNPs. RESULTS: The minor (C) allele frequency for CYP7A1 rs3808607 variation was 0.380 in patients with MS and 0.305 in control subjects (P = .074). For CYP46A1 rs754203, the frequencies of the minor (C) allele were 0.272 and 0.250 in patients and control subjects, respectively (P = .563). Serum vitamin D (25(OH)D3) concentrations were significantly lower in patients than in control subjects (P = .002). The CYP46A1 rs754203 SNP was associated with total cholesterol levels in patients, whereas the CYP7A1 rs3808607 variant was not associated with serum lipid parameters or vitamin D levels in patients or control subjects. CONCLUSION: CYP7A1 rs3808607 and CYP46A1 rs754203 variations are not likely to confer an independent risk for MS development in the Turkish population. To the best of our knowledge, this is the first study to investigate the association between CYP46A1 rs754203 and MS risk.


Asunto(s)
Colesterol 24-Hidroxilasa , Colesterol 7-alfa-Hidroxilasa , Esclerosis Múltiple , Colesterol , Colesterol 24-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/genética , Humanos , Intrones , Lípidos/sangre , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/genética , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas , Turquía/epidemiología , Vitamina D/sangre
17.
Am J Clin Nutr ; 115(3): 717-723, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-34791009

RESUMEN

BACKGROUND: The consumption of 2 g/d plant sterols (PSs) reduces circulating LDL cholesterol by ≤10%. The degree of LDL cholesterol lowering was associated with specific apolipoprotein E [APOE, Reference SNP (rs)429358] and cholesterol 7α-hydroxylase (CYP7A1, rs3808607) genosets in previous post hoc analyses of randomized controlled trials. However, because post hoc analyses do not conform to the randomization model, there is a greater potential that the findings could be due to type I error, thus warranting validation through an a priori-designed intervention trial. OBJECTIVES: The GenePredict Plant Sterol study (GPS) was designed to validate associations of LDL cholesterol lowering with specific APOE and CYP7A1 genosets through a priori recruitment of individuals carrying prespecified genosets. METHODS: A 2-center, double-blind, placebo-controlled, randomized 2-period crossover dietary intervention with 2 g/d PS for 28 d with a minimum 28-d washout was undertaken from July 2017 to December 2019. A priori recruitment of individuals with slightly elevated LDL cholesterol was based on genosets of APOE isoforms and CYP7A1 rs3808607. Randomization was performed with stratification by sex and genoset. RESULTS: The recruitment target of 64 participants with prespecified genosets could not be reached, despite the screening of 477 individuals; 42 participants completed the intervention trial. Reductions in LDL cholesterol were similar across all 3 genosets (-0.298 ± 0.164, -0.357 ± 0.115, -0.293 ± 0.109 mmol/L; P = 0.0002 overall; P = 0.9126 for treatment × genoset), providing evidence that the shortfall in recruitment might not have stopped the trial from meeting the objective. CONCLUSIONS: APOE and CYP7A1 genotypes did not influence the efficacy of LDL cholesterol reductions upon dietary intervention with PSs. Findings of previous post hoc analyses could not be validated in a trial using a priori genotype-based recruitment. Obtaining adequate numbers of participants is challenging in trials using genoset-based recruitment, even for common variants.


Asunto(s)
Hipercolesterolemia , Fitosteroles , Apolipoproteínas E/genética , Colesterol 7-alfa-Hidroxilasa/genética , LDL-Colesterol , Humanos
18.
Chem Biol Drug Des ; 99(3): 483-495, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936214

RESUMEN

Acetaminophen (APAP) overdose is a leading cause of acute hepatic failure and liver transplantation, while the existing treatments are poorly effective. Therefore, it is necessary to develop effective therapeutic drugs for APAP-induced hepatotoxicity. Farnesoid X receptor (FXR) is a potential target for the treatment of liver disease, and the activation of FXR protects mice against APAP-induced hepatotoxicity. Compound 5, a glycine-conjugated derivative of FXR agonist 4, was designed to extend the chemical space of existing FXR agonists. Molecular modeling study indicated that compound 5 formed hydrogen bond network with key residues of FXR. Moreover, compound 5 (10 mg/kg) revealed better protective effects against APAP-induced hepatotoxicity than parent compound 4 (30 mg/kg). Further mechanical research indicated that compound 5 regulated the expressions of genes related to FXR and oxidative stress. These findings suggest that compound 5 is a promising FXR agonist suitable for further research, and it is the first time to verify that the glycine-conjugated derivative five exerted better protective effects than its parent compound.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Sustancias Protectoras/química , Receptores Citoplasmáticos y Nucleares/agonistas , Acetaminofén/toxicidad , Administración Oral , Animales , Sitios de Unión , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/síntesis química , Sustancias Protectoras/farmacología , Sustancias Protectoras/uso terapéutico , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo
19.
J Pharmacol Exp Ther ; 380(2): 114-125, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34794962

RESUMEN

Drug-induced liver injury (DILI) is the leading cause of acute liver failure and a major concern in drug development. Altered bile acid homeostasis via inhibition of the bile salt export pump (BSEP) is one mechanism of DILI. Dasatinib, pazopanib, and sorafenib are tyrosine kinase inhibitors (TKIs) that competitively inhibit BSEP and increase serum biomarkers for hepatotoxicity in ∼25-50% of patients. However, the mechanism(s) of hepatotoxicity beyond competitive inhibition of BSEP are poorly understood. This study examined mechanisms of TKI-mediated hepatotoxicity associated with altered bile acid homeostasis. Dasatinib, pazopanib, and sorafenib showed bile acid-dependent toxicity at clinically relevant concentrations, based on the C-DILI assay using sandwich-cultured human hepatocytes (SCHH). Among several bile acid-relevant genes, cytochrome P450 (CYP) 7A1 mRNA was specifically upregulated by 6.2- to 7.8-fold (dasatinib) and 5.7- to 9.3-fold (pazopanib), compared with control, within 8 hours. This was consistent with increased total bile acid concentrations in culture medium up to 2.3-fold, and in SCHH up to 1.4-fold, compared with control, within 24 hours. Additionally, protein abundance of sodium taurocholate co-transporting polypeptide (NTCP) was increased up to 2.0-fold by these three TKIs. The increase in NTCP protein abundance correlated with increased function; dasatinib and pazopanib increased hepatocyte uptake clearance (CLuptake) of taurocholic acid, a probe bile acid substrate, up to 1.4-fold. In conclusion, upregulation of CYP7A1 and NTCP in SCHH constitute novel mechanisms of TKI-associated hepatotoxicity. SIGNIFICANCE STATEMENT: Understanding the mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors (TKIs) is fundamental to development of effective and safe intervention therapies for various cancers. Data generated in sandwich-cultured human hepatocytes, an in vitro model of drug-induced hepatotoxicity, revealed that TKIs upregulate bile acid synthesis and alter bile acid uptake and excretion. These findings provide novel insights into additional mechanisms of bile acid-mediated drug-induced liver injury, an adverse effect that limits the use and effectiveness of TKI treatment in some cancer patients.


Asunto(s)
Antineoplásicos/toxicidad , Ácidos y Sales Biliares/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hepatocitos/efectos de los fármacos , Inhibidores de Proteínas Quinasas/toxicidad , Miembro 11 de la Subfamilia B de Transportador de Casetes de Unión al ATP/metabolismo , Células Cultivadas , Colesterol 7-alfa-Hidroxilasa/genética , Colesterol 7-alfa-Hidroxilasa/metabolismo , Dasatinib/toxicidad , Hepatocitos/metabolismo , Humanos , Indazoles/toxicidad , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Pirimidinas/toxicidad , Sorafenib/toxicidad , Sulfonamidas/toxicidad , Simportadores/metabolismo
20.
Cells ; 10(12)2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34943976

RESUMEN

Niemann-Pick C1-like 1 (NPC1L1) mediates intestinal uptake of dietary and biliary cholesterol and is the target of ezetimibe, a cholesterol absorption inhibitor used to treat hypercholesterolemia. Genetic deletion of NPC1L1 or ezetimibe treatment protects mice from high-fat diet (HFD)-induced obesity; however, the molecular mechanisms responsible for this therapeutic benefit remain unknown. A major metabolic fate of cholesterol is its conversion to bile acids. We found that NPC1L1 knockout (L1-KO) mice fed an HFD had increased energy expenditure, bile acid pool size, and fecal bile acid excretion rates. The elevated bile acid pool in the HFD-fed L1-KO mice was enriched with tauro-ß-muricholic acid. These changes in the L1-KO mice were associated with reduced ileal mRNA expression of fibroblast growth factor 15 (FGF15) and increased hepatic mRNA expression of cholesterol 7α-hydroxylase (Cyp7A1) and mitochondrial sterol 27-hydroxylase (Cyp27A1). In addition, mRNA expression of the membrane bile acid receptor Takeda G protein-coupled receptor 5 (TGR5) and type 2 iodothyronine deiodinase (Dio2) were elevated in brown adipose tissue of L1-KO mice, which is known to promote energy expenditure. Thus, altered bile acid homeostasis and signaling may play a role in protecting L1-KO mice against HFD-induced obesity.


Asunto(s)
Ácidos y Sales Biliares/genética , Factores de Crecimiento de Fibroblastos/genética , Íleon/metabolismo , Proteínas de Transporte de Membrana/genética , Obesidad/genética , Animales , Ácidos y Sales Biliares/metabolismo , Colestanotriol 26-Monooxigenasa/genética , Colesterol/genética , Colesterol/metabolismo , Colesterol 7-alfa-Hidroxilasa/genética , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/genética , Humanos , Íleon/efectos de los fármacos , Íleon/patología , Yoduro Peroxidasa/genética , Hígado/metabolismo , Hígado/patología , Proteínas de Transporte de Membrana/deficiencia , Ratones , Ratones Noqueados , Obesidad/metabolismo , Obesidad/patología , Receptores Acoplados a Proteínas G/genética , Yodotironina Deyodinasa Tipo II
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...